
Uniprocessor Garbage Collection Techniques[Submitted to ACM Computing Surveys]Paul R. WilsonAbstractWe survey basic garbage collection algorithms, andvariations such as incremental and generational collec-tion; we then discuss low-level implementation consid-erations and the relationships between storage man-agement systems, languages, and compilers. Through-out, we attempt to present a uni�ed view based onabstract traversal strategies, addressing issues of con-servatism, opportunism, and immediacy of reclama-tion; we also point out a variety of implementationdetails that are likely to have a signi�cant impact onperformance.Contents1 Automatic Storage Reclamation 21.1 Motivation : : : : : : : : : : : : : : : : 21.2 The Two-Phase Abstraction : : : : : : : 41.3 Object Representations : : : : : : : : : 51.4 Overview of the Paper : : : : : : : : : : 52 Basic Garbage Collection Techniques 62.1 Reference Counting : : : : : : : : : : : : 62.1.1 The Problem with Cycles : : : : 72.1.2 The E�ciency Problem : : : : : 72.1.3 Deferred Reference Counting. : : 82.1.4 Variations on Reference Counting 82.2 Mark-Sweep Collection : : : : : : : : : : 92.3 Mark-Compact Collection : : : : : : : : 102.4 Copying Garbage Collection : : : : : : : 102.4.1 A Simple Copying Collector:\Stop-and-Copy" Using Semi-spaces. : : : : : : : : : : : : : : : 102.4.2 E�ciency of Copying Collection. 112.5 Non-Copying Implicit Collection : : : : 132.6 Choosing Among Basic Tracing Tech-niques : : : : : : : : : : : : : : : : : : : 152.7 Problems with Simple Tracing Collectors 162.8 Conservatism in Garbage Collection : : 17

3 Incremental Tracing Collectors 173.1 Coherence and Conservatism : : : : : : 183.2 Tricolor Marking : : : : : : : : : : : : : 183.2.1 Incremental approaches : : : : : 193.3 Write Barrier Algorithms : : : : : : : : 203.3.1 Snapshot-at-beginningAlgorithms : : : : : : : : : : : : 203.3.2 Incremental Update Write-Bar-rier Algorithms : : : : : : : : : : 213.4 Baker's Read Barrier Algorithms : : : : 223.4.1 Incremental Copying : : : : : : : 223.4.2 Baker's Incremental Non-copy-ing Algorithm|The Treadmill : 233.4.3 Conservatism of Baker's ReadBarrier : : : : : : : : : : : : : : : 243.4.4 Variations on the Read Barrier : 243.5 Replication Copying Collection : : : : : 253.6 Coherence and Conservatism Revisited : 253.6.1 Coherence and Conservatism inNon-copying collection : : : : : : 253.6.2 Coherence and Conservatism inCopying Collection : : : : : : : : 263.6.3 \Radical" Collection and Op-portunistic Tracing : : : : : : : : 263.7 Comparing Incremental Techniques : : : 273.8 Real-time Tracing Collection : : : : : : 283.8.1 Root Set Scanning : : : : : : : : 293.8.2 Guaranteeing Su�cient Progress 303.8.3 Trading worst-case performancefor expected performance : : : : 313.8.4 Discussion : : : : : : : : : : : : : 313.9 Choosing an Incremental Algorithm : : 324 Generational Garbage Collection 324.1 Multiple Subheaps with Varying Col-lection Frequencies : : : : : : : : : : : : 334.2 Advancement Policies : : : : : : : : : : 364.3 Heap Organization : : : : : : : : : : : : 374.3.1 Subareas in copying schemes : : 374.3.2 Generations in Non-copyingSchemes : : : : : : : : : : : : : : 384.3.3 Discussion : : : : : : : : : : : : : 381

4.4 Tracking Intergenerational References : 384.4.1 Indirection Tables : : : : : : : : 394.4.2 Ungar's Remembered Sets : : : : 394.4.3 Page Marking : : : : : : : : : : : 404.4.4 Word marking : : : : : : : : : : 404.4.5 Card Marking : : : : : : : : : : : 414.4.6 Store Lists : : : : : : : : : : : : 414.4.7 Discussion : : : : : : : : : : : : : 424.5 The Generational Principle Revisited : : 434.6 Pitfalls of Generational Collection : : : 434.6.1 The \Pig in the Snake" Problem 434.6.2 Small Heap-allocated Objects : : 444.6.3 Large Root Sets : : : : : : : : : 444.7 Real-time Generational Collection : : : 455 Locality Considerations 465.1 Varieties of Locality E�ects : : : : : : : 465.2 Locality of Allocation and Short-livedobjects : : : : : : : : : : : : : : : : : : : 475.3 Locality of Tracing Traversals : : : : : : 485.4 Clustering of Longer-Lived Objects : : : 495.4.1 Static Grouping : : : : : : : : : 495.4.2 Dynamic Reorganization : : : : : 495.4.3 Coordination with Paging : : : : 506 Low-level Implementation Issues 506.1 Pointer Tags and Object Headers : : : : 506.2 Conservative Pointer Finding : : : : : : 516.3 Linguistic Support and Smart Pointers : 536.4 Compiler Cooperation and Optimizations 536.4.1 GC-Anytime vs. Safe-PointsCollection : : : : : : : : : : : : : 536.4.2 PartitionedRegister Sets vs. Variable Rep-resentation Recording : : : : : : 546.4.3 Optimization of Garbage Col-lection Itself : : : : : : : : : : : : 546.5 Free Storage Management : : : : : : : : 556.6 Compact Representations of Heap Data 557 GC-related Language Features 567.1 Weak Pointers : : : : : : : : : : : : : : 567.2 Finalization : : : : : : : : : : : : : : : : 577.3 Multiple Differently-Managed Heaps : : 578 Overall Cost of Garbage Collection 589 Conclusions and Areas for Research 58

1 Automatic Storage Reclama-tionGarbage collection is the automatic reclamation ofcomputer storage [Knu69, Coh81, App91]. While inmany systems programmers must explicitly reclaimheap memory1 at some point in the program, by us-ing a \free" or \dispose" statement; garbage collectedsystems free the programmer from this burden. Thegarbage collector's function is to �nd data objects2that are no longer in use and make their space avail-able for reuse by the the running program. An objectis considered garbage (and subject to reclamation) if itis not reachable by the running program via any pathof pointer traversals. Live (potentially reachable) ob-jects are preserved by the collector, ensuring that theprogram can never traverse a \dangling" pointer intoa deallocated object.This paper surveys basic and advanced techniquesin uniprocessor garbage collectors, especially those de-veloped in the last decade. (For a more thoroughtreatment of older techniques, see [Knu69, Coh81].)While it does not cover parallel or distributed col-lection, it presents a uni�ed taxonomy of incremen-tal techniques, which lays the groundwork for under-standing parallel and distributed collection. Our fo-cus is on garbage collection for procedural and object-oriented languages, but much of the information herewill serve as background for understanding garbagecollection of other kinds of systems, such as functionalor logic programming languages. (For further readingon various advanced topics in garbage collection, thepapers collected in [BC92] are a good starting point.3)1.1 MotivationGarbage collection is necessary for fully modular pro-gramming, to avoid introducing unnecessary inter-module dependencies. A software routine operatingon a data structure should not have to depend what1We use the term \heap" in the simple sense of a storagemanagement technique which allows any dynamically allocatedobject to be freed at any time|this is not to be confused withheap data structures which maintain ordering constraints.2We use the term \object" loosely, to include any kind ofstructured data record, such as Pascal records or C structs, aswell as full-edged objects with encapsulation and inheritance,in the sense of object-oriented programming.3There is also a repository of papers in PostScript for-mat available for anonymous Internet FTP from our FTPhost (cs.utexas.edu:pub/garbage). Among other things, thisrepository contains collected papers from several garbage col-lection workshops held in conjunction with ACM OOPSLAconferences.2

other routines may be operating on the same struc-ture, unless there is some good reason to coordinatetheir activities. If objects must be deallocated explic-itly, some module must be responsible for knowingwhen other modules are not interested in a particularobject.Since liveness is a global property, this introducesnonlocal bookkeeping into routines that might other-wise be locally understandable and exibly compos-able. This bookkeeping inhibits abstraction and re-duces extensibility, because when new functionality isimplemented, the bookkeeping code must be updated.The runtime cost of the bookkeeping itself may be sig-ni�cant, and in some cases it may introduce the needfor additional synchronization in concurrent applica-tions.The unnecessary complications and subtle interac-tions created by explicit storage allocation are espe-cially troublesome because programming mistakes of-ten break the basic abstractions of the programminglanguage, making errors hard to diagnose. Failing toreclaim memory at the proper point may lead to slowmemory leaks, with unreclaimedmemory gradually ac-cumulating until the process terminates or swap spaceis exhausted. Reclaimingmemory too soon can lead tovery strange behavior, because an object's space maybe reused to store a completely di�erent object whilean old pointer still exists. The same memory maytherefore be interpreted as two di�erent objects simul-taneously with updates to one causing unpredictablemutations of the other.These programming errors are particularly dan-gerous because they often fail to show up repeat-ably, making debugging very di�cult|they may nevershow up at all until the program is stressed in an un-usual way. If the allocator happens not to reuse aparticular object's space, a dangling pointer may notcause a problem. Later, after delivery, the applicationmay crash when it makes a di�erent set of memory de-mands, or is linked with a di�erent allocation routine.A slow leak may not be noticeable while a program isbeing used in normal ways|perhaps for many years|because the program terminates before too much extraspace is used. But if the code is incorporated into along-running server program, the server will eventu-ally exhaust the available memory and crash.4Recently, tools have become available to help pro-4Long-running server programs are also especiallyvulnerableto leaks due to exception handling. Exception handling codemay fail to deallocate all of the objects allocated by an abortedoperation, and these occasional failures may cause a leak thatis extremely hard to diagnose.

grammers �nd the source of leaked objects in lan-guages with explicit deallocation [HJ92], and these canbe extremely valuable. Unfortunately, these tools only�nd actual leaks during particular program runs, notpossible leaks due to uncommon execution patterns.Finding the source of a leaked object does not alwayssolve the problem, either: the programmer still mustbe able to determine a point where the object shouldbe deallocated|if one exists. If one doesn't exist, theprogram must be restructured. (This kind of \gar-bage debugging" is better than nothing, but it is veryfallible, and it must be repeated whenever programschange; it is desirable to actually eliminate leaks ingeneral, rather than certain detectable leaks in partic-ular.)Explicit allocation and reclamation lead to programerrors in more subtle ways as well. It is common forprogrammers to allocate a moderate number of ob-jects statically, so that it is unnecessary to allocatethem on the heap and decide when and where to re-claim them. This leads to �xed limitations on pro-grams, making them fail when those limitations areexceeded, possibly years later when computer memo-ries (and data sets) are much larger. This \brittleness"makes code much less reusable, because the undocu-mented limits cause it to fail, even if it's being used ina way consistent with its abstractions. (For example,many compilers fail when faced with automatically-generated programs that violate assumptions about\normal" programming practices.)These problems lead many applications program-mers to implement some form of application-speci�cgarbage collection within a large software system, toavoid most of the headaches of explicit storage man-agement. Many large programs have their own datatypes that implement reference counting, for example.Because they are coded up for a one-shot application,these collectors are often both incomplete and buggy.The garbage collectors themselves are therefore oftenunreliable, as well as being hard to use because theyare not integrated into the programming language.The fact that such kludges exist despite these prob-lems is a testimony to the value of garbage collection,and it suggests that garbage collection should be partof programming language implementations.It is widely believed that garbage collection is quiteexpensive relative to explicit heap management, butseveral studies have shown that garbage collection issometimes cheaper [App87] than explicit deallocation,and is usually competitive with it [Zor93]. As we willexplain later, a well-implemented garbage collector3

should slow running programs down by (very roughly)10 percent, relative to explicit heap deallocation, fora high-performance system.5 A signi�cant number ofprogrammers regard such a cost as unacceptable, butmany others believe it to be a small price for the ben-e�ts in convenience, development time, and reliability.Reliable cost comparisons are di�cult, however,partly because the use of explicit deallocation a�ectsthe structure of programs in ways that may themselvesbe expensive, either directly or by their impact on thesoftware development process.For example, explicit heap management often moti-vates extra copying of objects so that deallocation de-cisions can be made locally|i.e., each module makesits own copy of a piece of information, and can deal-locate it when it is �nished with it. This not only in-curs extra heap allocation, but undermines an object-oriented design strategy, where the identities of ob-jects may be as important as the values they store.(The e�ciency cost of this extra copying is hard tomeasure, because you can't fairly compare the sameprogram with and without garbage collection; the pro-gram would have been written di�erently if garbagecollection were assumed.)In the long run, poor program structure may incurextra development and maintenance costs, and maycause programmer time to be spent on maintaining in-elegant code rather than optimizing time-critical partsof applications; even if garbage collection costs morethan explicit deallocation, the savings in human re-sources may pay for themselves in increased attentionto other aspects of the system.6For these reasons, garbage-collected languages havelong been used for the programming of sophisticatedalgorithms using complex data structures. Manygarbage-collected languages (such as Lisp and Pro-log) were originally popular for arti�cial intelligenceprogramming, but have been found useful for general-purpose programming. Functional and logic program-ming languages generally incorporate garbage col-lection, because their unpredictable execution pat-terns make it especially di�cult to explicitly pro-gram storage deallocation. The inuential object-5This is an estimate on our part, and in principle we thinkgarbage collection performance could be somewhat better; inpractice, it is sometimes worse. Reasons for (and limitationsof) such an estimate will be discussed in Sect. 8. One practicalproblem is that state-of-the-art garbage collectors have not gen-erally been available for most high-performance programmingsystems.6For example, Rovner reports that an estimated 40% of de-veloper e�ort in theMesa systemwas spent dealingwith di�cultstorage management issues [Rov85].

oriented programming language Smalltalk incorpo-rates garbage collection; more recently, garbage collec-tion has been incorporated into many general-purposelanguages (such as Ei�el, Self and Dylan), includingthose designed in part for low-level systems program-ming (such as Modula-3 and Oberon). Several add-onpackages also exist to retro�t C and C++ with gar-bage collection.In the rest of this paper, we focus on garbage col-lectors that are built into a language implementation,or grafted onto a language by importing routines froma library. The usual arrangement is that the heap al-location routines perform special actions to reclaimspace, as necessary, when a memory request is noteasily satis�ed. Explicit calls to the \deallocator"are unnecessary because calls to the collector are im-plicit in calls to the allocator|the allocator invokesthe garbage collector as necessary to free up the spaceit needs.Most collectors require some cooperation from thecompiler (or interpreter), as well: object formats mustbe recognizable by the garbage collector, and certaininvariants must be preserved by the running code. De-pending on the details of the garbage collector, thismay require slight changes to the compiler's code gen-erator, to emit certain extra information at compiletime, and perhaps execute di�erent instruction se-quences at run time [Boe91, WH91, BC91, DMH92].(Contrary to widespread misconceptions, there is noconict between using a compiled language and gar-bage collection; state-of-the art implementations ofgarbage-collected languages use sophisticated optimi-zing compilers.)1.2 The Two-Phase AbstractionGarbage collection automatically reclaims the spaceoccupied by data objects that the running programcan never access again. Such data objects are referredto as garbage. The basic functioning of a garbage col-lector consists, abstractly speaking, of two parts:1. Distinguishing the live objects from the garbagein some way (garbage detection), and2. Reclaiming the garbage objects' storage, so thatthe running program can use it (garbage reclama-tion).In practice, these two phases may be functionallyor temporally interleaved, and the reclamation tech-nique is strongly dependent on the garbage detectiontechnique.4

In general, garbage collectors use a \liveness" cri-terion that is somewhat more conservative than thoseused by other systems. In an optimizing compiler,a value may be considered dead at the point that itcan never be used again by the running program, asdetermined by control ow and data ow analysis. Agarbage collector typically uses a simpler, less dynamiccriterion, de�ned in terms of a root set and reachabilityfrom these roots.At the moment the garbage collector is invoked, theactive variables are considered live. Typically, this in-cludes statically-allocated global or module variables,as well as local variables in activation records on theactivation stack(s), and any variables currently in reg-isters. These variables form the root set for the traver-sal. Heap objects directly reachable from any of thesevariables could be accessed by the running program,so they must be preserved. In addition, since the pro-gram might traverse pointers from those objects toreach other objects, any object reachable from a liveobject is also live. Thus the set of live objects is sim-ply the set of objects on any directed path of pointersfrom the roots.Any object that is not reachable from the root setis garbage, i.e., useless, because there is no legal se-quence of program actions that would allow the pro-gram to reach that object. Garbage objects thereforecan't a�ect the future course of the computation, andtheir space may be safely reclaimed.1.3 Object RepresentationsIn most of this paper, we make the simplifying as-sumption that heap objects are self-identifying, i.e.,that it is easy to determine the type of an object at runtime. Implementations of statically-typed garbage col-lected languages typically have hidden \header" �eldson heap objects, i.e., an extra �eld containing type in-formation, which can be used to decode the format ofthe object itself. (This is especially useful for �ndingpointers to other objects.) Such information can eas-ily be generated by the compiler, which must have theinformation to generate correct code for references toobjects' �elds.Dynamically-typed languages such as Lisp andSmalltalk usually use tagged pointers; a slightly short-ened representation of the hardware address is used,with a small type-identifying �eld in place of the miss-ing address bits. This also allows short immutable ob-jects (in particular, small integers) to be representedas unique bit patterns stored directly in the \address"part of the �eld, rather than actually referred to by

an address. This tagged representation supports poly-morphic �elds which may contain either one of these\immediate" objects, or a pointer to an object on theheap. Usually, these short tags are augmented by ad-ditional information in heap-allocated objects' head-ers.For a purely statically-typed language, no per-object runtime type information is actually necessary,except the types of the root set variables. (This will bediscussed in Sect 6.1.) Despite this, headers are oftenused for statically-typed languages, because it sim-pli�es implementations at little cost. (Conventional(explicit) heap management systems often use objectheaders for similar reasons.)(Garbage collectors using conservative pointer �nd-ing [BW88] are usable with little or no coopera-tion from the compiler|not even the types of namedvariables|but we will defer discussion of these collec-tors until Sect 6.2.)1.4 Overview of the PaperThe remainder of this paper will discuss basic andadvanced topics in garbage collection.The basic algorithms include reference count-ing, mark-sweep, mark-compact, copying, and non-copying implicit collection; these are discussed inSect. 2.Incremental techniques (Sect. 3) allow garbage col-lection to proceed piecemeal while applications arerunning. These techniques can reduce the disruptive-ness of garbage collection, and may even provide real-time guarantees. They can also be generalized intoconcurrent collections, which proceed on another pro-cessor, in parallel with actual program execution.Generational schemes (Sect. 4) improve e�ciencyand/or locality by garbage collecting a smaller areamore often, while exploiting typical lifetime character-istics to avoid undue overhead from long-lived objects.Because most collections are of a small area, typicalpause times are also short, and for many applicationsthis is an acceptable alternative to incremental collec-tion.Section 5 discusses locality properties of garbage-collected systems, which are rather di�erent fromthose of conventional systems. Section 6 explores low-level implementation considerations, such as objectformats and compiler cooperation; Section 7 describeslanguage-level constraints and features for garbage-collected systems. Section 9 presents the basic con-clusions of the paper and sketches research issues in5

garbage collection of parallel, distributed, and persis-tent systems.2 Basic Garbage CollectionTechniquesGiven the basic two-part operation of a garbage collec-tor, many variations are possible. The �rst part, dis-tinguishing live objects from garbage, may be done intwo ways: by reference counting, or by tracing. (Thegeneral term \tracing," used to include both markingand copying techniques, is taken from [LD87].) Ref-erence counting garbage collectors maintain counts ofthe number of pointers to each object, and this countis used as a local approximation of determining trueliveness. Tracing collectors determine liveness moredirectly, by actually traversing the pointers that theprogram could traverse, to �nd all of the objects theprogram might reach. There are several varieties oftracing collection: mark-sweep, mark-compact, copy-ing, and non-copying implicit reclamation.7 Becauseeach garbage detection scheme has a major inuenceon reclamation and on reuse techniques, we will intro-duce reclamation methods as we go.2.1 Reference CountingIn a reference counting system [Col60], each objecthas an associated count of the references (pointers) toit. Each time a reference to the object is created, e.g.,when a pointer is copied from one place to anotherby an assignment, the pointed-to object's count is in-cremented. When an existing reference to an objectis eliminated, the count is decremented. (See Fig. 1.)The memory occupied by an object may be reclaimedwhen the object's count equals zero, since that in-dicates that no pointers to the object exist and therunning program cannot reach it.In a straightforward reference counting system, eachobject typically has a header �eld of information de-scribing the object, which includes a sub�eld for thereference count. Like other header information, thereference count is generally not visible at the languagelevel.When the object is reclaimed, its pointer �elds areexamined, and any objects it holds pointers to also7Some authors use the term \garbage collection" in a nar-rower sense, which excludes reference counting and/or copy col-lection systems; we prefer the more inclusive sense because of itspopular usage and because it's less awkward than \automaticstorage reclamation."

ROOT
SET

HEAP SPACE

1

1

1

2

1

1

1

2Figure 1: Reference counting.have their reference counts decremented, since refer-ences from a garbage object don't count in determin-ing liveness. Reclaiming one object may therefore leadto the transitive decrementing of reference counts andreclaiming many other objects. For example, if theonly pointer into some large data structure becomesgarbage, all of the reference counts of the objects inthat structure typically become zero, and all of theobjects are reclaimed.In terms of the abstract two-phase garbage collec-tion, the adjustment and checking of reference countsimplements the �rst phase, and the reclamation phaseoccurs when reference counts hit zero. These opera-tions are both interleaved with the execution of theprogram, because they may occur whenever a pointeris created or destroyed.One advantage of reference counting is this incre-mental nature of most of its operation|garbage col-lection work (updating reference counts) is interleavedclosely with the running program's own execution. Itcan easily be made completely incremental and realtime; that is, performing at most a small and boundedamount of work per unit of program execution.Clearly, the normal reference count adjustments areintrinsically incremental, never involving more than afew operations for any given operation that the pro-gram executes. The transitive reclamation of wholedata structures can be deferred, and also done a lit-tle at a time, by keeping a list of freed objects whosereference counts have become zero but which haven'tyet been processed.This incremental collection can easily satisfy \realtime" requirements, guaranteeing that memory man-agement operations never halt the executing program6

for more than a very brief period. This can supportapplications in which guaranteed response time is crit-ical; incremental collection ensures that the programis allowed to perform a signi�cant, though perhaps ap-preciably reduced, amount of work in any signi�cantamount of time. (Subtleties of real-time requirementswill be discussed in the context of tracing collectionin Sect. 3.8.)One minor problem with reference counting systemsis that the reference counts themselves take up space.In some systems, a whole machine word is used foreach object's reference count �eld, actually allowingit to represent any number of pointers that might ac-tually exist in the whole system. In other systems, ashorter �eld is used, with a provision for overow|ifthe reference count reaches the maximum that can berepresented by the �eld size, its count is �xed at thatmaximum value, and the object cannot be reclaimed.Such objects (and other objects reachable from them)must be reclaimed by another mechanism, typically bya tracing collector that is run occasionally; as we willexplain below, such a fall-back reclamation strategy isusually required anyway.There are two major problems with reference count-ing garbage collectors; they are not always e�ective,and they are di�cult to make e�cient.2.1.1 The Problem with CyclesThe e�ectiveness problem is that reference countingfails to reclaim circular structures. If the pointersin a group of objects create a (directed) cycle, theobjects' reference counts are never reduced to zero,even if there is no path to the objects from the root set[McB63].Figure 2 illustrates this problem. Consider the iso-lated pair of objects on the right. Each holds a pointerto the other, and therefore each has a reference countof one. Since no path from a root leads to either,however, the program can never reach them again.Conceptually speaking, the problem here is that ref-erence counting really only determines a conservativeapproximation of true liveness. If an object is notpointed to by any variable or other object, it is clearlygarbage, but the converse is often not true.It may seem that circular structures would be veryunusual, but they are not. While most data struc-tures are acyclic, it is not uncommon for normal pro-grams to create some cycles, and a few programs cre-ate very many of them. For example, nodes in treesmay have \backpointers," to their parents, to facilitatecertain operations. More complex cycles are some-

ROOT
SET

HEAP SPACE

1

1

1

1

2

1

1

1

Figure 2: Reference counting with unreclaimable cy-cle.times formed by the use of hybrid data structureswhich combine advantages of simpler data structures,as well as when the application-domain semantics ofdata are most naturally expressed with cycles.Systems using reference counting garbage collectorstherefore usually include some other kind of garbagecollector as well, so that if too much uncollectablecyclic garbage accumulates, the other method can beused to reclaim it.Many programmers who use reference-counting sys-tems (such as Interlisp and early versions of Smalltalk)have modi�ed their programming style to avoid thecreation of cyclic garbage, or to break cycles beforethey become a nuisance. This has a negative impacton program structure, and many programs still havestorage \leaks" that accumulate cyclic garbage whichmust be reclaimed by some other means.8 These leaks,in turn, can compromise the real-time nature of the al-gorithm, because the system may have to fall back tothe use of a non-real-time collector at a critical mo-ment.2.1.2 The E�ciency ProblemThe e�ciency problem with reference counting is thatits cost is generally proportional to the amount ofwork done by the running program, with a fairly largeconstant of proportionality. One cost is that whena pointer is created or destroyed, its referent's countmust be adjusted. If a variable's value is changed fromone pointer to another, two objects' counts must be8[Bob80] describes modi�cations to reference counting to al-low it to handle some special cases of cyclic structures, but thisrestricts the programmer to certain stereotyped patterns.7

adjusted|one object's reference count must be incre-mented, the other's decremented and then checked tosee if it has reached zero.Short-lived stack variables can incur a great dealof overhead in a simple reference-counting scheme.When an argument is passed, for example, a newpointer appears on the stack, and usually disappearsalmost immediately because most procedure activa-tions (near the leaves of the call graph) return veryshortly after they are called. In these cases, referencecounts are incremented, and then decremented backto their original value very soon. It is desirable to op-timize away most of these increments and decrementsthat cancel each other out.2.1.3 Deferred Reference Counting.Much of this cost can be optimized away by specialtreatment of local variables [DB76, Bak93b]. Ratherthan always adjusting reference counts and reclaimingobjects whose counts become zero, references from thelocal variables are not included in this bookkeepingmost of the time. Usually, reference counts are onlyadjusted to reect pointers from one heap object toanother. This means that reference counts may not beaccurate, because pointers from the stack may be cre-ated or destroyed without being accounted for; that,in turn, means that objects whose count drops to zeromay not actually be reclaimable. Garbage collectioncan only be done when references from the stack aretaken into account as well.Every now and then, the reference counts arebrought up to date by scanning the stack for pointersto heap objects. Then any objects whose referencecounts are still zero may be safely reclaimed. Theinterval between these phases is generally chosen tobe short enough that garbage is reclaimed often andquickly, yet still long enough that the cost of peri-odically updating counts (for stack references) is nothigh.This deferred reference counting [DB76] avoids ad-justing reference counts for most short-lived pointersfrom the stack, and greatly reduces the overhead ofreference counting. When pointers from one heap ob-ject to another are created or destroyed, however, thereference counts must still be adjusted. This cost isstill roughly proportional to the amount of work doneby the running program in most systems, but with alower constant of proportionality.

2.1.4 Variations on Reference CountingAnother optimization of reference counting is to usea very small count �eld, perhaps only a single bit,to avoid the need for a large �eld per object [WF77].Given that deferred reference counting avoids the needto continually represent the count of pointers from thestack, a single bit is su�cient for most objects; theminority of objects whose reference counts are not zeroor one cannot be reclaimed by the reference countingsystem, but are caught by a fall-back tracing collector.A one-bit reference count can also be represented ineach pointer to an object, if there is an unused addressbit, rather than requiring a header �eld [SCN84].There is another cost of reference-counting collec-tion that is harder to escape. When objects' countsgo to zero and they are reclaimed, some bookkeepingmust be done to make them available to the runningprogram. Typically this involves linking the freed ob-jects into one or more \free lists" of reusable objects,from which the program's allocation requests are sat-is�ed. (Other strategies will be discussed in the con-text of mark-sweep collection, in Sect. 2.2.) Objects'pointer �elds must also be examined so that their ref-erents can be freed.It is di�cult to make these reclamation operationstake less than a few tens of instructions per object,and the cost is therefore proportional to the numberof objects allocated by the running program.These costs of reference counting collection havecombined with its failure to reclaim circular structuresto make it unattractive to most implementors in re-cent years. As we will explain below, other techniquesare usually more e�cient and reliable. Still, refer-ence counting has its advantages. The immediacy ofreclamation can have advantages for overall memoryusage and for locality of reference [DeT90]; a refer-ence counting system may perform with little degra-dation when almost all of the heap space is occupiedby live objects, while other collectors rely on tradingmore space for higher e�ciency.9 It can also be usefulfor �nalization, that is, performing \clean-up" actions(like closing �les) when objects die [Rov85]; this willbe discussed in Sect. 7.The inability to reclaim cyclic structures is not aproblem in some languages which do not allow the con-struction of cyclic data structures at all (e.g., purelyfunctional languages). Similarly, the relatively highcost of side-e�ecting pointers between heap objects isnot a problem in languages with few side-e�ects. Ref-9As [WLM92] shows, generational techniques can recapturesome of this locality, but not all of it.8

erence counts themselves may be valuable in some sys-tems. For example, they may support optimizations infunctional language implementations by allowing de-structive modi�cation of uniquely-referenced objects.Distributed garbage collection can bene�t from thelocal nature of garbage collection, compared to globaltracing. (In some con�gurations the cost of referencecounting is only incurred for pointers to objects onother nodes; tracing collection is used within a nodeand to compute changes to reference counts betweennodes.) Future systems may �nd other uses for ref-erence counting, perhaps in hybrid collectors also in-volving other techniques, or when augmented by spe-cialized hardware [PS89, Wis85, GC93] to keep CPUcosts down.While reference counting is out of vogue for high-performance implementations of general-purpose pro-gramming languages, it is quite common in other ap-plications, where acyclic data structures are common.Most �le systems use reference counting to manage�les and/or disk blocks. Because of its simplicity, sim-ple reference counting is often used in various softwarepackages, including simple interpretive languages andgraphical toolkits. Despite its weakness in the area ofreclaiming cycles, reference counting is common evenin systems where cycles may occur.2.2 Mark-Sweep CollectionMark-sweep garbage collectors [McC60] are named forthe two phases that implement the abstract garbagecollection algorithm we described earlier:1. Distinguish the live objects from the garbage.This is done by tracing|starting at the rootset and actually traversing the graph of pointerrelationships|usually by either a depth-�rst orbreadth-�rst traversal. The objects that arereached are marked in some way, either by alter-ing bits within the objects, or perhaps by record-ing them in a bitmap or some other kind oftable.102. Reclaim the garbage. Once the live objects havebeen made distinguishable from the garbage ob-jects, memory is swept, that is, exhaustively ex-amined, to �nd all of the unmarked (garbage) ob-jects and reclaim their space. Traditionally, aswith reference counting, these reclaimed objectsare linked onto one or more free lists so that theyare accessible to the allocation routines.10More detailed descriptions of traversal and marking algo-rithms can be found in [Knu69] and [Coh81].

There are three major problems with traditionalmark-sweep garbage collectors. First, it is di�cult tohandle objects of varying sizes without fragmentationof the available memory. The garbage objects whosespace is reclaimed are interspersed with live objects,so allocation of large objects may be di�cult; severalsmall garbage objects may not add up to a large con-tiguous space. This can be mitigated somewhat bykeeping separate free lists for objects of varying sizes,and merging adjacent free spaces together, but dif-�culties remain. (The system must choose whetherto allocate more memory as needed to create smalldata objects, or to divide up large contiguous hunks offree memory and risk permanently fragmenting them.This fragmentation problem is not unique to mark-sweep|it occurs in reference counting as well, and inmost explicit heap management schemes.)The second problem with mark-sweep collection isthat the cost of a collection is proportional to the sizeof the heap, including both live and garbage objects.All live objects must be marked, and all garbage ob-jects must be collected, imposing a fundamental limi-tation on any possible improvement in e�ciency.The third problem involves locality of reference.Since objects are never moved, the live objects re-main in place after a collection, interspersed with freespace. Then new objects are allocated in these spaces;the result is that objects of very di�erent ages be-come interleaved in memory. This has negative im-plications for locality of reference, and simple (non-generational) mark-sweep collectors are often consid-ered unsuitable for most virtual memory applications.(It is possible for the \working set" of active objectsto be scattered across many virtual memory pages, sothat those pages are frequently swapped in and outof main memory.) This problem may not be as badas many have thought, because objects are often cre-ated in clusters that are typically active at the sametime. Fragmentation and locality problems are is un-avoidable in the general case, however, and a potentialproblem for some programs.It should be noted that these problems may not beinsurmountable, with su�ciently clever implementa-tion techniques. For example, if a bitmap is used formark bits, 32 bits can be checked at once with a 32-bitinteger ALU operation and conditional branch. If liveobjects tend to survive in clusters in memory, as theyapparently often do, this can greatly diminish the con-stant of proportionality of the sweep phase cost; thetheoretical linear dependence on heap size may not beas troublesome as it seems at �rst glance. The clus-9

tered survival of objects may also mitigate the local-ity problems of re-allocating space amid live objects;if objects tend to survive or die in groups in memory[Hay91], the interspersing of objects used by di�erentprogram phases may not be a major consideration.2.3 Mark-Compact CollectionMark-compact collectors remedy the fragmentationand allocation problems of mark-sweep collectors.As with mark-sweep, a marking phase traverses andmarks the reachable objects. Then objects are com-pacted, moving most of the live objects until all ofthe live objects are contiguous. This leaves the restof memory as a single contiguous free space. This isoften done by a linear scan through memory, �ndinglive objects and \sliding" them down to be adjacent tothe previous object. Eventually, all of the live objectshave been slid down to be adjacent to a live neighbor.This leaves one contiguous occupied area at one end ofheap memory, and implicitlymoving all of the \holes"to the contiguous area at the other end.This sliding compaction has several interestingproperties. The contiguous free area eliminates frag-mentation problems so that allocating objects of vari-ous sizes is simple. Allocation can be implemented asthe incrementing of a pointer into a contiguous area ofmemory, in much the way that di�erent-sized objectscan be allocated on a stack. In addition, the garbagespaces are simply \squeezed out," without disturb-ing the original ordering of objects in memory. Thiscan ameliorate locality problems, because the alloca-tion ordering is usually more similar to subsequentaccess orderings than an arbitrary ordering imposedby a copying garbage collector [CG77, Cla79].While the locality that results from sliding com-paction is advantageous, the collection process itselfshares the mark-sweep's unfortunate property thatseveral passes over the data are required. After theinitial marking phase, sliding compactors make two orthree more passes over the live objects [CN83]. Onepass computes the new locations that objects will bemoved to; subsequent passes must update pointers torefer to objects' new locations, and actually move theobjects. These algorithms may be therefore be signif-icantly slower than mark-sweep if a large percentageof data survives to be compacted.An alternative approach is to use Daniel J. Ed-wards' two-pointer algorithm,11 which scans inwardfrom both ends of a heap space to �nd opportunities11Described in an exercise on page 421 of [Knu69].

for compaction. One pointer scans downward from thetop of the heap, looking for live objects, and the otherscans upward from the bottom, looking for holes toput them in. (Many variations of this algorithm arepossible, to deal with multiple areas holding di�erent-sized objects, and to avoid intermingling objects fromwidely-dispersed areas.) For a more complete treat-ment of compacting algorithms, see [CN83].2.4 Copying Garbage CollectionLike mark-compact (but unlike mark-sweep), copyinggarbage collection does not really \collect" garbage.Rather, it moves all of the live objects into one area,and the rest of the heap is then known to be availablebecause it contains only garbage. \Garbage collec-tion" in these systems is thus only implicit, and someresearchers avoid applying that term to the process.Copying collectors, like marking-and-compactingcollectors, move the objects that are reached by thetraversal to a contiguous area. While mark-compactcollectors use a separate marking phase that traversesthe live data, copying collectors integrate the traversalof the data and the copying process, so that most ob-jects need only be traversed once. Objects are movedto the contiguous destination area as they are reachedby the traversal. The work needed is proportional tothe amount of live data (all of which must be copied).The term scavenging is applied to the copyingtraversal, because it consists of picking out the worth-while objects amid the garbage, and taking them away.2.4.1 A Simple Copying Collector: \Stop-and-Copy" Using Semispaces.A very common kind of copying garbage collector isthe semispace collector [FY69] using the Cheney algo-rithm for the copying traversal [Che70]. We will usethis collector as a reference model for much of thispaper.12In this scheme, the space devoted to the heap issubdivided into two contiguous semispaces. Duringnormal program execution, only one of these semi-spaces is in use, as shown in Fig. 3. Memory is alloca-ted linearly upward through this \current" semispace12As a historical note, the �rst copying collector was Min-sky's collector for Lisp 1.5 [Min63]. Rather than copying datafrom one area of memory to another, a single heap space wasused. The live data were copied out to a �le on disk, andthen read back in, in a contiguous area of the heap space.On modern machines this would be unbearably slow, because�le operations|writing and reading every live object|are nowmany times slower than memory operations.10

TOSPACE

ROOT
SET

FROMSPACEFigure 3: A simple semispace garbage collector beforegarbage collection.
TOSPACE

ROOT
SET

FROMSPACEFigure 4: Semispace collector after garbage collection.as demanded by the executing program. As with amark-compact collector, the ability to allocate froma large, contiguous free space makes allocation sim-ple and fast, much like allocating on a stack; there isno fragmentation problem when allocating objects ofvarious sizes.When the running program demands an allocationthat will not �t in the unused area of the current semis-pace, the program is stopped and the copying garbagecollector is called to reclaim space (hence the term\stop-and-copy"). All of the live data are copied fromthe current semispace (fromspace) to the other semis-pace (tospace). Once the copying is completed, thetospace semispace is made the \current" semispace,and program execution is resumed. Thus the rolesof the two spaces are reversed each time the garbagecollector is invoked. (See Fig. 4.)

Perhaps the simplest form of copying traversal isthe Cheney algorithm [Che70]. The immediately-reachable objects form the initial queue of objectsfor a breadth-�rst traversal. A \scan" pointer is ad-vanced through the �rst object, location by location.Each time a pointer into fromspace is encountered,the referred-to-object is transported to the end of thequeue, and the pointer to the object is updated to re-fer to the new copy. The free pointer is then advancedand the scan continues. This e�ects the \node ex-pansion" for the breadth-�rst traversal, reaching (andcopying) all of the descendants of that node. (SeeFig. 5. Reachable data structures in fromspace areshown at the top of the �gure, followed by the �rstseveral states of tospace as the collection proceeds|tospace is shown in linear address order to emphasizethe linear scanning and copying.)Rather than stopping at the end of the �rst object,the scanning process simply continues through sub-sequent objects, �nding their o�spring and copyingthem as well. A continuous scan from the beginningof the queue has the e�ect of removing consecutivenodes and �nding all of their o�spring. The o�springare copied to the end of the queue. Eventually thescan reaches the end of the queue, signifying that allof the objects that have been reached (and copied)have also been scanned for descendants. This meansthat there are no more reachable objects to be copied,and the scavenging process is �nished.Actually, a slightly more complex process is needed,so that objects that are reached by multiple paths arenot copied to tospace multiple times. When an ob-ject is transported to tospace, a forwarding pointer isinstalled in the old version of the object. The for-warding pointer signi�es that the old object is obso-lete and indicates where to �nd the new copy of theobject. When the scanning process �nds a pointerinto fromspace, the object it refers to is checked fora forwarding pointer. If it has one, it has alreadybeen moved to tospace, so the pointer by which it wasreached is simply updated to point to its new loca-tion. This ensures that each live object is transportedexactly once, and that all pointers to the object areupdated to refer to the new copy.2.4.2 E�ciency of Copying Collection.A copying garbage collector can be made arbitrarily ef-�cient if su�cient memory is available [Lar77, App87].The work done at each collection is proportional tothe amount of live data at the time of garbage collec-tion. Assuming that approximately the same amount11

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

v)

A

C D

E

F

B

Scan Free

A

B

ROOT
SET

i)

ii)

iii)

iv)

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

D

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

D

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

E

A B

Scan Free

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

C

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

D

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

E F

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

Figure 5: The Cheney algorithm's breadth-�rst copying.12

of data is live at any given time during the program'sexecution, decreasing the frequency of garbage collec-tions will decrease the total amount of garbage collec-tion e�ort.A simple way to decrease the frequency of garbagecollections is to increase the amount of memory in theheap. If each semispace is bigger, the program will runlonger before �lling it. Another way of looking at thisis that by decreasing the frequency of garbage collec-tions, we are increasing the average age of objects atgarbage collection time. Objects that become garbagebefore a garbage collection needn't be copied, so thechance that an object will never have to be copied isincreased.Suppose, for example, that during a program runtwenty megabytes of memory are allocated, but onlyone megabyte is live at any given time. If we havetwo three-megabyte semispaces, garbage will be col-lected about ten times. (Since the current semispaceis one third full after a collection, that leaves twomegabytes that can be allocated before the next col-lection.) This means that the system will copy abouthalf as much data as it allocates, as shown in the toppart of Fig. 6. (Arrows represent copying of live ob-jects between semispaces at garbage collections.)On the other hand, if the size of the semispaces isdoubled, 5 megabytes of free space will be available af-ter each collection. This will force garbage collectionsa third as often, or about 3 or 4 times during the run.This straightforwardly reduces the cost of garbage col-lection by more than half, as shown in the bottom partof Fig. 6. (For the moment, we ignore virtual memorypaging costs, assuming that the larger heap area canbe cached in RAM rather than paged to disk. As wewill explain in Sect. 2.7, paging costs may make theuse of a larger heap area impractical if there is not acorrespondingly large amount of RAM.)2.5 Non-Copying Implicit CollectionRecently, Wang [Wan89] and Baker [Bak91b] have (in-dependently) proposed a new kind of non-copying col-lector with some of the e�ciency advantages of a copy-ing scheme. Their insight is that in a copying collector,the \spaces" of the collector are really just a particularimplementation of sets. The tracing process removesobjects from the set subject to garbage collection, andwhen tracing is complete, anything remaining in theset is known to be garbage, so the set can be reclaimedin its entirety. Another implementation of sets coulddo just as well, provided that it has similar perfor-mance characteristics. In particular, given a pointer

to an object, it must be easy to determine which set itis a member of; in addition, it must be easy to switchthe roles of the sets, just as fromspace and tospaceroles are exchanged in a copy collector. (In a copyingcollector, the set is an area of memory, but in a non-copying collector it can be any kind of set of chunksof memory that formerly held live objects.)The non-copying system adds two pointer �elds anda \color" �eld to each object. These �elds are invisibleto the application programmer, and serve to link eachhunk of storage into a doubly-linked list that servesas a set. The color �eld indicates which set an objectbelongs to.The operation of this collector is simple, and iso-morphic to the copy collector's operation. (Wangtherefore refers to this as a \fake copying" collector.)Chunks of free space are initially linked to form adoubly-linked list, while chunks holding allocated ob-jects are linked together into another list.When the free list is exhausted, the collector tra-verses the live objects and \moves" them from the allo-cated set (which we could call the fromset) to anotherset (the toset). This is implemented by unlinking theobject from the doubly-linked fromset list, toggling itscolor �eld, and linking it into the toset's doubly-linkedlist.Just as in a copy collector, space reclamation is im-plicit. When all of the reachable objects have beentraversed and moved from the fromset to the toset,the fromset is known to contain only garbage. It istherefore a list of free space, which can immediatelybe put to use as a free list. (As we will explain in sec-tion 3.4.2, Baker's scheme is actually somewhat morecomplex, because his collector is incremental.) Thecost of the collection is proportional to the number oflive objects, and the garbage objects are all reclaimedin small constant time.This scheme can be optimized in ways that are anal-ogous to those used in a copying collector|allocationcan be fast because the allocated and free lists canbe contiguous, and separated only by an allocationpointer. Rather than actually unlinking objects fromone list and linking them into another, the allocatorcan simply advance a pointer which points into the listand divides the allocated segment from the free seg-ment. Similarly, a Cheney-style breadth-�rst traversalcan be implemented with only a pair of pointers, andthe scanned and free lists can be contiguous, so thatadvancing the scan pointer only requires advancingthe pointer that separates them.This scheme has both advantages and disadvantages13

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Figure 6: Memory usage in a semispace GC, with 3 MB (top) and 6 MB (bottom) semispaces14

compared to a copy collector. On the minus side, theper-object constants are probably a little bit higher,and fragmentation problems are still possible. On theplus side, the tracing cost for large objects is not ashigh. As with a mark-sweep collector, the whole ob-ject needn't be copied; if it can't contain pointers,it needn't be scanned either. Perhaps more impor-tantly for many applications, this scheme does notrequire the actual language-level pointers between ob-jects to be changed, and this imposes fewer constraintson compilers. As we'll explain later, this is particu-larly important for parallel and real-time incrementalcollectors.The space costs of this technique are usually roughlycomparable to those of a copying collector. Twopointer �elds are required per object, but live objectsbeing traced do not require space for both fromspaceand tospace versions. In most cases, this appears tomake the space cost smaller than that of a copyingcollector, but in some cases fragmentation costs (dueto the inability to compact data) may outweigh thosesavings.2.6 Choosing Among Basic TracingTechniquesTreatments of garbage collection algorithms in text-books often stress asymptotic complexity, but all basicalgorithms have roughly similar costs, especially whenwe view garbage collection as part of the overall freestorage management scheme. Allocation and garbagecollection are two sides of the basic memory reuse coin,and any algorithm incurs costs at allocation time, ifonly to initialize the �elds of new objects. A commoncriterion for \high performance" garbage collection isthat the cost of garbage collecting objects be compa-rable, on average, to the cost of allocating objects.Any e�cient tracing collection scheme therefore hasthree basic cost components, which are (1) the initialwork required at each collection, such as root set scan-ning, (2) the work done at allocation (proportional tothe amount of allocation, or the number of objectsallocated) and (3) the work done during garbage de-tection (e.g., tracing).The initial work is usually relatively �xed for a par-ticular program, by the size of the root set. Thework done at allocation is generally proportional tothe number of objects allocated, plus an initializationcost proportional to their sizes. The garbage detec-tion cost is proportional to the amount of live datathat must be traced.

The latter two costs are usually similar, in that theamount of live data traced is usually some signi�cantpercentage of the amount of allocated memory. Thusalgorithms whose cost is proportional to the amountof allocation (e.g., mark-sweep) may be competitivewith those whose cost is proportional to the amountof live data traced (e.g., copying).For example, suppose that 10 percent of all allo-cated data survive a collection, and 90 percent neverneed to be traced. In deciding which algorithm is moree�cient, the asymptotic complexity is less importantthan the associated constants. If the cost of sweepingan object is ten times less than the cost of copying it,the mark-sweep collector costs about the same as ascopy collector. (If a mark-sweep collector's sweepingcost is billed to the allocator, and it is small relativeto the cost of initializing the objects, then it becomesobvious that the sweep phase is just not terribly ex-pensive.) While current copying collectors appear tobe more e�cient than current mark-sweep collectors,the di�erence is not large for state-of-the art imple-mentations.In systems where memory is not much larger thanthe expected amount of live data, nonmoving collec-tors have an an advantage over copying collectors inthat they don't need space for two versions of each liveobject (the \from" and \to" versions). When spaceis very tight, reference counting collectors are partic-ularly attractive because their performance is essen-tially independent of the ratio of live data to totalstorage.Further, real high-performance systems often usehybrid techniques to adjust tradeo�s for di�erent cate-gories of objects. Many high-performance copy collec-tors use a separate large object area [CWB86, UJ88],to avoid copying large objects from space to space.The large objects are kept \o� to the side" and usuallymanaged in-place by some variety of marking traversaland free list technique. Other hybrids may use non-copying techniques most of the time, but occasionallycompact some of the data using copying techniques toavoid permanent fragmentation (e.g., [LD87]).A major point in favor of in-place collectors is theability to make them conservative with respect to datavalues that may or may not be pointers. This allowsthem to be used for languages like C, or o�-the-shelfoptimizing compilers [BW88, Bar88, BDS91], whichcan make it di�cult or impossible to unambiguouslyidentify all pointers at run time. A non-moving col-lector can be conservative because anything that lookslike a pointer object can be left where it is, and the15

(possible) pointer to it doesn't need to be changed.In contrast, a copying collector must know whethera value is a pointer|and whether to move the ob-ject and update the pointer. (Conservative pointer-�nding techniques will be discussed in more detail inSect. 6.2.)Similarly, the choice of a non-moving collector cangreatly simplify the interfaces between modules writ-ten in di�erent languages and compiled using di�erentcompilers. It is possible to pass pointers to garbage-collectible objects as arguments to foreign routinesthat were not written or compiled with garbage col-lection in mind. This is not practical with a copyingcollector, because the pointers that \escape" into for-eign routines would have to be found and updatedwhen their referents moved.2.7 Problemswith Simple Tracing Col-lectorsIt is widely known that the asymptotic complexity ofcopying garbage collection is excellent|the copyingcost approaches zero as memory becomes very large.Treadmill collection shares this property, but othercollectors can be similarly e�cient if the constantsassociated with memory reclamation and reallocationare small enough. In that case, garbage detection isthe major cost.Unfortunately, it is di�cult in practice to achievehigh e�ciency in a simple garbage collector, becauselarge amounts of memory are too expensive. If virtualmemory is used, the poor locality of the allocationand reclamation cycle will generally cause excessivepaging. (Every location in the heap is used beforeany location's space is reclaimed and reused.) Simplypaging out the recently-allocated data is expensive fora high-speed processor [Ung84], and the paging causedby the copying collection itself may be tremendous,since all live data must be touched in the process.)It therefore doesn't generally pay to make the heaparea larger than the available main memory. (For amathematical treatment of this tradeo�, see [Lar77].)Even as main memory becomes steadily cheaper, lo-cality within cache memory becomes increasingly im-portant, so the problem is partly shifted to a di�erentlevel of the memory hierarchy [WLM92].In general, we can't achieve the potential e�ciencyof simple garbage collection; increasing the size ofmemory to postpone or avoid collections can only betaken so far before increased paging time negates anyadvantage.

It is important to realize that this problem isnot unique to copying collectors. All e�cient gar-bage collection strategies involve similar space-timetradeo�s|garbage collections are postponed so thatgarbage detection work is done less often, and thatmeans that space is not reclaimed as quickly. On av-erage, that increases the amount of memory wasteddue to unreclaimed garbage.(Deferred reference counting, like tracing collection,also trades space for time|in giving up continual in-cremental reclamation to avoid spending CPU cyclesin adjusting reference counts, one gives up space forobjects that become garbage and are not immedi-ately reclaimed. At the time scale on which memoryis reused, the resulting locality characteristics mustshare basic performance tradeo� characteristics withgenerational collectors of the copying or mark-sweepvarieties, which will be discussed later.)While copying collectors were originally designed toimprove locality, in their simple versions this improve-ment is not large, and their locality can in fact beworse than that of non-compacting collectors. Thesesystems may improve the locality of reference to long-lived data objects, which have been compacted intoa contiguous area. However, this e�ect is typicallyswamped by the e�ects of references due to alloca-tion. Large amounts of memory are touched betweencollections, and this alone makes them unsuitable fora virtual memory environment.The major locality problem is not with the localityof compacted data, or with the locality of the garbagecollection process itself. The problem is an indirectresult of the use of garbage collection|by the timespace is reclaimed and reused, it's likely to have beenpaged out, simply because too many other pages havebeen allocated in between. Compaction is helpful, butthe help is generally too little, too late. With a simplesemispace copy collector, locality is likely to be worsethan that of a mark-sweep collector, because the copycollector uses more total memory|only half the mem-ory can be used between collections. Fragmentationof live data is not as detrimental as the regular reuseof two spaces.13The only way to have good locality is to ensure thatmemory is large enough to hold the regularly-reused13Slightly more complicated copying schemes appear to avoidthis problem [Ung84, WM89], but [WLM92] demonstrates thatcyclic memory reuse patterns can fare poorly in hierarchicalmemories because of recency-based (e.g., LRU) replacementpolicies. This suggests that freed memory should be reusedin a LIFO fashion (i.e., in the opposite order of its previousallocation), if the entire reuse pattern can't be kept in memory.16

area. (Another approach would be to rely on opti-mizations such as prefetching, but this is not feasi-ble at the level of virtual memory|disks simply can'tkeep up with the rate of allocation because of the enor-mous speed di�erential between RAM and disk.) Gen-erational collectors address this problem by reusinga smaller amount of memory more often; they willbe discussed in Sect. 4. (For historical reasons, iswidely believed that only copying collectors can bemade generational, but this is not the case. Gener-ational non-copying collectors are slightly harder toconstruct, but they do exist and are quite practical[DWH+90, WJ93].)Finally, the temporal distribution of a simple trac-ing collector's work is also troublesome in an inter-active programming environment; it can be very dis-ruptive to a user's work to suddenly have the systembecome unresponsive and spend several seconds gar-bage collecting, as is common in such systems. Forlarge heaps, the pauses may be on the order of sec-onds, or even minutes if a large amount of data isdispersed through virtual memory. Generational col-lectors alleviate this problem, because most garbagecollections only operate on a subset of memory. Even-tually they must garbage collect larger areas, however,and the pauses may be considerably longer. For realtime applications, this may not be acceptable.2.8 Conservatism in Garbage Collec-tionAn ideal garbage collector would be able to reclaimevery object's space just after the last use of the ob-ject. Such an object is not implementable in practice,of course, because it cannot in general be determinedwhen the last use occurs. Real garbage collectors canonly provide a reasonable approximation of this be-havior, using conservative approximations of this om-niscience. The art of e�cient garbage collector designis largely one of introducing small degrees of conser-vatism which signi�cantly reduce the work done indetecting garbage. (This notion of conservatism isvery general, and should not be confused with thespeci�c pointer-identi�cation techniques used by so-called \conservative" garbage collectors. All garbagecollectors are conservative in one or more ways.)The �rst conservative assumption most collectorsmake is that any variable in the stack, globals, or reg-isters is live, even though the variable may actuallynever be referenced again. (There may be interactionsbetween the compiler's optimizations and the garbage

collector's view of the reachability graph. A compiler'sdata and control ow analysis may detect dead valuesand optimize them away entirely. Compiler optimiza-tions may also extend the e�ective lifetime of vari-ables, causing extra garbage to be retained, but thisis not typically a problem in practice.)Tracing collectors introduce a major temporal formof conservatism, simply by allowing garbage to go un-collected between collection cycles. Reference count-ing collectors are conservative topologically, failing todistinguish between di�erent paths that share an edgein the graph of pointer relationships.As the remainder of this survey will show, there aremany possible kinds and degrees of conservatism withdi�erent performance tradeo�s.3 Incremental Tracing Collec-torsFor truly real-time applications, �ne-grained incre-mental garbage collection appears to be necessary.Garbage collection cannot be carried out as one atomicaction while the program is halted, so small unitsof garbage collection must be interleaved with smallunits of program execution. As we said earlier, it isrelatively easy to make reference counting collectorsincremental. Reference counting's problems with ef-�ciency and e�ectiveness discourage its use, however,and it is therefore desirable to make tracing (copyingor marking) collectors incremental.In much of the following discussion, the di�erencebetween copying and mark-sweep collectors is not par-ticularly important. The incremental tracing for gar-bage detection is more interesting than the reclama-tion of detected garbage.The di�culty with incremental tracing is that whilethe collector is tracing out the graph of reachable datastructures, the graph may change|the running pro-gram may mutate the graph while the collector \isn'tlooking." For this reason, discussions of incremen-tal collectors typically refer to the running programas the mutator [DLM+78]. (From the garbage collec-tor's point of view, the actual application is merely acoroutine or concurrent process with an unfortunatetendency to modify data structures that the collec-tor is attempting to traverse.) An incremental schememust have some way of keeping track of the changes tothe graph of reachable objects, perhaps re-computingparts of its traversal in the face of those changes.An important characteristic of incremental tech-17

niques is their degree of conservatism with respect tochanges made by the mutator during garbage collec-tion. If the mutator changes the graph of reachableobjects, freed objects may or may not be reclaimedby the garbage collector. Some oating garbage maygo unreclaimed because the collector has already cat-egorized the object as live before the mutator freesit. This garbage is guaranteed to be collected at thenext cycle, however, because it will be garbage at thebeginning of the next collection.3.1 Coherence and ConservatismIncremental marking traversals must take into ac-count changes to the reachability graph, made by themutator during the collector's traversal. Incremen-tal copying collectors pose more severe coordinationproblems|the mutator must also be protected fromchanges made by the garbage collector.It may be enlightening to view these issues as a vari-ety of coherence problems|having multiple processesattempt to share changing data, while maintainingsome kind of consistent view [NOPH92]. (Readers un-familiar with coherence problems in parallel systemsshould not worry too much about this terminology;the issues should become apparent as we go along.)An incremental mark-sweep traversal poses a multi-ple readers, single writer coherence problem|the col-lector's traversal must respond to changes, but onlythe mutator can change the graph of objects. (Simi-larly, only the traversal can change the mark bits; eachprocess can update values, but any �eld is writable byonly one process. Only the mutator writes to pointer�elds, and only the collector writes to mark �elds.)Copying collectors pose a more di�cult problem|amultiple readers, multiple writers problem. Both themutator and the collector may modify pointer �elds,and each must be protected from inconsistencies in-troduced by the other.Garbage collectors can e�ciently solve these prob-lems by taking advantage of the semantics of garbagecollection, and using forms of relaxed consistency|that is, the processes needn't always have a consistentview of the data structures, as long as the di�erencesbetween their views \don't matter" to the correctnessof the algorithm.In particular, the garbage collector's view of thereachability graph is typically not identical to the ac-tual reachability graph visible to the mutator. It isonly a safe, conservative approximation of the truereachability graph|the garbage collector may viewsome unreachable objects as reachable, as long as it

doesn't view reachable objects as unreachable, anderroneously reclaim their space. Typically, some gar-bage objects go unreclaimed for a while; usually, theseare objects that become garbage after being reachedby the collector's traversal. Such oating garbage isusually reclaimed at the next garbage collection cy-cle; since they will be garbage at the beginning ofthat collection, the tracing process will not conser-vatively view them as live. The inability to reclaimoating garbage immediately is unfortunate, but maybe essential to avoiding very expensive coordinationbetween the mutator and collector.The kind of relaxed consistency used|and thecorresponding coherence features of the collectionscheme|are closely intertwined with the notion ofconservatism. In general, the more we relax the consis-tency between the mutator's and the collector's viewsof the reachability graph, the more conservative ourcollection becomes, and the more oating garbage wemust accept. On the positive side, the more relaxedour notion of consistency, the more exibility we havein the details of the traversal algorithm. (In paralleland distributed garbage collection, a relaxed consis-tency model also allows more parallelism and/or lesssynchronization, but that is beyond the scope of thissurvey.)3.2 Tricolor MarkingThe abstraction of tricolor marking is helpful in under-standing incremental garbage collection [DLM+78].Garbage collection algorithms can be described as aprocess of traversing the graph of reachable objectsand coloring them. The objects subject to garbagecollection are conceptually colored white, and by theend of collection, those that will be retained must becolored black. When there are no reachable nodes leftto blacken, the traversal of live data structures is �n-ished.In a simple mark-sweep collector, this coloring isdirectly implemented by setting mark bits|objectswhose bit is set are black. In a copy collector, thisis the process of moving objects from fromspace totospace|unreached objects in fromspace are consid-ered white, and objects moved to tospace are consid-ered black. The abstraction of coloring is orthogonalto the distinction between marking and copying col-lectors, and is important for understanding the basicdi�erences between incremental collectors.In incremental collectors, the intermediate states ofthe coloring traversal are important, because of on-going mutator activity|the mutator can't be allowed18

to change things \behind the collector's back" in sucha way that the collector will fail to �nd all reachableobjects.To understand and prevent such interactions be-tween the mutator and the collector, it is useful tointroduce a third color, gray, to signify that an objecthas been reached by the traversal, but that its descen-dants may not have been. That is, as the traversalproceeds outward from the roots, objects are initiallycolored gray. When they are scanned and pointers totheir o�spring are traversed, they are blackened andthe o�spring are colored gray.In a copying collector, the gray objects are the ob-jects in the unscanned area of tospace|if a Cheneybreadth-�rst traversal is used, that's the objects be-tween the scan and free pointers. In a mark-sweepcollector, the gray objects correspond to the stack orqueue of objects used to control the marking traver-sal, and the black objects are the ones that have beenremoved from the queue. In both cases, objects thathave not been reached yet are white.Intuitively, the traversal proceeds in a wavefront ofgray objects, which separates the white (unreached)objects from the black objects that have been passedby the wave|that is, there are no pointers directlyfrom black objects to white ones. This abstracts awayfrom the particulars of the traversal algorithm|itmaybe depth-�rst, breadth-�rst, or just about any kindof exhaustive traversal. It is only important that awell-de�ned gray fringe be identi�able, and that themutator preserve the invariant that no black objecthold a pointer directly to a white object.The importance of this invariant is that the collectormust be able to assume that it is \�nished with" blackobjects, and can continue to traverse gray objects andmove the wavefront forward. If the mutator createsa pointer from a black object to a white one, it mustsomehow notify the collector that its assumption hasbeen violated. This ensures that the collector's book-keeping is brought up to date.Figure 7 demonstrates this need for coordination.Suppose the object A has been completely scanned(and therefore blackened); its descendants have beenreached and grayed. Now suppose that the mutatorswaps the pointer from A to C with the pointer from Bto D. The only pointer to D is now in a �eld of A, whichthe collector has already scanned. If the traversal con-tinues without any coordination, B will be blackened,C will be reached again (from B), and D will never bereached at all, and hence will be erroneously deemedgarbage and reclaimed.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Before After

A

B
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

C

D
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

B
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

C

D

A

Figure 7: A violation of the coloring invariant.3.2.1 Incremental approachesThere are two basic approaches to coordinating thecollector with the mutator. One is to use a read bar-rier, which detects when the mutator attempts to ac-cess a pointer to a white object, and immediately col-ors the object gray; since the mutator can't read poin-ters to white objects, it can't install them in blackobjects. The other approach is more direct, and in-volves a write barrier|when the program attempts towrite a pointer into an object, the write is trapped orrecorded.Write barrier approaches, in turn, fall into two dif-ferent categories, depending on which aspect of theproblem they address. To foil the garbage collector'smarking traversal, it is necessary for the mutator to1) write a pointer to a white object into a black objectand 2) destroy the original pointer before the collectorsees it.If the �rst condition (writing the pointer into a blackobject) does not hold, no special action is needed|ifthere are other pointers to the white object from grayobjects, it will be retained, and if not, it is garbage andneedn't be retained anyway. If the second condition(obliterating the original path to the object) does nothold, the object will be reached via the original pointerand retained. The two write-barrier approaches focuson these two aspects of the problem.Snapshot-at-beginning collectors ensure that the sec-ond condition cannot happen|rather than allowingpointers to be simply overwritten, they are �rst savedin a data structure \o� to the side" so that the col-lector can �nd them. Thus no path to a white objectcan be broken without providing another path to the19

object for the garbage collector.Incremental update collectors are more direct indealing with these troublesome pointers. Rather thansaving copies of all pointers that are overwritten (be-cause they might have already been copied into blackobjects) they actually record pointers stored into blackobjects, and catch the troublesome copies where theyare stored, rather than noticing if the original is de-stroyed. That is, if a pointer to a white object is copiedinto a black object, that new copy of the pointer willbe found. Conceptually, the black object (or part of it)is reverted to gray when the mutator \undoes" the col-lector's traversal [Ste75]. (Alternatively, the pointed-to object may be grayed immediately [DLM+78].)This ensures that the traversal is updated in the faceof mutator changes.Read barriers and write barriers are conceptuallysynchronization operations|before the mutator canperform certain operations, it must activate the gar-bage collector to perform some action. In practice,this invocation of the garbage collector only requiresa relatively simple action, and the compiler can simplyemit the necessary additional instructions as part ofthe mutator's own machine code. Each pointer reador write (depending on the incremental strategy) isaccompanied by a few extra instructions that performthe collector's operations. Depending on the complex-ity of the read or write barrier, the entire barrier actionmay be compiled inline; alternatively, the barrier maysimply be a hidden, out-of-line procedure call accom-panying each pointer read or write. (Other strategiesare possible, relying less on additional instructions incompiled code, and more on assistance from special-ized hardware or virtual memory features.)3.3 Write Barrier AlgorithmsIf a non-copying collector is used, the use of a readbarrier is an unnecessary expense; there is no need toprotect the mutator from seeing an invalid version of apointer. Write barrier techniques are cheaper, becauseheap writes are several times less common than heapreads.3.3.1 Snapshot-at-beginning AlgorithmsSnapshot-at-beginning algorithms use a write barrierto ensure that no objects ever become inaccessible tothe garbage collector while collection is in progress.Conceptually, at the beginning of garbage collection,a copy-on-write virtual copy of the graph of reachabledata structures is made. That is, the graph of reach-

able objects is �xed at the moment garbage collectionstarts, even though the actual traversal proceeds in-crementally.The �rst snapshot-at-beginning algorithm was ap-parently that of Abrahamson and Patel, which usedvirtual memory copy-on-write techniques [AP87], butthe same general e�ect can be achieved straightfor-wardly (and fairly e�ciently) with a simple softwarewrite barrier.Perhaps the simplest and best-known snapshot col-lection algorithm is Yuasa's [Yua90b]. If a locationis written to, the overwritten value is �rst saved andpushed on a marking stack for later examination. Thisguarantees that no objects will become unreachableto the garbage collector traversal|all objects whichare live at the beginning of garbage collection will bereached, even if the pointers to them are overwritten.In the example shown in Fig. 7, the pointer from B toD is saved on a stack when it is overwritten with thepointer to C.Snapshot-at-beginning schemes are very conserva-tive, because they actually allow the tricolor \invari-ant" to be broken, temporarily, during incrementaltracing. Rather than preventing the creation of poin-ters from black objects to white ones, a more globaland conservative strategy prevents the loss of suchwhite objects: the original path to the object can't belost, because all overwritten pointer values are savedand traversed.This implies that no objects can be freed during col-lection, because a pointer to any white object mighthave been stored into a reachable object. This in-cludes objects that are created while the collection isin progress. Newly-allocated objects are therefore con-sidered to be black, as though they had already beentraversed. This short-circuits the traversal of new ob-jects, which would fail to free any of them anyway.The collector's view of the reachability graph is thusthe set union of the graph at the beginning of garbagecollection, plus all of those that are allocated duringtracing.An important feature to notice about snapshot-at-beginning algorithms is that since don't actually pre-serve Dijkstra's tricolor invariant, grey objects have asubtle role. Rather than guaranteeing that each pathfrom a black object to a white object must go througha grey object, it is only guaranteed that for each suchreachable white object there will be at least one pathto the object from a grey object. A grey object there-fore does not just represent the local part of the collec-tor's traversal wavefront|it may also represent poin-20

ters elsewhere in the reachability graph, which crossthe wavefront unnoticed.143.3.2 Incremental Update Write-Barrier Al-gorithmsWhile both are write-barrier algorithms, snapshot-at-beginning and incremental update algorithms arequite di�erent. Unfortunately, incremental update al-gorithms have generally been cast in terms of parallelsystems, rather than as incremental schemes for serialprocessing; perhaps due to this, they have been largelyoverlooked by implementors targeting uniprocessors.15Perhaps the best known of these algorithms is dueto Dijkstra et al. [DLM+78]. (This is similar to thescheme developed by Steele [Ste75], but simpler be-cause it does not deal with compaction.) Rather thanretaining everything that's in a snapshot of the graphat the beginning of garbage collection, it heuristically(and somewhat conservatively) attempts to retain theobjects that are live at the end of garbage collection.Objects that die during garbage collection|and be-fore being reached by the marking traversal|are nottraversed and marked. More precisely, an object willnot be reached by the collector if all paths to it arebroken at a point that the garbage collector has notyet reached. If a pointer is obliterated after beingreached by the collector, it is too late. (E.g., if thehead of a list has already been reached and grayed,and then becomes garbage, the rest of the list willstill be traversed.)To avoid the problem of pointers being hidden inreachable objects that have already been scanned,such copied pointers are caught when they are storedinto the scanned objects. Rather than noticing whena pointer escapes from a location that hasn't been tra-versed, it notices when the pointer hides in an objectthat has already been traversed. If a pointer is over-written without being copied elsewhere, so much the14This nonlocal constraint poses signi�cant problems for op-timization of the garbage collection process, particularly whentrying to make a hierarchical generational or distributed versionof a snapshot algorithm, where multiple garbage collections ofdi�erent scopes proceed concurrently [WJ93].15Another probable reason is that the early papers on concur-rent garbage collection addressed di�erent concerns than thosefacing most language implementors. [DLM+78] stressed ele-gance of correctness proofs at the expense of e�ciency, andreaders may have missed the fact that trivial changes to the al-gorithm would make it vastly more practical. [Ste75] presenteda complex algorithm with an optional incremental compactionphase; many readers doubtless failed to recognize that the in-cremental update strategy was itself simple, and orthogonal tothe other features.

better|the object is garbage, so it might as well notget marked.If the pointer is installed into an object already de-termined to be live, that pointer must be taken intoaccount|it has now been incorporated into the graphof reachable data structures. Those formerly-black ob-jects will be scanned again before the garbage collec-tion is complete, to �nd any live objects that wouldotherwise escape. This process may iterate, becausemore black objects may be reverted while the collec-tor is in the process of traversing them. The traversalis guaranteed to complete, however, and the collectoreventually catches up with the mutator.16Several variations of this incremental update algo-rithm are possible, with di�erent implementations ofthe write barrier and di�erent treatments of objectsallocated during collection.In the incremental update scheme of Dijkstra et al.[DLM+78], objects are optimistically assumed to beunreachable when they're allocated. In terms of tri-color marking, objects are allocated white, rather thanblack. At some point, the stack must be traversedand the objects that are reachable at that time aremarked and therefore preserved. In contrast, snap-shot schemes must assume that such newly-createdobjects are live, because pointers to them might getinstalled into objects that have already been reachedby the collector's traversal without being detected.Dijkstra also chooses to allocate new objects white,on the assumption that new objects are likely to beshort-lived and quickly reclaimed.We believe that this has a potentially signi�cantadvantage over schemes that allocate black. Mostobjects are short-lived, so if the collector doesn'treach those objects early in its traversal, they're likelynever to be reached, and instead to be reclaimedvery promptly. Compared to the snapshot scheme (orBaker's, described below) there's an extra computa-tional cost|the newly-created objects that are stilllive at the end of collection must be traversed, and alsoany that became garbage too late to be reclaimed, be-cause the traversal had already started along a path tothem. As we will explain later, whether this is worth-while may depend on several factors, such as the rel-ative importance of average case e�ciency and hardreal-time response. Steele proposes a heuristic thatallocates some objects white and other objects black,attempting to reclaim the short-live objects quicklywhile avoiding traversal of most other objects [Ste75].16The algorithmof [DLM+78] actually uses a somewhat moreconservative technique, as we will explain shortly.21

The e�ectiveness of this heuristic is unproven, and itappears to be di�cult to implement e�ciently on stan-dard hardware.Dijkstra's incremental update algorithm [DLM+78](which apparently predates Steele's slightly) actu-ally preserves the tricolor invariant by blackening thepointed-to white object, rather than reverting thestored-into black object to gray. Intuitively, thispushes the gray wavefront outward to preserve the tri-color invariant, rather than pushing it back. This ismore conservative than Steele's strategy, because thepointer might later be overwritten, freeing the object.On the other hand, it appears to be simpler and fasterin practice; it also makes it slightly easier to prove hecorrectness of the algorithm, because there is an obvi-ous guarantee of forward progress.3.4 Baker's Read Barrier AlgorithmsThe best-known real-time garbage collector is Baker'sincremental copying scheme [Bak78]. It is an adap-tation of the simple copy collection scheme describedin Sect. 2.4, and uses a read barrier for coordinationwith the mutator. More recently, Baker has proposeda non-copying version of this algorithm, which sharesmany properties with the copying version [Bak91b].3.4.1 Incremental CopyingBaker's original copying algorithm was an adaptationof the Cheney algorithm. For the most part, the copy-ing of data proceeds in the Cheney (breadth-�rst)fashion, by advancing the scan pointer through theunscanned area of tospace and moving any referred-toobjects from fromspace. This background scavengingis interleaved with mutator operation, however, andmutator activity can also trigger copying, as needed,to ensure that the mutator's view of data structuresis always consistent.In Baker's system, a garbage collection cycle beginswith an atomic ip, which conceptually invalidates allobjects in fromspace, and copies to tospace all ob-jects directly reachable from the root set. Then themutator is allowed to resume. Any fromspace objectthat is accessed by the mutator must �rst be copiedto tospace, and this copying-on-demand is enforced bythe read barrier. (The read barrier is typically imple-mented as a few instructions emitted by the compiler,forming a wrapper around pointer-dereferencing readinstructions.) The background scavenging process isalso interleaved with normal program execution, toensure that all reachable data are copied to tospace

and the collection cycle completes before memory isexhausted.An important feature of Baker's scheme is its treat-ment of objects allocated by the mutator during in-cremental collection. These objects are allocated intospace and are treated as though they had alreadybeen scanned|i.e., they are assumed to be live. Interms of tricolor marking, new objects are black whenallocated, and none of them can be reclaimed; theyare never reclaimed until the next garbage collectioncycle.17In order to ensure that the collector �nds all of thelive data and copies it to tospace before the free area innewspace is exhausted, the rate of copy collection workis tied to the rate of allocation. Each time an objectis allocated, an increment of scanning and copying isdone.In terms of tricolor marking, the scanned area oftospace contains black objects, and the copied but un-scanned objects (between the scan and free pointer)are gray. As-yet unreached objects in fromspace arewhite. The scanning of objects (and copying of theiro�spring) moves the wavefront forward.In addition to the background tracing, other ob-jects may be copied to tospace as needed to ensurethat the basic invariant is not violated|pointers intofromspace must not be stored into objects that havealready been scanned, undoing the collector's work.Baker's approach is to couple the collector's copyingtraversal with the mutator's traversal of data struc-tures. The mutator is never allowed to see pointersinto fromspace, i.e., pointers to white objects. When-ever the mutator reads a (potential) pointer from theheap, it immediately checks to see if it is a pointer intofromspace; if so, the referent is copied to tospace, i.e.,its color is changed from white to gray. In e�ect, thisadvances the wavefront of graying just ahead of theactual references by the mutator, keeping the mutatorinside the wavefront.18 The preservation of the tri-color invariant is therefore indirect|rather than actu-ally checking to see whether pointers to white objectsare stored into black ones, the read barrier ensures17Baker suggests copying old live objects into one end oftospace, and allocating new objects in the other end. The twooccupied areas of tospace thus grow toward each other, andolder objects aren't interspersed with new ones.18Nilsen's variant of Baker's algorithm updates the pointerswithout actually copying the objects|the copying is lazy, andspace in tospace is simply reserved for the object before thepointer is updated [Nil88]. This makes it easier to providesmaller bounds on the time taken by list operations, and to gearcollector work to the amount of allocation|including guaran-teeing shorter pauses when smaller objects are allocated.22

that the mutator can't see such pointers in the �rstplace.It should be noted that Baker's collector itselfchanges the graph of reachable objects, in the processof copying. The read barrier does not just inform thecollector of changes by the mutator, to ensure thatobjects aren't lost; it also shields the mutator fromviewing temporary inconsistencies created by the col-lector. If this were not done, the mutator might en-counter two di�erent pointers to versions of the sameobject, one of them obsolete.The read barrier may be implemented in software,by preceding each read (of a potential pointer fromthe heap) with a check and a conditional call to thecopying-and-updating routine. (Compiled code thuscontains extra instructions to implement the read bar-rier.) Alternatively, it may be implemented with spe-cialized hardware checks and/or microcoded routines.The read barrier is expensive on stock hardware,because in the general case, any load of a pointermust check to see if the pointer points to a fromspace(white) object; if so, extra code must be executed tomove the object to tospace and update the pointer.The cost of these checks is high on conventional hard-ware, because they occur very frequently. Lisp Ma-chines have special purpose hardware to detect poin-ters into fromspace and trap to a handler [Gre84,Moo84, Joh91], but on conventional machines thechecking overhead is in the tens of percent for a high-performance system [Zor89].Brooks has proposed a variation on Baker's scheme,where objects are always referred to via an indirection�eld embedded in the object itself [Bro84]. If an ob-ject is valid, its indirection �eld points to itself. Ifit's an obsolete version in fromspace, its indirectionpointer points to the new version. Unconditionallyindirecting is cheaper than checking for indirections,but could still incur overheads in the tens of percentfor a high-performance system [Ung84]. (A variant ofthis approach has been used by North and Reppy in aconcurrent garbage collector [NR87]; another variantexploits immutable values in ML to allow reading ofsome data from fromspace [HL93]. Zorn takes a dif-ferent approach to reducing the read barrier overhead,using knowledge of important special cases and spe-cial compiler techniques. Still, the time overheads areon the order of twenty percent [Zor89].

New

To
From

Free

Allocation

ScanningFigure 8: Treadmill collector during collection.3.4.2 Baker's Incremental Non-copying Algo-rithm|The TreadmillRecently, Baker has proposed a non-copying versionof his scheme, which uses doubly-linked lists (andper-object color �elds) to implement the sets of ob-jects of each color, rather than separate memory ar-eas. By avoiding the actual moving of objects andupdating of pointers, the scheme puts fewer restric-tions on other aspects of language implementation[Bak91b, WJ93].19This non-copying scheme preserves the essential ef-�ciency advantage of copy collection, by reclaimingspace implicitly. (As described in Sect. 2.5, unreachedobjects in the white set can be reclaimed in constanttime by appending the remainder of that list to thefree list.) The real-time version of this scheme linksthe various lists into a cyclic structure, as shown inFig. 8. This cyclic structure is divided into four sec-tions.The new list is where allocation of new objects oc-curs during garbage collection|it is contiguous withthe free-list, and allocation occurs by advancing thepointer that separates them. At the beginning of gar-bage collection, the new segment is empty.The from list holds objects that were allocated be-fore garbage collection began, and which are subjectto garbage collection. As the collector and mutatortraverse data structures, objects are moved from thefrom-list to the to-list. The to-list is initially empty,19In particular, it is possible to deal with compilers that donot unambiguously identify pointer variables in the stack, mak-ing it impossible to use simple copy collection.23

but grows as objects are \unsnapped" (unlinked) fromthe from-list (and snapped into the to-list) during col-lection.The new-list contains new objects, which are allo-cated black. The to-list contains both black objects(which have been completely scanned) and gray ones(which have been reached but not scanned). Notethe isomorphismwith the copying algorithm|even ananalogue of the Cheney algorithm can be used. It isonly necessary to have a scan pointer into the to-listand advance it through the gray objects.20Eventually, all of the reachable objects in the from-list have been moved to the to list, and scanned foro�spring. When no more o�spring are reachable, allof the objects in the to-list are black, and the remain-ing objects in the from list are known to be garbage.At this point, the garbage collection is complete. Thefrom-list is now available, and can simply be mergedwith the free-list. The to-list and the new-list bothhold objects that were preserved, and they can bemerged to form the new to-list at the next collection.21The state is very similar to the beginning of the pre-vious cycle, except that the segments have \moved"part way around the cycle|hence the name \tread-mill."Baker describes this algorithm as being isomorphicto his original incremental copying algorithm, presum-ably including the close coupling between the mutatorand the collector, i.e., the read barrier.3.4.3 Conservatism of Baker's Read BarrierBaker's garbage collectors use a somewhat conserva-tive approximation of true liveness in two ways. Themost obvious one is that objects allocated during col-lection are assumed to be live, even if they die be-fore the collection is �nished. The second is thatpre-existing objects may become garbage after havingbeen reached by the collector's traversal, and they willnot be reclaimed|once an object has been grayed, itwill be considered live until the next garbage collec-tion cycle. On the other hand, if objects become gar-bage during collection, and all paths to those objectsare destroyed before being traversed, then they willbe reclaimed. That is, the mutator may overwrite a20Because the list structure is more exible than a contiguousarea of memory, it is even possible to implement a depth-�rsttraversal with no auxiliary stack, in much the same way thatthe Cheney algorithm implements breadth-�rst [WJ93].21This discussion is a bit oversimpli�ed; Baker uses four col-ors, and whole lists can have their colors changed instanta-neously by changing the sense of the bit patterns, rather thanthe patterns themselves.

pointer from a gray object, destroying the only path toone or more white objects and ensuring that the col-lector will not �nd them. Thus Baker's incrementalscheme incrementally updates the reachability graphof pre-existing objects, but only when gray objectshave pointers overwritten. Overwriting pointers fromblack objects has no e�ect on conservatism, becausetheir referents are already gray. The degree of con-servatism (and oating garbage) thus depends on thedetails of the collector's traversal and of the program'sactions.3.4.4 Variations on the Read BarrierSeveral garbage collectors have used slight variationsof Baker's read barrier, where the mutator is only al-lowed to see black (i.e., completely scanned) objects.Recall that Baker's read barrier copies an object totospace as soon as the mutator encounters a pointerto the object. This may be ine�cient, because thechecking costs are incurred at each reference in thegeneral case, and because it costs something to trapto the scanning-and-copying routine (typically, a con-ditional branch and a subroutine call).It may therefore be preferable to scan an entire ob-ject when it is �rst touched by the mutator, and up-date all of the object's pointer �elds. This may becheaper than calling the scanning-and-copying routineeach time a �eld is �rst referenced; the compiler mayalso be able to optimize away redundant checks formultiple references to �elds of the same object. (Juuland Jul's distributed garbage collector [JJ92] uses suchan objectwise scanning technique, and combines someof the garbage collector's checking costs with thoseincurred for �ne-grained object migration.)Such a read barrier is coarser and more conserva-tive than Baker's original read barrier. It enforces astronger constraint|not only is the mutator not al-lowed to see white objects, it is only allowed to seeblack objects. Since an entire object is scanned whenit is �rst touched, and its referents are grayed, the ob-ject becomes black before the mutator is allowed tosee it. This advances the wavefront of the collector'straversal an extra step ahead of the mutator's patternof references.Such a \black only" read barrier prevents any datafrom becoming garbage, from the garbage collector'spoint of view, during a garbage collection|before anypointer can be overwritten, the object containing itwill be scanned, and the pointer's referent will begrayed. In e�ect, this implements a \snapshot-at-beginning" collection, using a read barrier rather than24

a write barrier.Appel, Ellis, and Li's concurrent incremental col-lector [AEL88] uses virtual memory primitives to im-plement a pagewise black-only read barrier. Ratherthan detecting the �rst reference to any grey object(in tospace), entire pages of unscanned data in tospaceare access-protected, so that the virtual memory sys-tem will implicitly perform read barrier checks as partof the normal functioning of the virtual memory hard-ware. When the mutator accesses a protected page,a special trap handler immediately scans the wholepage, �xing up all the pointers (i.e., blackening all ofthe objects in the page); referents in fromspace are re-located to tospace (i.e., grayed) and access-protected.This avoids the need for continual software checks toimplement the read barrier, and in the usual case ismore e�cient. (If the operating system's trap han-dling is slow, however, it may not be worth it.) Despitereliance on operating system support, this techniqueis relatively portable because most modern operatingsystems provide the necessary support.Unfortunately this scheme fails to provide meaning-ful real-time guarantees in the general case [WM89,NS90, WJ93]. (It does support concurrent collection,however, and can greatly reduces the cost of the readbarrier.) In the worst case, each pointer traversal maycause the scanning of a page of tospace until the wholegarbage collection is complete.223.5 Replication Copying CollectionRecently, Nettles et al. [NOPH92, ONG93] havedevised a new kind of incremental copying collec-tion, replication copying, which is quite di�erent fromBaker's incremental copying scheme. Recall that inBaker's collector, garbage collection starts with a\ip," which copies the immediately-reachable datato tospace, and invalidates fromspace; from that mo-ment on, the mutator is only allowed to see the newversions of objects, never the versions in fromspace.Replication copying is almost the reverse of this.While copying is going on, the mutator continues tosee the fromspace versions of objects, rather than the\replicas" in tospace. When the copying process iscomplete, a ip is performed, and the mutator thensees the replicas.22Johnson has improved on this scheme by incorporatinglazier copying of objects to tospace [Joh92]; this is essentiallyan application of Nilsen's lazy copying technique [Nil88] to theAppel-Ellis-Li collector. This decreases the maximum latency,but in the (very unlikely) worst case a page may still be scannedat each pointer traversal until a whole garbage collection hasbeen done \the hard way".

The consistency issues in replication copying arevery di�erent from those in Baker-style copying. Themutator continues to access the same versions of ob-jects during the copying traversal, so it needn't checkfor forwarding pointers. This eliminates the needfor a read barrier|conceptually, all objects are \for-warded" to their new versions at once, when the ipoccurs.On the other hand, this strategy requires a writebarrier, and the write barrier must deal with morethan just pointer updates. In Baker's collector, themutator only sees the new versions of objects, so anywrites to objects automatically update the current(tospace) version. In replication copying, however,the mutator sees the old version in fromspace; if anobject has already been copied to tospace, and thefromspace version is then modi�ed by the mutator,the new replica can have the wrong (old) values init|it gets \out of synch" with the version seen by themutator.To avoid this, the write barrier must catch all up-dates, and the collector must ensure that all updateshave been propagated when the ip occurs. That is,all of the modi�cations to old versions of objects mustbe made to the corresponding new versions, so thatthe program sees the correct values after the ip.This write barrier appears to be expensive for mostgeneral-purpose programming languages, but not forfunctional languages, or \nearly-functional" languages(such as ML) where side e�ects are allowed but infre-quently used.3.6 Coherence and Conservatism Re-visitedAs we mentioned in Sect. 3.1, incremental collectorsmay take di�erent approaches to coordinating the mu-tator with the collector's tracing traversal. If thesequasi-parallel processes coordinate closely, their viewsof data structures can be very precise, but the coordi-nation costs may be unacceptable. If they do not co-ordinate closely, they may su�er from using out-datedinformation, and retain objects which have becomegarbage during collection.3.6.1 Coherence and Conservatism in Non-copying collectionThe non-copying write-barrier algorithms we have de-scribed lie at di�erent points along a spectrum of ef-fectiveness and conservatism. Snapshot-at-beginningalgorithms treat everything conservatively, reducing25

their e�ectiveness. Dijkstra et al.'s incremental up-date algorithm is less conservative than snapshot algo-rithms, but more conservative than Steele's algorithm.In Steele's algorithm, if a pointer to a white ob-ject is stored into a black object, that white objectis not immediately grayed|instead, the stored-intoblack object is reverted to gray, \undoing" the black-ening done by the collector. This means that if thestored-into �eld is again overwritten, the white objectmay become unreachable and may be reclaimed at theend of the current collection. In contrast, Dijkstra'salgorithm will have grayed that object, and hence willnot reclaim it.(It may seem that this is a trivial di�erence, but itis easy to imagine a scenario in which it matters. Con-sider a program that stores most of its data in stacks,implemented as linked lists hanging o� of \stack" ob-jects. If a stack object is reached and blackened bythe collector's traversal, and then many objects arepushed onto and popped o� of the stack, Dijkstra's al-gorithm will not reclaim any of the popped items|asthe stack object's list pointer progresses through thelist, repeatedly being overwritten with the pointer tothe next item, each item will be grayed when the pre-vious one is popped. Steele's algorithm, on the otherhand, may reclaim almost all of the popped items, be-cause the pointer �eld may be overwritten many timesbefore the collector's traversal examines at it again.)Note that this spectrum of conservatism (snapshotalgorithms, Dijkstra's, Steele's) is only a linear order-ing if the algorithms use the same traversal algorithm,scheduled in the same way relative to the program'sactual behavior|and this is unlikely in practice. De-tails of the ordering of collector and mutator actionsdetermine how much oating garbage will be retained.(Any of these collectors will retain any data reachablevia paths that are traversed by the collector beforebeing broken by the mutator.)This suggests that the reachability graph mightpro�tably be traversed opportunistically, i.e., totalcosts might be reduced by carefully ordering the scan-ning of gray objects. For example, it might be desir-able to avoid scanning rapidly-changing parts of thegraph for as long as possible, to avoid reaching objectsthat will shortly become garbage.All other things being equal (i.e., in lieu of op-portunism and random luck), snapshot-at-beginningis more conservative (hence less e�ective) than incre-mental update, and Dijkstra's incremental update ismore conservative than Steele's.

3.6.2 Coherence and Conservatism in Copy-ing CollectionBaker's read barrier algorithm does not fall neatlyinto the above spectrum. It is less conservative thansnapshot-at-beginning, in that a pointer in a gray ob-ject may be overwritten and never traversed; it is moreconservative than the incremental update algorithms,however, because anything reached by the mutator isgrayed|objects cannot become garbage, from the col-lector's viewpoint, after simply being touched by themutator during a collection.Nettles, et al.'s replication copying algorithm (likean incremental update algorithm), is able to reclaimobjects that become unreachable because a pointercan be overwritten before being reached by the collec-tor. Their collector is less conservative than Baker's,in part because it can use a weaker notion of consis-tency. Because the mutator doesn't operate in tospaceuntil after the copying phase is complete, the copies ofdata in tospace needn't be entirely consistent duringincremental copying. (The changes made to fromspacedata structures by the mutator must be propagated totospace eventually, but the entire state only needs tobe consistent at the end of collection, when the atomic\ip" is performed.) Like the other write-barrier algo-rithms, replication copying might bene�t signi�cantlyfrom opportunistic traversal ordering.3.6.3 \Radical" Collection and OpportunisticTracingThe tracing algorithms we've described fall roughlyinto a spectrum of decreasing conservatism, thus:� Snapshot-at-beginning write barrier� Black-only read barrier� Baker's read barrier� Dijkstra's write barrier� Steele's write barrierIn considering this quasi-spectrum, it is interestingto ask, is there anything less conservative than Steele'salgorithm? That is, can we have a better-informedcollector than Steele's, one which responds more ag-gressively to changes in the reachability graph? Theanswer is yes. Such a garbage collector would be will-ing to re-do some of the traversal it's already done,un-marking objects that were previously reached, toavoid conservatism. We refer to this as a \radical"26

garbage collection strategy. At �rst glance, such col-lectors may seem impractical, but under some circum-stances, approximations of them may make sense.The limiting case of decreasing conservatism is torespond fully to any change in the reachability graph,un-marking objects that have already been reached,so that all garbage can be detected. (We might callthis a fully radical collector.)One way of doing that is to perform a full trace ofthe actual reachability graph at every pointer writeon the part of the application. Naturally, this is im-practical because of its extreme cost. (A normal non-incremental collector can be viewed as an approxima-tion of this; the graph is traversed \instantaneously"by stopping the mutator for the whole traversal, butthat's only done occasionally.)Another way of achieving fully radical collectionwould be to record all of the dependencies withinthe reachability graph, and update the dependencydatabase at every pointer update. Whenever allpaths keeping an object alive is broken, the object isknown to be garbage. Again, a full implementation ofthis strategy would be impractical for general-purposegarbage collection, because the dependency databasecould be very large, and pointer updates would be veryexpensive.Note, however, that approximations of this depen-dency information could be relatively cheap, and infact, that's exactly what reference counts are. A ref-erence count is a conservative approximation of thenumber of paths to an object, and when those pathsare eliminated, the reference counts usually go to zeroand allow the object to be reclaimed immediately.Some distributed garbage collection algorithms alsoperform somewhat radical collection, by frequently re-computing some local parts of the collector's traversal.3.7 Comparing IncrementalTechniquesIn comparing collector designs, it is instructive to keepin mind the abstraction of tricolor marking|as dis-tinct from concrete tracing mechanisms such as mark-sweep or copy collection. The choice of a read- orwrite-barrier (and strategy for ensuring correctness)is mostly independent of the choice of a tracing andreclamation mechanism.For example, Brooks' copying collector [Bro84](which we mentioned in Sect 3.4.1) is actually an in-cremental update write barrier algorithm, even thoughBrooks describes it as an optimization of Baker's

scheme.23 Similarly, Dawson's copying scheme (pro-posed in [Daw82]) is cast as a variant of Baker's, but itis actually an incremental update scheme, and objectsare allocated in fromspace, i.e., white, as in Dijkstra'scollector.The choice of a read- or write-barrier scheme islikely to be made on the basis of the available hard-ware. Without specialized hardware support, a writebarrier appears to be easier to implement e�ciently,because heap pointer writes are much less commonthan pointer traversals. If appropriate virtual mem-ory support is available, and hard real-time responseis not required, a pagewise read barrier may be desir-able.Of write barrier schemes, snapshot-at-beginning al-gorithms are signi�cantly more conservative than in-cremental update algorithms. This advantage of incre-mental update might be increased by carefully choos-ing the ordering of root traversal, traversing the moststable structures �rst to avoid having the collector'swork undone by mutator changes.While incremental update schemes increase e�ec-tiveness, they may also increase costs. In the worstcase, everything that becomes garbage during a col-lection \oats," i.e., it becomes unreachable too late,and is traversed and retained anyway. If new objectsare allocated white (subject to reclamation), incre-mental update algorithms may be considerably moreexpensive than snapshot-at-beginning algorithms inthe worst case|it is possible that all of the newly-allocated objects will oat and require traversal, withno increase in the amount of memory reclaimed. Wewill discuss this in more detail in Sect. 3.8.2.Careful attention should be paid to write bar-rier implementation. Boehm, Demers and Shenker's[BDS91, Boe91] incremental update algorithm usesvirtual memory dirty bits as a coarse pagewise writebarrier. All black objects in a page must be re-scannedif the page is dirtied again before the end of a collec-tion. (As with Appel, Ellis and Li's copy collector,this coarseness sacri�ces real-time guarantees, whilesupporting parallelism. It also allows the use of o�-the-shelf compilers that don't emit write barrier in-structions along with heap writes.)23The use of uniform indirections may be viewed as avoidingthe need for a Baker-style read barrier|the indirections isolatethe collector from changes made by the mutator, allowing themto be decoupled. The actual coordination, in terms of tricolormarking, is through a write barrier. Brooks' algorithm usesa simple write barrier to protect the mutator from the collec-tor, and a simple read barrier to protect the collector from themutator.27

In a system with compiler support for garbage col-lection, a list of stored-into locations can be kept, ordirty bits can maintained (in software) for small areasof memory, to reduce scanning costs and bound thetime spent updating the marking traversal. This hasbeen done for other reasons in generational garbagecollectors, as we will discuss in Sect. 4.3.8 Real-time Tracing CollectionIncremental collectors are often designed to be real-time, i.e., to impose strictly limited delays on pro-gram execution, so that programmers can guaran-tee that their garbage-collected programs will meetreal-time deadlines. Real-time applications are manyand varied, including industrial process controllers,testing and monitoring equipment, audiovisual pro-cessing, y-by-wire aircraft controls, and telephoneswitching equipment. Real-time applications can usu-ally be classi�ed as hard real time, where computationsmust complete with strictly-limited time bounds, andsoft real-time, where it is acceptable for some tasks tomiss their schedules some of the time, as long as itdoesn't happen \too often".24The criterion for real time garbage collection is of-ten stated as imposing only small and bounded delayson any particular program operation. For example,traversing a pointer might never take more than a mi-crosecond, heap-allocating a small object might nevertake more than a few microseconds, and so on.There are two problems with this kind of crite-rion. One problem is that the appropriate notion ofa \small" delay is inevitably dependent on the natureof an application. For some applications, it is accept-able to have responses that are delayed by a signi�cantfraction of a second, or even many seconds. For otherapplications, a delay of a millisecond or two is not aproblem, while for others delays of more than a fewmicroseconds could be fatal. (On one hand, consider amusic synthesizer controller, where humans' own im-precision will swamp a delay of a millisecond and beunnoticeable; on the other, consider a high-precisionguidance system for anti-missile missiles.)Another problemwith this kind of criterion is that itunrealistically emphasizes the smallest program oper-ations. When you press a key on a musical keyboard,the controller may be required to execute thousands24For example, in a digital telephone system, making a con-nection might be a soft real-time task, but once a connectionis established, delivering continuous audio may be a hard real-time task. In this section, we will deal primarily with hardreal-time issues.

of program statements (e.g., to decide which note isbeing played, what the corresponding pitch is giventhe current tunings, how loud to play it, which soundcomponents to mix in what proportions to achieve theright timbre for the given pitch, and so on).For most applications, therefore, a more realisticrequirement for real time performance is that the ap-plication always be able to use the CPU for a givenfraction of the time at a timescale relevant to the ap-plication. (Naturally, the relevant fraction will dependon both the application and the speed of the proces-sor.)For a chemical factory's process control computer,it might be su�cient for the controlling application toexecute for at least one second out of every two, be-cause the controller must respond to changes (e.g., invat temperatures) within two seconds, and one secondis enough to compute the appropriate response. Onthe other hand, a controller for a musical synthesizermight require the CPU to run its control program forhalf a millisecond out of every two milliseconds, tokeep delays in the onset of individual notes below thethreshold of noticeability.Note that either of these applications can functioncorrectly if the garbage collector sometimes stops theapplication for a quarter of a millisecond. Providedthat these pauses aren't too frequent, they're too shortto be relevant to the applications' real-time deadlines.But suppose these pauses are clustered in time; ifthey happen frequently enough they will destroy theapplication's ability to meet deadlines, simply by soak-ing up too large a fraction of the CPU time. If the ap-plication only executes for a sixteenth of a millisecondbetween quarter-millisecond pauses, it can't get morethan a �fth of the CPU time. In that case, either ofthe above programs would fail to meet its real-time re-quirements, even the process control system that onlyneeds to respond within two seconds.As we described above, some copy collectors usevirtual memory protections to trigger pagewise scan-ning, and this coarseness may fail to respect real-timeguarantees. In the worst case, traversing a list of athousand elements may cause a thousand pages to bescanned, performing considerable garbage collectionwork and incurring trap overheads as well. (In thisway, a list traversal that would normally take a fewthousand instructions may unexpectedly take millions,increasing the time to traverse the list by several or-ders of magnitude.) Locality of reference may makesuch situations improbable, but the probability of badcases is not negligible.28

Unfortunately, using a �ne-grained incremental col-lector may not �x this problem, either [Nil88, Wit91].Consider Baker's copying technique. The time to tra-verse a list depends on whether the list elements re-quire relocation to tospace. Traversing a single pointermay require an object to be copied; this may increasethe cost of that memory reference by an order of mag-nitude even if objects are small and hardware supportis available. (Consider copying a Lisp cons cell con-sisting of a header, a CAR �eld, and a CDR �eld. Atleast three memory reads and three memory writesare required for the actual copy, plus extra instruc-tions to install a forwarding pointer, adjust the free-space pointer, and probably to branch to and fromthe garbage collector routine that does this work.)In such cases, it is possible for the garbage collec-tor overheads to consume over 90% of the CPU time,reducing the available computing power|that is, thepower guaranteed to be available for meeting real-timedeadlines|by an order of magnitude.(In Baker's original incremental copying scheme, theworst-case cost is even worse, because any pointertraversal may force the copying of a large object. Ar-rays are treated specially, and copied lazily, i.e., onlywhen they are actually touched. Nilsen reduces theworst-case by extending this lazy copying to all typesof objects. When a pointer to a tospace object is en-countered by the mutator, space is simply reserved intospace for the object, rather than actually copying it.The actual copying occurs later, incrementally, whenthe background scavenger scans that part of tospace[Nil88].)In deciding on a real-time tracing strategy, there-fore, it is important to decide what kind of guaran-tees are necessary, and at what timescales. WhileBaker's is the best-known incremental algorithm, itmay not be the most suitable for most real-time appli-cations, because its performance is very unpredictableat small timescales. Algorithms with a weaker cou-pling between the mutator and the collector (such asmost write-barrier algorithms) may be more suitable[WJ93]. It may be easier for programmers to reasonabout real-time guarantees if they know that pointertraversals always take a constant time, independent ofwhether the pointer being traversed has been reachedby the garbage collector yet. (Write barrier algorithmsrequire more work per pointer store, but the work perprogram operation is less variable, and most of it neednot be performed immediately to maintain correct-ness.)Unfortunately, while non-copying algorithms have

the convenient property that their time overheads aremore predictable, their space costs are much more dif-�cult to reason about. A copying algorithm generallyfrees a large, contiguous area of memory, and requestsfor objects of any size can be satis�ed by a constant-time stack-like allocation operation. Non-copying al-gorithms are subject to fragmentation|memory thatis freed may not be contiguous, so it may not be pos-sible to allocate an object of a given size even if thereis that much memory free.The following sections discuss techniques for obtain-ing real-time performance from an incremental trac-ing collector. We assume that the system is purelyhard real time|that is, the program consists only ofcomputations which must complete before their dead-lines; we also assume that there is only one timescalefor real-time deadlines. In such a system, the maingoal is to make the worst-case performance as good aspossible, and further increases in expected-case per-formance do no good. (Later, we will briey dis-cuss tradeo�s in systems with soft real-time sched-ules, where di�erences in expected-case performancemay also be important.) We also assume that either acopying algorithm is used, or all objects are of a uni-form size.25 This allows us to assume that any mem-ory request can be satis�ed by any available memory,and ignore possible fragmentation of free storage.3.8.1 Root Set ScanningAn important determinant of real-time performanceis the time required to scan the root set. Recall thatin Baker's incremental collector, the root set is up-dated, and immediately-reachable objects are copiedto tospace, in a single atomic operation, uninterruptedby mutator execution. This means that there will oc-casionally be a pause of a duration roughly propor-tional to the size of the root set. This pause is likelyto be much larger than a pause for a normal incre-ment of tracing, and may be the main limitation onreal-time guarantees.Similar pauses occur in incremental update trac-ing algorithms when attempting to terminate a collec-tion. Before a collection can be considered �nished,the root set must be scanned (along with any gray ob-jects recorded by the write barrier, in the case of analgorithm like Steele's), and all reachable data mustbe traversed and blackened atomically. (This ensures25In some systems, it is feasible to transparently fragmentlanguage-level objects into easily-managedchunks, to make gar-bage collection easier and reduce or eliminate fragmentationproblems.29

that no pointers have been hidden from the collectorby storing them in roots after those roots were lastscanned.) If this work cannot be accomplished withinthe time allowed by the real-time bounds, the collectormust be suspended and the mutator resumed, and theentire termination process must be tried again later.(Snapshot at beginning algorithms don't pose as dif-�cult a problem for termination detection, since nopaths can be hidden from the collector.)One way to bound the work required for a ip or fortermination is to keep the root set small. Rather thanconsidering all local and global variables to be part ofthe root set, some or all of them may be treated likeobjects on the heap. Reads or writes to these variableswill be detected by the read barrier or write barrier,and the collector will therefore maintain the relevantinformation incrementally.The problem with keeping the root set small isthat the cost of the read or write barrier goes upcorrespondingly|a larger number of variables is pro-tected by a read or write barrier, incurring overheadeach time they are read or written. One possible trade-o� is to avoid the read or write-barrier cost for register-allocated variables, and to scan (only) the register setatomicallywhen necessary. If there are too many oper-ations on stack-allocated local variables, however, thiswill slow execution signi�cantly. In that case, the en-tire stack may be scanned atomically instead. Whilethis may sound expensive, most real-time programsnever have deep or unbounded activation stacks, andthe cost may be negligible at the scale of the pro-gram's intended response times. Similarly, for smallsystems using fast processors (or with relatively largetimescales for real-time requirements), it may be de-sirable to avoid the read or write barrier for all globalvariables, and scan them atomically as well. Interme-diate strategies are possible, treating some variablesone way and others another, perhaps based on pro�l-ing information.3.8.2 Guaranteeing Su�cient ProgressThe preceding section focused on ensuring that thecollector does not use too much CPU time, at therelevant timescale, keeping the processor from beingable to meet its real-time deadlines. Conversely, thecollector has a real-time deadline of its own to meet:it must �nish its traversal and free up more memorybefore the currently-free memory is exhausted. If itdoesn't, the application will have to halt and wait forthe collection to complete and free up more memory.For hard real-time programs, then, there must be

some way of ensuring that the collector gets enoughCPU time to complete its task before free memory isexhausted, even in the worst possible case. To pro-vide such a guarantee, it is necessary to quantify theworst case|that is, to put some bound on what thecollector could be expected to do. Since a tracing col-lector must traverse live data, this requires putting abound on the amount of live data. In general, theprogrammer of an application must ensure that theprogram doesn't have more than a certain amount oflive data to traverse, and the collector can then de-termine how fast it must operate in order to meet itsdeadline. It can then determine whether this requiresmore CPU time than it is allowed to consume. Natu-rally, this generally allows some tradeo�s to be madein the parameter settings. If more memory is avail-able, the collector generally needs a smaller fractionof the CPU time to guarantee that it �nishes beforememory is exhausted.The usual strategy for ensuring that free memory isnot exhausted before collection is �nished is to use anallocation clock|for each unit of allocation, a corre-sponding unit of collection work is done, and the lat-ter unit is large enough to ensure that the traversal iscompleted before the free space is exhausted [Bak78].The simplest form of this is to key collection work di-rectly to allocation|each time an object is allocated,a proportional amount of garbage collection work isdone. This guarantees that no matter how fast a pro-gram uses up memory, the collector is accelerated cor-respondingly. (In actual implementations, the workis usually batched up into somewhat larger units overseveral allocations, for e�ciency reasons.)In the rest of this section, we show how to computethe minimum safe tracing rate, starting with a non-copying snapshot-at-beginning collector, which allo-cates objects black (i.e., not subject to collection). Wemake the simplifyingassumption that all objects are ofa uniform size, so that there is a single pool of memorythat is allocated from and reclaimed. After describingthis simple case, we will explain how the safe tracingrate di�ers for other incremental tracing algorithms.For a snapshot-at-beginning algorithm, all of thelive data at the beginning of a collection must be tra-versed by the end of the collection. Other algorithmsmust do this too, in the worst case, because objectsmay have to be traversed even if they are freed duringcollection. In the absence of any other informationfrom the programmer, the collector must generally as-sume that at the beginning of collection, the maximumamount of live data is in fact live.30

Since we assume that objects created during collec-tion are allocated black, i.e., not subject to reclama-tion, we need not traverse them|those objects will beignored until the next garbage collection cycle.At �rst glance, it might appear that for a maxi-mum amount of live data L and a memory size ofM , we would have (M � L) memory available toallocate|this would imply a minimum safe tracingrate of (M �L)=L, to trace L data before this \head-room" is exhausted. Unfortunately, though, we alsohave to deal with oating garbage. The data that arelive at the beginning of collection may become gar-bage during collection, but too late to be reclaimedat this garbage collection cycle. The data we've al-located may also be garbage, but since we allocateblack we don't know that yet. If we were to use up(M � L) memory, we might not get any space backat this garbage collection cycle, and we would haveno headroom left to try another collection. the maxi-mum data we should allocate is therefore only half theheadroom, or (M � L)=2. The minimum safe tracingrate allows us to allocate that in the time it takes totraverse the maximum live data, so the safe tracingrate is ((M � L)=2)=L, or (M � L)=2L. This is su�-cient for the worst case, in which all garbage oats foran entire garbage collection cycle, but is reclaimed atthe next cycle.As mentioned above, the situation is essentially thesame for other incremental tracing algorithms, so longas they allocate new objects black, because in theworst case they retain all of the same objects as asnapshot-at-beginning algorithm. The minimum safetracing rate is proportional to the amount of live dataand inversely proportional to the amount of free mem-ory; it therefore approaches zero as memory becomesvery large relative to the maximum amount of livedata.For allocating white, however, the situation is con-siderably worse. When allocating white, we are gam-bling that newly-allocated data will be short-lived; wetherefore make them subject to garbage collection inhopes of reclaiming their space at the current cycle.This obliges us to traverse reachable white objects,and in the worst case we traverse everything we allo-cate before it becomes garbage. Even though we as-sume that there is a bound on the amount of live data(provided by the programmer), we must take into ac-count the conservatism of the traversal process, andthe fact that any pointer may be traversed by the col-lector before it's broken by the mutator.When allocating white, therefore, the worst-case

safe traversal rate does not approach zero as mem-ory becomes very large|it approaches the allocationrate; the traversal must keep up with the allocationrate, and go at least a little faster, to ensure that iteventually catches up. If we increase the amount ofmemory relative to the amount of live data, we reacha point of diminishing returns|we must always traceat least as fast as we allocate.The above analysis applies to non-copying collectorsfor uniform-sized objects. In copying collectors, morememory is required to hold the new versions of objectsbeing copied; there must be another L units of mem-ory available in the worst case to ensure that tospaceis not exhausted before fromspace is reclaimed. Thisa major space cost if L is large relative to the ac-tual amount of memory available. In non-copyingcollectors for nonuniform-sized objects, fragmentationmust be taken into account. Fragmentation reducesthe e�ective memory available, requiring faster trac-ing to complete collection in bounded memory. Com-putations of worst-case fragmentation are intrinsicallyprogram-speci�c [WJ93]; due to space limitations, wewill not discuss them here.3.8.3 Trading worst-case performance for ex-pected performanceWhen a collection phase is complete, the collectorcan often determine a less conservative traversal rate,slowing down the collection process and yielding moreCPU cycles to the mutator. This is possible becauseat the end of the collection, the collector can deter-mine how much live data was in fact traced, and revisedownward its worst-case estimate of what could be liveat the next collection. This may improve performancesomewhat, but usually not dramatically.Alternatively, when the collector can determine thatit has less than the worst-case amount of work to do,it may avoid GC activity entirely for a while, thenre-activate the collector in time to ensure that it willmeet its deadline. This is an attractive option if theread or write barrier can be e�ciently disabled on they.3.8.4 DiscussionThe foregoing analysis assumes a fairly simple modelof real-time performance, with a single timescale forhard real-time deadlines. More complex schemes arecertainly possible, in systems with mixed hard and softdeadlines, or systems which have multiple timescalesfor di�erent kinds of goals. For example, the col-31

lector's infrequent but relatively expensive operations(like root-set scanning) might be scheduled along withthe application's own longer-term deadlines, in a com-plementary pattern. This could achieve higher perfor-mance overall while providing tight real-time guaran-tees where necessary.26We have also assumed a fairly simple model ofgarbage collection, in that there is a single pool ofmemory available for all memory requests. In a non-copying system with objects of widely di�ering sizes,this will not be the case, because freeing several smallobjects does not necessarily make it possible to al-locate a larger one. On the other hand, it appearsthat many applications' memory usage is dominatedby a very few sizes of objects; reasoning about real-time collection may not be as hard as it appears at�rst glance, for the majority of programs [WJ93].Still, such reasoning must be done on application-by-application basis. For some programs, guaranteeingreal-time performance may cost considerable mem-ory due to possible fragmentation, unless application-level objects can be split into more uniform chunks.Another possibility is to statically-allocate the mosttroublesome datatypes, as is usually done in real-timesystems anyway, but rely on the garbage collector tomanage most of the objects automatically.For fully general real-time garbage collection, withreasonable worst-case memory usage, it appears that�ne-grained copying collection is required [Nil88]. Asmentioned above, copying collection can be quite ex-pensive in the worst case, even if Lisp-machine stylehardware support is available to speed up the read bar-rier [EV91, Wit91]. Nilsen and Schmidt have designedand simulated hardware support which will guaranteeusefully real-time performance [NS92], but it is signif-icantly more complex.273.9 Choosing an Incremental Algo-rithmIn choosing an incremental strategy, it is important toprioritize overall average performance and worst-case26Consider an autonomous robot, which might need to reviseits overall high-level planning only every second or so, but mightalso need to respond \reexively" to changes in its environmentwithin a few milliseconds. The low-level vision and reactiveadjustments might consume a �xed percentage of CPU time onthe scale of a few milliseconds, with the remainder availablealternately to the high-level planning functions and to the GC,alternating every half-second.27Nilsen's approach is interesting in that it requires relativelycomplex memory controllers, but it is compatible with o�-the-shelf high-performance microprocessors.

performance. Algorithms that are \less conservative"may not be more attractive than others, because the\less conservative" algorithms are just as conservativein the worst case.Even in the usual case, the less conservative algo-rithms may not be desirable, because they may sim-ply be slower (e.g., because their write barriers re-quire more instructions.) Paradoxically, this can makea \less conservative" algorithm more conservative inpractice, because its cost may keep it from being runas often. Because of the higher overhead, the reducedconservatism in terms of incremental strategies mayintroduce greater conservativeness in how frequentlygarbage is collected at all.Overall system design goals are therefore importantto the choice of any garbage collection algorithm. Aswe will explain in the next section, generational tech-niques make the overheads of incremental collectionunnecessary for many systems, where hard real-timeresponse is not necessary, and it is su�cient for thecollector to be \nondisruptive" in typical operation.For other systems, it may be desirable to combine in-cremental and generational techniques, and careful at-tention should be paid to how they are combined.4 Generational Garbage Col-lectionGiven a realistic amount of memory, e�ciency of sim-ple copying garbage collection is limited by the factthat the system must copy all live data at a collection.In most programs in a variety of languages, most ob-jects live a very short time, while a small percentageof them live much longer [LH83, Ung84, Sha88, Zor90,DeT90, Hay91]. While �gures vary from language tolanguage and from program to program, usually be-tween 80 and 98 percent of all newly-allocated heapobjects die within a few million instructions, or beforeanother megabyte has been allocated; the majority ofobjects die even more quickly, within tens of kilobytesof allocation.(Heap allocation is often used as a measure of pro-gram execution, rather than wall clock time, for tworeasons. One is that it's independent of machine andimplementation speed|it varies appropriately withthe speed at which the program executes, which wallclock time does not; this avoids the need to continuallycite hardware speeds.28 It is also appropriate to speak28One must be careful, however, not to interpret it as theideal abstract measure. For example, rates of heap allocation32

in terms of amounts allocated because the time be-tween garbage collections is largely determined by theamount of memory available.29 Future improvementsin compiler technology may reduce rates of heap allo-cation by putting more \heap" objects on the stack;this is not yet much of a problem for experimentalstudies, because most current state-of-the-art compil-ers don't do much of this kind of lifetime analysis.)Even if garbage collections are fairly close together,separated by only a few kilobytes of allocation, mostobjects die before a collection and never need to becopied. Of the ones that do survive to be copied once,however, a large fraction survive through many collec-tions. These objects are copied at every collection,over and over, and the garbage collector spends mostof its time copying the same old objects repeatedly.This is the major source of ine�ciency in simple gar-bage collectors.Generational collection [LH83] avoids much of thisrepeated copying by segregating objects into multipleareas by age, and collecting areas containing older ob-jects less often than the younger ones. Once objectshave survived a small number of collections, they aremoved to a less frequently collected area. Areas con-taining younger objects are collected quite frequently,because most objects there will generally die quickly,freeing up space; copying the few that survive doesn'tcost much. These survivors are advanced to older sta-tus after a few collections, to keep copying costs down.For stop-and-collect (non-incremental) garbage col-lection, generational garbage collection has an addi-tional bene�t in that most collections take only a shorttime|collecting just the youngest generation is muchfaster than a full garbage collection. This reduces thefrequency of disruptive pauses, and for many programswithout real-time deadlines, this is su�cient for ac-ceptable interactive use. The majority of pauses areso brief (a fraction of a second) that they are unlikelyto be noticed by users [Ung84]; the longer pauses formulti-generation collections can often be postponeduntil the system is not in use, or hidden within nonin-teractive compute-bound phases of program operation[WM89]. Generational techniques are often used as anare typically higher in Lisp and Smalltalk, because more controlinformation and/or intermediate data of computations may bepassed as pointers to heap objects, rather than as structures onthe stack.29Allocation-relative measures are still not the absolutebottom-line measure of garbage collector e�ciency, though, be-cause decreasing work per unit of allocation is not nearly asimportant if programs don't allocate much; conversely, smallerpercentage changes in garbage collection work mean more forprograms whose memory demands are higher.

Younger Generation

Older Generation

ROOT
SET

Figure 9: A generational copying garbage collectorbefore garbage collection.acceptable substitute for more expensive incrementaltechniques, as well as to improve overall e�ciency.(For historical reasons and simplicity of explana-tion, we will focus on generational copying collectors.The choice of copying or marking collection is essen-tially orthogonal to the issue of generational collec-tion, however [DWH+90].)4.1 Multiple Subheaps with VaryingCollection FrequenciesConsider a generational garbage collector based on thesemispace organization: memory is divided into areasthat will hold objects of di�erent approximate ages,or generations; each generation's memory is furtherdivided into semispaces. In Fig. 9 we show a simplegenerational scheme with just two age groups, a Newgeneration and an Old generation. Objects are allo-cated in the New generation, until its current semis-pace is full. Then the New generation (only) is col-lected, copying its live data into the other semispace,as shown in Fig. 10.If an object survives long enough to be consideredold, it can be copied out of the new generation andinto the old, rather than back into the other semis-33

Younger Generation

Older Generation

ROOT
SET

Figure 10: Generational collector after garbage collec-tion.pace. This removes it from consideration by single-generation collections, so that it is no longer copiedat every collection. Since relatively few objects livethis long, old memory will �ll much more slowly thannew. Eventually, old memory will �ll up and have tobe garbage collected as well. Figure 11 shows the gen-eral pattern of memory use in this simple generationalscheme. (Note the �gure is not to scale|the youngergeneration is typically several times smaller than theolder one.)The number of generations may be greater than two,with each successive generation holding older objectsand being collected considerably less often. (Tektronix4406 Smalltalk is such a generational system, usingsemispaces for each of eight generations [CWB86].)In order for this scheme to work, it must be possi-ble to collect the younger generation(s) without col-lecting the older one(s). Since liveness of data is aglobal property, however, old-memory data must betaken into account. For example, if there is a pointerfrom old memory to new memory, that pointer mustbe found at collection time and used as one of theroots of the traversal. (Otherwise, an object that islive may not be preserved by the garbage collector,or the pointer may simply not be updated appropri-

ately when the object is moved. Either event destroysthe integrity and consistency of data structures in theheap.)Ensuring that the collector can �nd pointers intoyoung generations requires the use of something likethe \write barrier" of an incremental collector|therunning program can't freely store pointers into heapobjects at will. Each potential pointer store mustbe accompanied by some extra bookkeeping, in casean intergenerational pointer is being created. As inan incremental collector, this is usually accomplishedby having the compiler emit a few extra instructionsalong with each store of a (possible) pointer value intoan object on the heap.The write barrier may do checking at each store,or it may be as simple as maintaining dirty bits andscanning dirty areas at collection time [Sha88, Sob88,WM89, Wil90, HMS92]. The important point is thatall references from old to new memorymust be locatedat collection time, and used as roots for the copyingtraversal.Using these intergenerational pointers as roots en-sures that all reachable objects in the younger gener-ation are actually reached by the collector; in the caseof a copying collector, it also ensures that all pointersto moved objects are appropriately updated.As in an incremental collector, this use of a writebarrier results in a conservative approximation of trueliveness; any pointers from old to new memory areused as roots, but not all of these roots are necessarilylive themselves. An object in old memorymay alreadyhave died, but that fact is unknown until the next timeold memory is collected. Thus some garbage objectsmay be preserved because they are referred to fromobjects that are oating (undetected) garbage. Thisappears not to be a problem in practice [Ung84, UJ88].It would also be possible to track all pointers fromnewer objects into older objects, allowing older objectsto be collected independently of newer ones. This ismore costly, however, because there are typicallymanymore pointers from new to old than from old to new.Such exibility is a consequence of the way referencesare typically created|by creating a new object thatrefers to other objects which already exist. Sometimesa pointer to a new object is installed in an old object,but this is considerably less common. This asymmetri-cal treatment allows object-creating code (like Lisp'sfrequently-used cons operation) to skip the record-ing of intergenerational pointers. Only non-initializingstores into objects must be checked for intergenera-tional references; writes that initialize objects in the34

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Second
Generation
Memory

First (New)
Generation
Memory

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Figure 11: Memory use in a generational copy collector with semispaces for each generation.35

youngest generation can't create pointers into youngerones.Even if young-to-old pointers are not recorded, itmay still be feasible to collect a generation withoutcollecting younger ones. In this case, all data in theyounger generations may be considered possible roots,and they may simply be scanned for pointers [LH83].While this scanning consumes time proportional to theamount of data in the younger generations, each gen-eration is usually considerably smaller than the next,and the cost may be small relative to the cost of ac-tually collecting the older generation. (Scanning thedata in the younger generation may be preferable tocollecting both generations, because scanning is gener-ally faster than tracing and copying; it may also havebetter locality.)The cost of recording intergenerational pointers istypically proportional to the rate of program execu-tion, i.e., it's not particularly tied to the rate of ob-ject creation. For some programs, it may be the majorcost of garbage collection, because several instructionsmust be executed for every potential pointer store intothe heap. This may slow program execution down byseveral percent.Within the framework of the generational strategywe've outlined, several important questions remain:� Advancement policy. How long must an objectsurvive in one generation before it is advanced tothe next?� Heap organization. How should storage space bedivided and used between generations, and withina generation? How does the resulting reuse pat-tern a�ect locality at the virtual memory level,and at the level of high-speed cache memories?� Collection scheduling. For a non-incremental col-lector, how might we avoid or mitigate the e�ectof disruptive pauses, especially in interactive ap-plications? Can we improve e�ciency by careful\opportunistic" scheduling? Can this be adaptedto incremental schemes to reduce oating gar-bage?� Intergenerational references. Since it must bepossible to collect younger generations withoutcollecting the older ones, we must be able to �ndthe live pointers from older generations into theones we're collecting. What is the best way to dothis?

4.2 Advancement PoliciesThe simplest advancement policy is to simply advanceall live data into the next generation whenever theyare traversed. This has an advantage of ease of imp-lementation, because it is not necessary to be able todistinguish between objects of di�erent ages within ageneration. In a copying collector, this allows the useof a single contiguous area for a generation, with nodivision into semispaces, and it does not require anyheader �elds to hold age information.An additional advantage of advancing everythingout of a generation at the �rst traversal is thatit avoids the buildup of long-lived objects within ageneration|a long-lived object cannot be copied re-peatedly at the same timescale, because it will bequickly advanced to the next older generation, whichis collected less often.The problem here is that objects may be advancedtoo fast|short-lived objects allocated shortly beforea collection will be advanced to the next generation,even though they are quite young and likely to diealmost immediately [Ung84, WM89]. This will causethe older generation to �ll up more quickly and becollected more often. The problem of very short-livedobjects may be alleviated by delaying the advance-ment of objects by just one garbage collection cycle;this ensures that all objects are roughly the same age(within a factor of two) when they are advanced toan older generation. (In an incremental generationalcollector, allocating black can have a similar e�ect ifincremental collection phases are of a su�cient dura-tion [WJ93].)It is unclear whether keeping objects within a gen-eration for more than two collection cycles is worththe extra copying cost. Under most conditions, it ap-pears that successive copies do not greatly reduce theamount of data advanced [WM89, Zor89], althoughthis is highly dependent on the nature of the applica-tion; it may also be desirable to vary the advancementpolicy dynamically [WM89, UJ88].The desirability of keeping data in a generation formultiple collection cycles is also a�ected by the num-ber and size of older generations. In general, if thereare very few generations (e.g., two, as in Ungar's Gen-eration Scavenging system), it is more desirable toretain data longer, to avoid �lling up older genera-tions. If intermediate generations are available, it isusually preferable to advance things more quickly, be-cause they are likely to die in an in-between genera-tion and never be advanced to the oldest generation[WM89, Zor89].36

4.3 Heap OrganizationA generational collector must treat objects of di�erentages di�erently. While tracing, it must be able totell which generation an object belongs to, in orderto decide whether to trace its o�spring, and whetherto advance it to another generation. The write barriermust also be able to determine objects' generations, todetect whether a pointer to a younger object is beingstored into an older object.In a copying collector, this is usually done by keep-ing objects of di�erent ages in di�erent areas of mem-ory. In many systems, these are contiguous areas; anobject's generation can therefore be determined bysimple address comparisons. In other systems, the\areas" may be noncontiguous sets of pages|an ob-ject's generation can be determined by using the pagenumber part of its address to index into a table thatsays which generation that page belongs to.In other systems, such as non-copying collectors,each object belongs to a generation, but objects ofdi�erent generations may be interspersed in memory.Typically, each object has a header �eld indicatingwhich generation it belongs to.4.3.1 Subareas in copying schemesGenerational copying collectors divide each genera-tions' space into several areas. For example, each gen-eration may consist of a pair of semispaces, so thatobjects can be copied back and forth from one spaceto another, to retain them within a generation overmultiple collections. (If only one space is used, objectsmust be advanced to another generation immediatelybecause there's nowhere to copy them to within thesame generation.)The locality of semispace memory usage is poor|only half of the memory of a generation can be in useat a given time, yet both of the spaces are touched intheir entirety every two collection cycles. Lisp ma-chine garbage collectors [Moo84, Cou88] avoid thisproblem by using only a single space per generation.Rather than copying objects from one semispace tothe other until they are advanced, garbage collectionof a generation advances all objects into the next gen-eration. This avoids the need for a pair of semispaces,except in the oldest generation, which has no place tocopy things to. Unfortunately, it has the drawbackthat relatively young objects may be advanced alongwith relatively old ones|objects allocated shortly be-fore a collection are not given much time to die beforebeing advanced. These relatively young objects are

likely to die shortly after being advanced, needlesslytaking up space in the next generation and forcing itto be collected again sooner.Ungar's solution to this problem in the Young gen-eration (of his Generation Scavenging collector) isto use three spaces instead of just two, with all ob-jects being initially allocated in the third space. Thenewly-created objects in this third space are copiedinto a semispace, along with the objects from theother semispace. The third space is emptied at ev-ery garbage collection cycle, and can therefore bereused immediately each time. It therefore has local-ity characteristics similar to those of a single-space-per-generation system. It might seem that this thirdspace would increase memory usage, since semispacesare still required in that generation so that objects canbe kept in the generation for multiple collections. Thecreation area is used in its entirety at each allocation-and-collection cycle, while each semispace is used tohold the survivors at every other collection cycle. Typ-ically only a small minority of new objects typicallysurvives even a �rst collection, so only a small part ofeach semispaces is actually used most of the time, andthe overall memory usage is lower.Wilson's Opportunistic Garbage Collector [WM89]uses a variation on this scheme, with the subareaswithin a generation used for the additional purposeof deciding when to advance an object from one gen-eration to another|objects are advanced out of thesemispaces to the next generation at each cycle, ratherthan being copied back and forth from one semispaceto the other at successive collections. In e�ect, thisis a simple \bucket brigade" advancement mechanism[Sha88], using the segregation of objects into subareasto encode their ages for the advancement policy. Itavoids the need for age �elds in object headers, whichmay be advantageous in some systems, where someobjects do not have headers at all.30 It does providea guarantee that objects will not be advanced out ofa generation without surviving for at least one (andup to two) collection cycles; this is su�cient to avoidpremature advancement of very short-lived data.In several generational copying collection systems,the oldest generation is treated specially. In the Lispmachine collectors, this is necessitated by the fact thatmost generations are emptied at every collection cycle,and their contents copied to the next generation|forthe oldest generation there isn't an older generation30For example, in some high-performanceLisp systems, a spe-cial pointer tag signi�es a pointer to a cons cell, and the conscell itself has no header.37

to copy things into. The oldest generation (\dynamicspace") is therefore structured as a pair of semispaces,which are used alternately. A further enhancement isto provide a special area, called \static space," whichis not garbage collected at all during normal operation.This area holds system data and compiled code thatare expected to change very rarely.Some copying collectors based on Ungar's Gener-ation Scavenging system treat the oldest generationspecially by structuring it as a single space and usinga mark-compact algorithm. In these systems, all gen-erations typically reside in RAM during normal execu-tion, and the use of a single space reduces the RAM re-quired to keep the oldest generation memory resident.While the mark-compact algorithm is more expensivethan a typical copy collection, the ability to performa full collection without paging makes it worthwhilefor the oldest generation. Non-copying techniques canbe used for the same purpose, although they are moresubject to fragmentation problems.4.3.2 Generations in Non-copying SchemesIn our discussion of generational collection thus far, wehave focused primarily on copying garbage collectionschemes, where generations can be viewed as \areas"of memory holding objects of di�erent ages. This isunnecessary, however, as long as it is possible to dis-tinguish objects of di�erent ages and treat them dif-ferently. Just as incremental collection algorithms arebest understood in terms of the abstraction of tricolormarking, generational algorithms are best understoodin terms of sets of objects which are garbage collectedat di�erent frequencies. (Each of these age sets, inturn, can be divided into shaded and unshaded setsfor the purposes of the tracing traversal.)The Xerox PARC PCR (Portable Common Run-time) garbage collector is a generational mark-sweepcollector, with a header �eld per object indicating theobject's age. Objects of di�erent generations may beallocated in the same page, although the system uses aheuristic to minimize this for locality reasons31. Whengarbage collecting only young data, the PCR collec-tor scans the root set and traverses objects whose age�elds signify that they are subject to collection. Thistracing continues transitively in the usual way, tracingall reachable young objects. The generational writebarrier uses pagewise dirty bits maintained by virtualmemory access protection techniques; as will be ex-31Pages containing old objects are not used to hold youngobjects unless they are more than half empty; this tends toavoid gratuitously mixing older and younger data.

plained in Sect. 4.4.3, pages of older generations dirt-ied since the previous collection are scanned in theirentirety, and any pointers to young generations arenoted and used as part of the root set.4.3.3 DiscussionMany variations on generational collection are possi-ble, and hybrids are common, to allow various trade-o�s to be adjusted.It is common for copying collectors to managelarge objects di�erently, storing them in a speciallarge object area and avoiding actually copying them[CWB86]. This essentially combines copying of smallobjects (where it's cheap) with mark-sweep for largeobjects, to avoid the larger space and time overheadsof copying them. (Commonly, large objects are actu-ally represented by a small copy-collected proxy ob-ject, which holds an indirection pointer to the actualstorage for the object's data �elds.)Objects known not to contain pointers may also besegregated from other objects, to optimize the tracingprocess and/or the scanning involved in some schemesfor tracking intergenerational pointers [Lee88]; thismay also improve locality of reference during tracingif copy-collected proxies are used, because the actualstorage for non-pointer objects needn't be touched atall.The ParcPlace Smalltalk-80 garbage collector com-bines stop-and-copy collection of the young generation(where the worst-case pause is not large) with incre-mental mark-sweep collection of older data.324.4 Tracking Intergenerational Refer-encesGenerational collectors must detect pointers fromolder to younger generations, requiring a write barriersimilar to that used by some incremental tracing algo-rithms. That is, a program cannot simply store poin-ters into heap objects|the compiler and/or hardwaremust ensure that each potential store is accompaniedby checking or recording operations, to ensure that ifany pointers to younger generations are created, theycan be found later by the collector. Typically, thecompiler emits additional instructions along with eachpotential pointer store instruction, to perform the re-quired write barrier operations.For many systems, this may be the largest costof generational garbage collection. For example, in32David Ungar, personal communication, 1992.38

a modern Lisp system with an optimizing compiler,pointer stores typically account for one percent orso of the total instruction count [SH87, Zor89]. Ifeach pointer store requires twenty instructions for thewrite barrier, performance will be degraded by roughlytwenty percent. Optimizing the write barrier is there-fore very important to overall garbage collector per-formance, and signi�cantly faster write barriers havebeen developed. Because of their key role in the overallperformance of a generational collector, we will discusswrite barriers in some detail.Many write barrier techniques have been used, withdi�erent performance tradeo�s on di�erent hardware,and for di�erent languages and language implementa-tion strategies.Some systems use a collection strategy that is \al-most generational" but without using a write barrier,to get some of the bene�t of generational collection.Rather than keeping track of pointers from old datato young data as they are created, old data are sim-ply scanned for such pointers at collection time. Thisrequires more scanning work, and has worse local-ity than true generational collection, but it may beconsiderably faster than tracing all reachable data.(Scanning is typically several times faster than trac-ing, and has strong spatial locality of reference.) The\Strati�ed Garbage Collector" for Austin Kyoto Com-mon Lisp (an enhancement of Kyoto Common Lisp)uses such a scheme to avoid the overhead of a writebarrier.33 Bartlett has used a similar technique in acollector designed to work with o�-the-shelf compilerswhich do not emit write barrier instructions [Bar89].4.4.1 Indirection TablesThe original generational collectors for Lisp Machines[LH83] used specialized hardware and/or microcodeto speed up the checks for pointers into younger gen-erations, and the pointers that were found were in-directed (by a microcoded routine) through an entrytable. No pointers directly into a younger generationwere allowed, only pointers to a table entry holdingthe actual pointer. Each generation had its own entrytable holding the actual pointers to objects. When themutator executed a store instruction, and attemptedto create a pointer into a younger generation, the storeinstruction trapped to microcode. Rather than actu-ally creating a pointer directly into the younger gen-eration, an invisible forwarding pointer was createdand stored instead. The Lisp Machine hardware and33William Schelter, personal communication 1991.

microcode detected and dereferenced the forwardingpointers automatically, making the indirections invis-ible to running programs.When garbage collecting a particular generation, itwas therefore only necessary to use the entry table asan additional set of roots, rather than actually �ndingthe pointers in other generations and updating them.A somewhat di�erent scheme was used in the TI Ex-plorer system; rather than having a table of incomingpointers per generation, a separate table of outgoingpointers was maintained for each combination of olderand younger generation. (So, for example, the oldestgeneration had a separate exit table for each youngergeneration, holding its indirected pointers into eachof those generations.) This allowed the scanning oftables to be more precise (i.e., only scanning the poin-ters relevant to the generations being collected), andmade it simpler to garbage collect the table entriesthemselves.Unfortunately, the indirection table schemes werenot fast or e�cient, especially on stock hardware withno support for transparently dereferencing forwardedpointers. (As with Baker-style incremental copying,the cost of common pointer operations is greatly in-creased if pointers must be checked for indirections.)Recent generational collectors have therefore avoidedindirections, and allowed pointers directly from anygeneration into any other. Rather than requiring suchpointers to be localized, they simply keep track ofwhere such pointers are, so that they can be found atcollection time. We refer to such schemes as pointerrecording schemes, because they simply record the lo-cation of pointers.4.4.2 Ungar's Remembered SetsUngar's Generation Scavenging collector used an ob-jectwise pointer-recording scheme, recording whichobjects had pointers to younger generations storedinto them. At each potential pointer store, the writebarrier would check to see if an intergenerationalpointer was being created|by checking to see if thestored value was in fact a pointer, pointed into theyoung generation, and was being stored into an ob-ject in the old generation. If so, the stored-into objectwas added to the remembered set of objects holdingsuch pointers, if it was not already there. (Each objecthad a bit in its header saying whether it was already inthe remembered set, so that duplicate entries could beavoided. This makes the collection-time scanning costdependent on the number and size of the stored-intoobjects, not the actual number of store operations.)39

In the usual case, this scheme worked quite wellfor a Smalltalk virtual machine. Unfortunately, inthe worst case, this checking and recording incurredtens of instructions at a pointer store, and the relativecost would have been appreciably higher in a higher-performance language implementation.A signi�cant drawback of this scheme was that theremembered set of objects must be scanned in its en-tirety at the next garbage collection, which could beexpensive for two reasons. Some of the checking costwas repeated, because a stored-into location mightbe stored into many times between collections, beingchecked each time, and because stored-into objectshad to be scanned again at collection time. Worse,very large objects might be stored into regularly, andhave to be scanned in their entirety at each collec-tion. (The latter was observed to cause large amountsof scanning work|and even thrashing|for some pro-grams running in Tektronix Smalltalk.34)4.4.3 Page MarkingMoon's Ephemeral Garbage Collector for Symbol-ics Lisp machines used a di�erent pointer-recordingscheme [Moo84]. Rather than recording which ob-jects had intergenerational pointers stored into them,it recorded which virtual memory pages were storedinto. The use of the page as the granularity of record-ing avoided the problem of scanning very large ob-jects, although it increased costs for sparse writes tosmall objects, because the entire page would still bescanned. The scanning cost was not large on the Sym-bolics hardware, because it had special tag supportto make generation checking very fast, and becausepages were fairly small. Much of the write-barrier wasalso implemented directly in hardware (rather thanby additional instructions accompanying each pointerwrite), so the time cost at each pointer store was small.In this system, the information about pointers intoyounger generations is held in a pagewise table. (Thishas the advantage that the table implicitly eliminatesduplicates|a page may be stored into any number oftimes, and the same bit set in the table, but the pagewill only be scanned once at the next garbage collec-tion. This duplicate elimination is equivalent to Un-gar's use of bits in object headers to ensure uniquenessof entries in the remembered set. The time requiredto scan the recorded items at a garbage collection istherefore proportional to the number of stored-intopages, and to the page size, but not the number of34Patrick Caudill, personal communication 1988.

actual store operations.)Unfortunately, this scheme would be considerablyslower if implemented on stock hardware, with largerpages and no dedicated hardware for page scanning orwrite checking. It also requires the ability to scan anarbitrary stored-into page from the beginning, whichis more complicated on standard hardware than on theSymbolics machines, in which every machine word hadextra bits holding a type tag.More recently, virtual memory dirty bits have beenused as a coarse write barrier [Sha88]. The underlyingvirtual memory system typically maintains a bit perpage that indicates whether the page has been dirtied(changed in any way) since it was last written out todisk. Most of the work done to maintain these bitsis done in dedicated memory hardware, so from thepoint of view of the language implementor, it is free.Unfortunately, most operating systems do not providefacilities for examining dirty bits, so operating systemkernel modi�cations are required. Alternatively, vir-tual memory protection facilities can be used to simu-late dirty bits, by write-protecting pages so that writesto them can be detected by the hardware and invokea trap handler [BDS91]; this technique is used in theXerox Portable Common Runtime garbage collector.The trap handler simply records that the page hasbeen written to since the last garbage collection, andun-protects the page so that program execution canresume. (In the PCR collector, objects of di�erentgenerations may reside in the same page, so when adirtied page is scanned at collection time, objects of ir-relevant generations are skipped.) As with the Appel,Ellis, and Li collector, the use of virtual memory pro-tections makes it impossible to satisfy hard real-timerequirements, and may incur signi�cant trap overhead;scanning costs may also be relatively high if write lo-cality is poor. As we will explain in Sect. 6.2, however,this kind of write barrier has advantages when deal-ing with compilers that are uncooperative and do notemit write barrier instructions.4.4.4 Word markingIn adapting Moon's collector for standard hardware,Sobalvarro avoided the cost of scanning large pages bythe use of a word marking system, which used a bitmapto record which particular machine words of memoryactually had pointers stored into them [Sob88]. Thisavoided the need to be able to scan an arbitrary pagefor pointers, because the locations of the relevant poin-ters were stored exactly.Sobalvarro also optimized the scheme for standard40

hardware by making the write barrier simpler|mostwrite-barrier checking was eliminated, and deferreduntil collection time. The stored-into locations arechecked at collection time to see whether the storeditems are intergenerational pointers. While this is lessprecise than Moon's or Ungar's checking, and maycause more words to be examined at collection time,it also has the bene�t that implicit duplicate elimina-tion is performed �rst, and the other checks only needto be performed once per stored-into word.The drawback of Sobalvarro's scheme is that for areasonably large heap, the table of bits is fairly large,about three percent of the total size of memory. Scan-ning this table would be relatively expensive if it wererepresented as a simple linear array of bits. (Stor-ing individual bits would also make the write bar-rier expensive on some architectures, where sub-wordwrite instructions are slow, or must be synthesized us-ing several other instructions.) Sobalvarro's solutionto this was to use a sparse (two-level) representationof the table; this incurred an additional write-barriercost, because operations on the sparse array are signif-icantly slower than operations on a contiguous array.4.4.5 Card MarkingAn alternative to marking pages or words is to con-ceptually divide memory into intermediate-sized unitscalled cards [Sob88]. The use of relatively small cardshas the advantage that a single store operation canonly cause a small amount of scanning at collectiontime, making the cost smaller than page-marking onaverage. As long as the cards aren't extremely small,the table used for recording stored-into cards is muchsmaller than the corresponding table for word mark-ing. For most systems, this makes it feasible to rep-resent the table as a contiguous linear array, keepingthe write barrier fast.One problem of using card marking on standardhardware is that it requires that cards be scannedfor pointers, even if the card does not begin with thebeginning of an object. Wilson's Opportunistic Gar-bage Collector addresses this by maintaining a cross-ing map, recording which cards begin with an un-scannable part of an object [WM89]. In the case of acard that's not scannable from the beginning, the mapcan be used to �nd a previous card that is scannable,locate an object header on that card, and skip forwardobject by object until it �nds the headers of the ob-jects on the card to be scanned. (This is a re�nementof the crossing maps used by Appel Ellis and Li tosupport pagewise scanning in their incremental copy-

ing collector [AEL88]). In Wilson's scheme, the bitcorresponding to a card is left set if the card containsa pointer into a younger generation. Such cards mustbe scanned again at the next garbage collection, evenif they are not stored into again.Ungar, Chambers, and H�olzle have further re�nedthis card-marking scheme in a garbage collector forthe Self language. Rather than using a table of bitsto record stored-into cards, it uses a table of bytes|even though only a bit is needed, a byte is used be-cause byte stores are fast on most architectures. Thisallows the write barrier to consist of only three instruc-tions, which unconditionally store a byte into a bytearray. This comes at an increase in scanning costs,because the byte array is eight times larger than abit array, but for most systems the decrease in write-barrier cost is well worth it [Cha92, DMH92]. H�olzlehas further re�ned this by relaxing the precision of thewrite barrier's recording, bringing the cost per storedown to two instructions (on a Sun SPARC proces-sor) with a slight increase in scanning costs [H�93]. (Aswe will explain in the next section, card marking canalso be combined with store lists to reduce scanningof cards which hold pointers into younger generations,but aren't stored into again.)4.4.6 Store ListsThe simplest approach to pointer recording is simplyto record each stored-into address in a list of somesort. This might be a linked list, or a pre-allocatedarray that has successive locations stored into, muchlike pushing items on a linear-array stack.Appel's very simple (500 lines of C code) gen-erational collector for Standard ML of New Jersey[App89b] uses such a list, which is simply scanned ateach collection, with good performance for typical MLprograms.Simple store lists have a disadvantage for manylanguage implementations, however, in that they im-plement bags (multisets) of stored-into locations, notsets. That is, the same location may appear in the listmany times if it is frequently stored into, and the gar-bage collector must examine each of those entries atcollection time. The collection-time cost is thereforeproportional to the number of pointer stores, ratherthan to the number of stored-into locations. Thislack of duplicate elimination can also lead to exces-sive space usage if pointer stores are very frequent.(For ML, this is generally not a problem, because sidee�ects are used relatively infrequently.)Moss et al. have devised a variation of the store list41

technique which allows a bounded number of entriesin a special kind of list called a static store bu�er, andcalls a special routine when this bu�er is full. The spe-cial routine processes the list, using a fast hash tableto remove duplicates. This technique [HMS92]reducesspace costs, and avoids doing all of the store-list pro-cessing at garbage collection time, but it does not havethe same duplicate elimination advantage as the table-based schemes|duplicates are eliminated, but onlyafter they've already been put in the store list. Eachpointer store creates an entry in the store list, whichmust be fetched and examined later.35Hosking and Hudson [HH93] have combined someof the best features of card marking and storelists. Pointer stores are recorded by a card-markingwrite barrier in the usual way, but when a cardis scanned, the individual locations containing poin-ters into younger generations are recorded. This al-lows subsequent collections to avoid re-scanning wholecards if they are not stored into again.4.4.7 DiscussionIn choosing a write barrier strategy for a generationalcollector, it is important to take into account interac-tions with other aspects of the system's implementa-tion. For example, the Xerox PARC \mostly-parallel"collector uses virtual memory techniques (to imple-ment pagewise dirty bits) partly because it is designedto work with a variety of compilers which may not co-operate in the implementation of the write barrier|e.g., o�-the-shelf C compilers do not emit write-barrierinstructions along with each pointer store. In othersystems, especially systems with static type systemsand/or type inference capabilities, the compiler cansigni�cantly reduce the cost of the write barrier, byomitting the write barrier checks that can be donestatically by the compiler.Another issue is whether real-time response is re-quired. Table-based schemes such as page markingand card marking may make it di�cult to scan therecorded pointers incrementally in real-time. Storelists are easier to process in real time; in fact, the workdone for the write barrier may be similar to the workdone for an incremental update tracing technique, al-lowing some of the costs to be optimized away [WJ93]by combining the two write barriers.35Ungar's technique of using ag bits (to signify whether anobject is already in a set) could conceivably be used, but itis probably not worthwhile to use a bit per memory word, asopposed to a bit per object header, unless there is hardwaresupport to make it fast.

The actual cost of write barriers is somewhat con-troversial. Several studies have measured write bar-rier overheads for interpreted systems (e.g., [Ung84,HMS92]), making them hard to relate to high-performance systems using optimizing compilers[Moo84, H�93]. It may be more reasonable to combinemeasurements of high-performance systems with ananalytic understanding of garbage collector costs, toinfer what the approximate cost of a well-implementedcollector would be for a well-implemented systems.As mentioned earlier, compiled Lisp systems appearto execute roughly one pointer store into a heap ob-ject per hundred instructions; a card-marking writebarrier should only slow such a system down by aboutfour or �ve percent, executing two or three instruc-tions at the time of each pointer store, plus a smallercard-scanning cost at each collection. For many pro-grams (with little live data, or lifetime distributionsfavorable to generational collection), the tracing andreclamation cost will be similarly low, and the cost ofgarbage collection should be under ten percent.This �gure can vary considerably, however|and of-ten upward|based on the workload, type informa-tion in the programming language, data representa-tions, and optimizations used by the compiler. (Sev-eral implementation choices will be considered in latersections.)If a compiler generates faster code, the write bar-rier cost may become a larger fraction of the (smaller)overall running time. On the other hand, the compilermay also be able to reduce write barrier costs by infer-ring that some pointer recording is redundant, or thatsome dynamically-typed values will never be pointers(Sect. 6.4.3).Unfortunately, the cost of write barriers in conven-tional imperative statically-typed systems is poorlyunderstood. Static type systems generally distinguishpointer and nonpointer types, which may help thecompiler, but type declarations may improve otherareas of the system's performance even more, mak-ing the relative performance of the garbage collectorworse. On the other hand, conventional statically-and strongly-typed languages often have lower overallrates of heap object allocation and mutation, reducingboth the write barrier and tracing costs as a fractionof overall program running time.Programming style can also have a signi�cant im-pact on write-barrier costs. In many languages de-signed for use with garbage collection, allocation rou-tines are primitives which take values as arguments,and initialize �elds of objects. In other languages,42

the programmer may be expected to initialize a newobjects' �elds explicitly. In the former case, the lan-guage implementation can omit the write barrier forinitializing writes to pointer �elds, but in the latterit generally cannot. It is not clear whether this is aproblem; programs in such languages may typicallyhave lower rates of heap allocation and fewer pointer�elds in objects.4.5 The Generational Principle Revis-itedGenerational garbage collectors exploit the factthat heap-allocated objects are typically short-lived.Longer-lived objects are collected less often, on theassumption that the minority objects which live for asigni�cant period are likely to live a while longer still.This simple idea is widespread, but it is not obviousthat it is true in any strong sense [Hay91, Bak93a]; it isalso unclear that it must be true to make generationalcollection worthwhile in practice.Consider a system in which this property does nothold|i.e., the probability that an object will die ata particular moment is not correlated with its age.Lifetimes distributions in such a system may still beheavily skewed toward short-lived objects. A simpleexample of such a system is one with a random expo-nential decay property, where a �xed fraction of theobjects die in a �xed period of time, much like the\half-life" property of radioactive isotopes.In such a system, the lifetime distribution may ap-pear ideally suited to generational collection, becauseyoung objects die young. On closer examination, how-ever, it turns out that picking any subset of the ob-jects will yield an equal proportion of live and deadobjects over a given period of time. In that case, anyadvantage of generational collection would be due torestricting the scope of collection, not to a higher mor-tality rate among the objects subject to collection.This analogy appears to undermine the notion thatgenerational collection is a good idea, but in fact itmay not. Even under an exponential decay model,generational collection may improve locality, despitethe fact that it won't directly improve algorithmice�ciency|reclaiming and reusing recently-allocatedspace improves locality, compared to reusing memorythat has been idle for a signi�cant period. Travers-ing live objects is likely to be cheaper if the objectswere allocated|hence touched|recently; reclaimingand reusing space of garbage objects is also likely tobe cheaper because that space will have been touched

recently as well.4.6 Pitfalls of Generational CollectionGenerational collection attempts to improve perfor-mance heuristically, taking advantage of characteris-tics of typical programs; naturally, this cannot be suc-cessful for all programs. For some programs genera-tional collection will fail to improve performance, andmay decrease it.4.6.1 The \Pig in the Snake" ProblemOne problematic kind of data for generational collec-tion is a cluster of relatively long-lived objects, whichare created at about the same time and persist fora signi�cant period. This often occurs because datastructures are built during one phase of execution,then traversed during subsequent phases of execution,and become garbage all at once (e.g., when the rootof a large tree becomes garbage). This kind of datastructure will be copied repeatedly, until the advance-ment policy succeeds in advancing it to a generationlarge enough to hold the whole cluster of related dataobjects. This increases traversal costs �rst in theyoungest generation, then in the next generation, andso on, like the bulge in a snake advancing along thesnake's body after a large meal.36 Until the bulge isadvanced to a generation that will hold it until it dies,the collector's age heuristic will fail and cause addi-tional tracing work.The pig-in-the-snake problem therefore favors theuse of relatively rapid advancement from one genera-tion to the next, which must be balanced against thedisadvantage of advancing too much data and forcingthe next generation to be collected more often thannecessary. Ungar and Jackson vary the advancementpolicy dynamically in an attempt to advance largeclusters of data out of the youngest generation beforethey incur too much copying cost; this appears to workwell for most programs, but may cause the older gen-eration to �ll rapidly in some cases. Wilson advocatesthe use of more generations to alleviate this problem,along with careful \opportunistic" scheduling of gar-bage collections in an attempt to collect when littledata is live [WM89]. Hayes's \key object" opportu-nism re�nes this by using changes in the root set to36Incidentally, this term was inspired by a similar descrip-tion of the baby boom generation's use of resources throughits life cycle|�rst requiring more kindergartens, then elemen-tary schools, and so on, and ultimately causing an increase indemand for retirement homes and funeral directors. (Jon L.White, personal communication 1989.)43

inuence garbage collection policy [Hay91]. (Thesetechniques appear to be bene�cial but more experi-mentation is needed in larger systems.)4.6.2 Small Heap-allocated ObjectsOne of the assumptions behind the generationalheuristic is that there will be few pointers from old ob-jects to young ones; some programs may violate thisassumption, however. One example is programs thatuse large arrays of pointers to small, heap-allocatedoating point numbers. In many dynamically-typedsystems, oating point numbers do not �t in a ma-chine word, and in the general case must be repre-sented as tagged pointers to heap-allocated objects.Updating the values in an array of oating point num-bers may actually cause new oating point objects tobe allocated, and pointers to them to be installed inthe array. If the array is large and not short-lived,it is likely to reside in an older generation, and eachupdate of a oating point value will create a youngobject and an intergenerational pointer. If a largenumber of elements of the array are updated (e.g.,by a sequential pass through the whole array), eachoating point number object is likely to live a sig-ni�cant period of time|long enough to be traced byseveral youngest-generation collections, and advancedto an older generation. Thus these large numbers ofintermediate-lifetime number objects will cause con-siderable overhead, both in the write barrier and intracing. (In the case of systems using Ungar's originalremembered set scheme, the remembered set scanningcosts may be very large if large objects hold intergen-erational pointers.)To avoid these costs, two approaches are common|the use of short oating-point formats which can berepresented as tagged immediate values, and the use ofarrays with typed �elds, which can contain raw oat-ing point values rather than pointers to heap-allocatedobjects.The problem with short oating point values is thatthey may not have the desired numerical characteris-tics. In the �rst place, numbers short enough to �t ina machine word may not have su�cient precision forsome applications. In addition, some bits must be sac-ri�ced for the tag �eld, further reducing the precisionor the range of the number. The simplest scheme isto sacri�ce bits of precision by removing bits from themantissa, but this has the problem that the resultingnumber does not map well onto typical oating-pointhardware, which has very carefully designed precisionand rounding characteristics. (Without the expected

rounding properties, some algorithms may computeincorrect answers, or even fail to terminate. Simulat-ing these characteristics in software is extremely ex-pensive.) The alternative is to sacri�ce bits from theexponent part of the hardware-supported format, andrestrict the range of numbers that can be represented.This introduces several instructions extra overheadin converting between the hardware-supported formatand the tagged format [Wil90, Cha92].Using arrays with typed �elds introduce irregulari-ties into dynamically-typed systems (e.g., most arrayscan hold any kind of data, but some can't), but thisstrategy is easy to implement e�ciently, and is fre-quently used in Lisp systems.Unfortunately, neither of these solutions �xes theproblem in the general case, because oating pointnumbers are not the only possible data type that cancause this problem. Consider complex numbers, or 3Dpoint objects: it's unlikely that such objects are goingto be crammed into a machine word. Similarly, theproblem doesn't only occur with arrays|any aggre-gate data structure (such as a binary tree) can exhibitthe same problem. In such cases, the programmermaychoose to use a di�erent representation (e.g., parallelarrays of real and imaginary components, rather thanan array of complex numbers) to avoid unnecessarygarbage collection overhead.4.6.3 Large Root SetsAnother potential problem with generational collec-tion is the handling of root sets. (This is essentiallythe same problem that occurs for incremental collec-tion.) Generational techniques reduce the scope oftracing work at most collections, but that does not initself reduce the number of roots that must be scannedat each collection. If the youngest generation is smalland frequently collected, and global variables and thestack are scanned each time, that may be a signi�cantcost of garbage collection in large systems. (Large sys-tems may have tens of thousands of global or modulevariables.)An alternative is to consider fewer things to be partof the usual root set, and treat most variables like heapobjects, with a write barrier. Stores into such objectsthat may create pointers into young generations arethen recorded in the usual way, so that the pointerscan be found at collection time. The problem withthis approach is that it may signi�cantly increase thecost of stores into local variables. (This cost can bereduced if the compiler can determine types at compiletime, and omit the write barrier code for nonpointer44

writes.)Treatment of local variables is more complicatedin languages that support closures|procedures whichcan capture local variable binding environments, forc-ing local variables to be allocated on the garbagecollected heap, rather than a stack. If all variablebindings are allocated on the heap, this requires thatpointer stores into local variables use a write barrier;this may signi�cantly increase write barrier costs formany programs, where side-e�ects to local variablesare relatively common. For such systems, it is desir-able to have compiler optimizations which avoid theheap allocation of local variables that are never ref-erenced from closures and hence can be allocated ona stack or in registers. (Such techniques are valuablein themselves for improving the speed of code operat-ing on those variables [Kra88], as well as for reducingoverall heap allocation.)In most application programs, root set scanningtime is negligible, because there are only a few thou-sand global or module variables. In large, integratedprogramming environments, however, this root setmay be very large; to avoid large amounts of scan-ning at every garbage collection, it may be desirableto use a write barrier for some variables, so that onlythe stored-into variables are actually scanned at col-lection time. It is easy to imagine a large integrateddevelopment system which uses a write barrier formost variables, but which can also generate stripped-down standalone application code for which the rootset is scanned atomically to avoid the write-barriercost when programs are distributed.4.7 Real-time Generational CollectionGenerational collection can be combined with incre-mental techniques, but the marriage is not a particu-larly happy one [WJ93]. Typically, real-time garbagecollection is oriented toward providing absolute worst-case guarantees, while generational techniques im-prove expected performance at the expense of worst-case performance. If the generational heuristic fails,and most data are long-lived, garbage collecting theyoung generation(s) will be a waste of e�ort, becauseno space will be reclaimed. In that case, the full-scalegarbage collection must proceed just as fast as if thecollector were a simple, non-generational incrementalscheme.Real-time generational collection may still be desir-able for many applications, however, provided that theprogrammer can supply guarantees about object life-times, to ensure that the generational scheme will be

e�ective. Alternatively, the programmer may supplyweaker \assurances," at the risk of a failure to meet areal-time deadline if an assurance is wrong. The for-mer reasoning is necessary for mission-critical hard-real time systems, and it is necessarily application-speci�c. The latter \near-real-time" approach is suit-able for many other applications such as typical inter-active audio and video control programs, where thepossibility of a reduction in responsiveness is not fa-tal.When it is desirable to combine generational and in-cremental techniques, the details of the generationalscheme may be important to enabling proper incre-mental performance. For example, the (Symbolics,LMI, and TI) Lisp machines' collectors are the best-known \real-time" generational systems, but the in-teractions between their generational and incrementalfeatures turn out to have a major e�ect their worst-case performance.Rather than garbage collecting older generationsslowly over the course of several collections of youngergenerations, only one garbage collection is ongoingat any time, and that collection collects only theyoungest generation, or the youngest two, or or theyoungest three, etc. That is, when an older genera-tion is collected, it and all younger generations are ef-fectively regarded as a single generation, and garbagecollected together. This makes it impossible to bene-�t from younger generations' generational e�ect whilegarbage collecting older generations; in the case of afull garbage collection, it e�ectively degenerates into asimple non-generational incremental copying scheme.During such large-scale collections, the collectormust operate fast enough to �nish tracing beforethe available free space is exhausted|there are noyounger generations that can reclaim space and re-duce the safe tracing rate. Alternatively, the collectionspeed can be kept the same, but space requirementswill be much larger during large scale collections. Forprograms with a signi�cant amount of long-lived data,therefore, this scheme can be expected to have system-atic and periodic performance losses, even if the pro-gram has an object lifetime distribution favorable togenerational collection, and the programmer can pro-vide the appropriate guarantees or assurances to thecollector. Either the collector must operate at a muchhigher speed during full collections, or memory usagewill go up dramatically. The former typically causesmajor performance degradation because the collectoruses most of the CPU cycles; the latter either requiresvery large amounts of memory|negating the advan-45

tage of generational collection|or incurs performancedegradation due to virtual memory paging.5 Locality ConsiderationsGarbage collection strategies have a major e�ect onthe way memory is used and reused; naturally, thishas a signi�cant e�ect on locality of reference.5.1 Varieties of Locality E�ectsThe locality e�ects of garbage collection can beroughly divided into three classes:� E�ects on programming style which change theway data structures are created and manipulated� Direct e�ects of the garbage collection process it-self, and� Indirect e�ects of garbage collection, especiallypatterns of reallocation of free memory and clus-tering of live data.The �rst of these|e�ects of programming style|is poorly understood. In systems with an e�cientgarbage collector, programmers are likely to adopta programming style that is appropriate to the taskat hand, often an object-oriented or functional ap-proach. New data objects will be dynamically allo-cated to hold newly computed data, and the objectswill be discarded when the data are no longer interest-ing. Ideally, the programmer expresses the computa-tion in the most natural form, with application-leveldata mapping fairly directly onto language-level dataobjects.In contrast, explicit allocation and deallocation of-ten encourage a distorted programming style wherethe programmer reuses language-level objects to rep-resent conceptually distinct data over time, simply be-cause it's too expensive to deallocate an object andreallocate another one. Similarly, in systems with in-e�cient garbage collection (such as many older Lispimplementations) programmers often resort to similarlanguage-level object reuse, for example destructivelyside-e�ecting list structures to avoid allocating newlist elements, or allocating a single large array used tohold several sets of data over time. Explicit dealloca-tion often leads to distortions of the opposite variety,as well|mapping a single conceptual data object ontomultiple language-level objects. Programmers may al-locate many extra objects to simplify explicit dealloca-tion. Any module interested in a data structure may

copy the data structure, so that it can make a local de-cision as to when its memory can be reclaimed. Suchdistortions make it extremely di�cult to compare thelocality of garbage collected and non-garbage-collectedsystems directly. (Typical studies that attempt to doso compare use programs written without garbage col-lection in mind, in both their original form and withexplicit deallocation replaced by garbage collection.This implicitly hides the e�ects of distorted program-ming style, because the garbage collected version ofthe program inherits the distortions.)The second category of locality e�ects|locality ofthe garbage collection process itself|is the one thatusually comes immediately to mind. It is sometimesquite signi�cant, although it may be the least impor-tant of the three. For a full garbage collection, alllive data must be traced, and this can interact verypoorly with conventional memory hierarchies. Mostlive objects will be touched only once during tracing,so there will be little temporal locality, i.e., few re-peated touches to the same data over a short periodof time. On the other hand, there may be considerablespatial locality|touches to several di�erent nearby ar-eas of memory (e.g., within the same virtual memorypage) over short periods of time.The third category of e�ects is probably the mostimportant, although its signi�cance is not widely ap-preciated. The strategy for memory reallocation im-poses locality characteristics on the way memory istouched repeatedly, even if the objects themselves diequickly and are therefore never touched again. This is,of course, one of the main reasons for generational gar-bage collection|to reuse a small area of memory (theyoungest generation) repeatedly by allocating manyshort-lived objects there. It is also the reason thatactivation stacks typically have excellent locality ofreference|near the top of the stack, memory is reusedvery frequently by allocating many very short-livedactivation records there. (A generational garbage col-lector can be seen as imposing a roughly stack-likememory reuse pattern on a heap, by exploiting thefact that the lifetime distributions are roughly simi-lar.)As we pointed out earlier, a simple, non-generational garbage collector has very poor localityif allocation rates are high, simply because too muchmemory is touched in any reasonable period of time.As Ungar has pointed out [Ung84], simply paging outthe resulting garbage (to make room in memory fornew data) would typically be an unacceptable costin a high-performance system. A generational gar-46

bage collector restricts the scope of this locality dis-aster to a manageable area|the youngest generationor two. This allows the \real" locality characteris-tics (of repeated access to longer-lived data) to showup in the older generation(s). Because of this e�ect,the overall locality characteristics of garbage collectedsystems appear to be roughly comparable to that ofnon-garbage collected systems|the youngest genera-tion �lters out most of the heap-allocated data thatmight be stack-allocated in other languages.Direct comparisons are di�cult, however, becauseof the large number of design choices involved in bothgarbage collectors and explicit heap management.With copying garbage collection, there is obviouslyanother indirect locality e�ect|by moving data ob-jects around in memory, the collector a�ects the local-ity of the program's own accesses|that is, it a�ectsthe mapping between a program's logical referencesto language-level data and the resulting references toparticular memory locations.This kind of e�ect is not restricted to copying col-lection. Noncopying collectors also have considerablelatitude in deciding how to map language-level objectsonto the available free memory. When the programrequests a piece of memory of a given size, the allo-cator is free to return any suitably-sized piece of freememory. It is unclear what rules should govern thisdecision.37The importance of di�erent locality e�ects is, nat-urally, dependent on the relative size of the data usedby a system and the main memory of the hardwareit runs on. For many systems, the full system heap�ts in main memory, including an editor, a browser,a compiler, and application code and data; the nor-mal mode of such systems is to have enough RAMthat programs typically do not page at all. In othersystems, however, the oldest generation or two is toolarge to �t in typical main memories, either becausethe system itself includes large complex software, orbecause application data or code are very large.In a copying collector, there is therefore a binarydistinction between generations that are e�ectivelymemory-resident and those that are so large they musttruly rely on virtual memory caching. For the former,which may include the whole system, locality of alloca-tion and collection are essentially irrelevant to virtualmemory performance|the space cost is the �xed cost37This occurs in explicit heapmanagement systems as well, ofcourse, but it has not been systematically studied there either.Most studies of explicit techniques have studied fragmentationand CPU costs, but have ignored e�ects on caching in hierar-chical memories.

of keeping everything in RAM. For the latter, in con-trast, locality at the level of virtual memory may becrucial.In a nonmoving collector, the situation is some-what di�erent|the space cost of the youngest gen-eration also depends on the degree of fragmentationand how data from various generations are intermin-gled in memory. The extent of these problems is notwell understood, but they may be less serious than iswidely believed [Hay91, BZ93, Boe93].5.2 Locality of Allocation and Short-lived objectsAs noted above, the pattern of allocation often hasthe most important e�ect on locality in a simple col-lector. In a generational copy collector, this e�ectis much reduced from the point of view of virtualmemory|the pages that make up the youngest gener-ation or two are reused so frequently that they simplystay in RAM and e�ectively incur a �xed space cost.On the other hand, the frequent reuse of the wholeyoungest generation may have a deleterious e�ect onthe next smaller level of the memory hierarchy|high-speed CPU caches. The cycle of memory reuse hasbeen made much smaller, but if the cycle does not �tin cache, the cache will su�er extra misses in much thesame way that main memory does for a simple collec-tor. The e�ects of such misses are not as dramatic asthose for virtual memory, however, because the ratioof cache to main memory speeds is not nearly as largeas the ratio of main memory to disk speeds. Also, incopying collection at least, the pattern of reallocationis so strongly sequential that misses can be reducedconsiderably by simple prefetching strategies, or evenjust the use of large block sizes. On current processors,the cost appears to be no more than a few percent ofoverall run time, even when allocation rates are rela-tively high. Faster processors may su�er more fromthis e�ects, however, if cache-to-memory bandwidthsdo not scale with processor speeds, or if bus bandwidthis at a premium as in shared-bus multiprocessors.Zorn has shown that relatively large caches can bequite e�ective for generationally garbage-collected sys-tems [Zor89]. Wilson has shown that the relative sizesof the cache and the youngest generation are especiallyimportant, the particulars of the cache replacementpolicy may be important as well, due to peculiaritiesin the access patterns due to reallocation [WLM92].3838The e�ect of associativity is very dependent of the ratio ofcache size to youngest generation size, and lower associativities47

Several researchers have suggested optimizations toavoid the fetching of garbage data in areas about tobe re-allocated; this can cut cache-to-memory band-width requirements nearly in half. Koopman et al.�rst illustrated this in a functional programming lan-guage implementation based on combinator reduction[KLS92], and showed that some conventional cachedesigns can achieve this e�ect.39 Tarditi and Diwanshow that the same e�ect can be achieved in a moreconventional language implementation using genera-tional garbage collection, and demonstrate the valueof a cache-to-memory interface supporting high writerates [DTM93].The di�erence in locality between moving and non-moving collectors does not appear to be large at thescale of high-speed cache memories|the type of col-lector is not as important as rate of allocation and thesize of the youngest generation, i.e., how quickly mem-ory is used, reclaimed and reused in the usual case.[Zor90] shows that a non-copying collector can havebetter locality than a copying collector using semi-spaces, simply because it only needs a single spaceper generation; [WLM92] shows that Ungar's tech-nique of using a special creation area can yield similarbene�ts at the level of large caches, just as it doesat the level of virtual memory. [WLM92] also showsthat the allocation of variable binding environmentsand activation records on the heap can greatly exac-erbate cache-level locality problems due to a youngestgeneration that won't �t in the cache. This is borneout by simulation studies of Standard ML of New Jer-sey [DTM93] on high-performance processors. It sug-gests that activation information and binding environ-ments should be allocated on a stack using compiletime analysis [KKR+86] or in a software stack cache[CHO88, WM89, Kel93]. (Software stack caches canbe used in languages like ML and Scheme, where bind-ing environments may be captured by �rst-class proce-dures and/or activation chains may be captured with�rst-class continuations. The cache takes advantagemay actually perform better when the two are nearly equal.39The essential feature is the use a of a write-allocate policy,in combination with sub-block placement. Write-allocate meansthat if a block is written to without �rst writing, it is allocated ablock of cache memory, rather than having the write bypass thecache and simply update the block out in main memory. Thisensures that when objects are allocated (and hence written),they will be in cachewhen they are referenced shortly thereafter.Sub-block placementmeans that the cache block is divided intoseveral independent lines which can be valid or invalid in thecache. This allows writes to one word to avoid triggering afetch of the rest of the block. Objects can thus be allocatedand initialized without stalling the processor and fetching theold contents of the storage they occupy.

of the fact that while environments and continuationscan be captured, the vast majority of them are notand needn't be put on the heap.)5.3 Locality of Tracing TraversalsThe locality of GC tracing traversals is di�cult tostudy in isolation, but it appears to have some obvi-ous characteristics. Most objects in the generation(s)being collected will be touched exactly once, becausemost objects are pointed to by exactly one other ob-ject [Rov85, DeT90]|typical data structures do notcontain a large number of cycles, and many cycles aresmall enough to have little impact on traversal local-ity.Given this, the main characteristic of the traversalis to exhaustively touch all live data, but for the mostpart very briey. There is very little temporal localityof reference i.e., repeated touching of the same data.(Most objects are referenced by exactly one pointer atany given time, and will therefore only be reached onceby the tracing traversal.) The major locality charac-teristic that can be exploited is the spatial locality ofdata structures layouts in memory|if closely-linkedobjects are close to each other in memory, touchingone object may bring several others into fast memoryshortly before they are traversed.Experience with the Xerox PCR system indicatesthat even in a non-copying collector (i.e., withoutcompaction) there is useful locality in objects' initiallayouts in memory; related objects are often createdand/or die at about the same time, so simple alloca-tion strategies result in useful clustering in memory.The PCR collector enhances this by sorting its rootset before traversing data, so that root pointers intothe same area are traversed at about the same time.This has been observed to signi�cantly reduce pagingduring full garbage collections.40In a copying collector, it would seem that traver-sals usually have good spatial locality, in that objectsare typically organized by the traversal ordering whenthey are �rst copied, and then are traversed in thesame order by subsequent traversals. (At the �rsttraversal, of course, the match between objects' ini-tial allocation layout and the traversal order may alsobe signi�cant.)Because of the high spatial locality and low tem-poral locality, it may be desirable to limit the mem-ory used by a tracing traversal, to avoid needlesslydisplacing the contents of memory by large amounts40Carl Hauser, personal communication 1991.48

of data that are only briey touched during tracing[Wil90, Bak91a]. Incremental tracing may yield someof the same bene�t, by allowing the mutator to touchdata during the tracing phase, keeping the most activedata in fast memory.415.4 Clustering of Longer-Lived Ob-jectsSeveral studies have addressed copying collection's in-direct e�ect on locality|i.e., the e�ect of reorganizingthe data which are subsequently accessed by the run-ning program.5.4.1 Static GroupingStamos [Sta82, Sta84] Blau [Bla83] studied the ef-fects of using di�erent copying traversal algorithmsto reorganize long-lived system data and code inSmalltalk systems. While these algorithms reorganizedata during program execution (i.e., at garbage col-lection time), they are referred to as static groupingalgorithms because they reorganize data according tohow objects are linked at the time garbage collectionoccurs|clustering is not based on the dynamic pat-tern of the program's actual accesses to data objects.Both studies concluded that depth-�rst reorganiza-tion was preferable to breadth-�rst reorganization, butnot by a large margin; there is useful locality infor-mation in the topology of data structures, but anyreasonable traversal will do a decent job of organizingthe data. (Breadth- and depth-�rst traversals bothdramatically outperform a random reorganization.)Wilson et al. performed a similar study for a Lispsystem [WLM91], and showed that traversal algo-rithms can make an appreciable di�erence. The mostimportant di�erence in those experiments was not be-tween traversal algorithms per se, however, but in howlarge hash tables were treated. System data are oftenstored in hash tables which implement large variablebinding environments, such as a global namespace, ora package. Hash tables store their items in pseudo-random order, and this may cause a copying collec-tor to reach and copy data structures in a pseudo-random fashion. This greatly reduces locality, butis easy to avoid by treating hash tables specially.4241This bene�t may not be large relative to the additionalspace cost of incremental collection|the deferred reuse of mem-ory that can't be reclaimed until the end of the incrementaltracing phase.42One technique is to modify the hash tables' structure torecord the order in which entries are made, or impose some

Once hash tables are treated properly, further localitygains can be made by using an algorithm that clustersdata structures hierarchically. (Similar results werereported for the Symbolics Lisp Machine system, in amaster's thesis by D.L. Andre [And86]. While thoseexperiments were not particularly well-controlled, theresults were strikingly positive, and this is particu-larly signi�cant because the results were obtained fora large, commercial system.)5.4.2 Dynamic ReorganizationIn 1980, White proposed a system in which garbagecollection was deferred for long periods of time, butin which Baker's read-barrier incremental copier wasenabled to copy data for its locality e�ects [Whi80];the goal was not to reclaim empty space, but insteadto simply cluster the active data so that it could bekept in fast memory. One interesting property of thisscheme is that it reorganizes data in the order in whichthey are touched by the mutator, and if subsequentaccess patterns are similar, it should greatly improvelocality.This scheme is impractical in its original form (be-cause the sheer volume of garbage would swamp thewrite bandwidth of typical disks if memory were notreclaimed [Ung84]), but the same basic idea has beenincorporated into the garbage collector of the TexasInstruments Explorer Lisp machines [Cou88, Joh91].This collector avoids performing exhaustive back-ground scavenging until toward the end of the gar-bage collection cycle, to enhance the odds that objectswill be reached �rst by the mutator, and copied in alocality-enhancing order.A similar approach has been used in simulations bythe MUSHROOM project at the University of Manch-ester [WWH87]. Rather than relying on the garbagecollector, however, this system is triggered by cachemisses; it can therefore respond more directly to thelocality characteristics of a program, rather than tothe interaction between the program and the garbagecollector.Unfortunately, such schemes rely on specializedhardware to be worthwhile. The Explorer system ex-ploits Lisp machines' hardware support for a Baker-style read barrier, and the MUSHROOM system isother nonrandom ordering, and then modify the collector touse this information to order its examination of the entries.Another technique is to make hash tables indirect indexes intoan ordered array of entries; this has the advantage that it can beimplementedwithout modifying the collector, and can thereforebe used for user-de�ned table structures.49

based on a novel \object-oriented" architecture.Wilson [Wil91] casts these techniques as a formof adaptive prefetching, and argues that as memo-ries continue to grow, such �ne-grained reorganiza-tion may be overkill; reorganization of virtual memorypages within larger units of disk transfer may yieldgood results on stock hardware. (This is supportedby data such as those from the LOOM object-orientedvirtual memory for Smalltalk [Sta82], which show that�ner-grained caching strategies are helpful primarilywhen memories are very small. As memories getlarger, the optimal unit of caching gets larger as well,and pagewise schemes tend to work roughly as wellas objectwise schemes.) Wilson also argues that theimprovements due to �ne-grained reorganization maybe mostly due to de�ciencies in the static-graph algo-rithms used for comparison|in particular, treatmentof large hash tables. However, Llames has reported[Lla91] that dynamic reorganization can signi�cantlyimprove locality, even after roots are treated appro-priately and a good background scavenging traversalis used.435.4.3 Coordination with PagingSeveral systems have coordinated the garbage collec-tor with the virtual memory system to improve pagingperformance.The Symbolics Lisp machines have had perhaps themost comprehensive coordination of garbage collec-tion with virtual memory. The Symbolics allocatorcould notify the virtual memory system when a pageno longer contained any useful data, allocate pagesof virtual memory without paging their old (garbage)contents intomemorywhen the page was �rst touched.Virtual memory cooperation was also used in theintergenerational pointer recording mechanism. Be-fore paging out a page holding pointers to youngergenerations, the page was scanned and the intergen-erational pointers found [Moo84]. This allowed thegarbage collector to avoid paging in data just to scanthem for pointers into younger generations. Virtualmemory mapping techniques were also used to opti-mize the copying of large objects|rather than actu-ally copying the data within a large object, the pagesholding the data could simply be mapped out of theold range of virtual addresses and into the new range[Wit91].43Llames added dynamic grouping to Moon's EphemeralGar-bage Collector, which uses the static grouping techniques de-scribed in [And86].

More recently, microkernel operating systems haveo�ered the ability to modify virtual memory policieswithout actually modifying the kernel. The kernelcalls user-speci�ed routines to control the paging ofa process, rather than hard-coding the entire pagingpolicy into the kernel itself. In the Mach system, forexample external pager processes can be used to con-trol paging activity; this feature has been used to re-duce paging for Standard ML of New Jersey in wayssimilar to those used in the Symbolics system [Sub91].6 Low-level Implementation Is-suesSo far, we have mostly discussed basic issues of gar-bage collector design, and basic performance tradeo�s.In addition to these primary considerations, a garbagecollector designer is faced with many design choiceswhich can have a signi�cant impact on the ultimateperformance of the system, and on how easily the gar-bage collector can be integrated with other compo-nents of the system. In this section we discuss theselow-level implementation questions in more detail.6.1 Pointer Tags and Object HeadersFor most of this paper, we have assumed that pointersare tagged with small tags and that pointed-to objectshave header �elds that encode more speci�c type in-formation; this speci�c type information can be usedto determine objects' layouts, including the locationsof embedded pointer �elds. This is the most commonscheme in dynamically-typed languages such as Lispand Smalltalk. It is common in such languages thatobjects are divided into two major categories: objectsthat can be stored within a machine word as taggedimmediate values, and objects which are allocated onthe heap and referred to via pointers. Heap-allocatedobjects are often further divided into two categories:those which contain only tagged values (immediatesand pointers) which must be examined by the collec-tor to �nd the pointers, and those which contain onlynonpointer �elds which can be ignored by the garbagecollector.Another possibility is that each �eld contains boththe object (if it's a small immediate value) or pointer,and the detailed type information. This generally re-quires �elds to be two words|one word long enoughto hold a raw pointer or raw immediate, and anotherto hold a bit pattern long enough to encode all of thetypes in the system. Generally, a whole word is used50

for the latter �eld, because of alignment constraintsfor load and store operations.44 Despite the waste ofspace, this scheme may be attractive on some archi-tectures, especially those with wide buses.For a language with a static type system, still an-other possibility is that all objects have headers, andthat pointer �elds contain no tags. (This requires astatic type system which ensures that immediate val-ues can't be stored in the same �elds as pointers|ifthey could, it would require a tag to tell the di�er-ence.) Simply knowing which �elds of objects maycontain pointers is su�cient, if the pointed-to ob-jects have headers to decode their structure. Somedynamically-typed systems use this representation aswell, and avoid having immediate values within aword|even short integers are represented as objectswith headers.45If strictly static typing is used, even the headerscan be omitted|once a pointer �eld is found, and thetype of the pointer is known, the type of the object itpoints to is obvious [App89a, Gol91]. To allow trac-ing traversals, it is only necessary that the types ofthe root pointers (e.g., local variables in an activationstack) be known. (This can be accomplished in sev-eral ways, as we will explain later.) From there, wecan determine the types of their referents, and thustheir referents' pointer �elds, and so on transitively.Still, some systems with static typing put headers onobjects anyway, because the cost is not that large andit simpli�es some aspects of the implementation.46The choice of tag and pointer schemes is usuallymade with some regard to garbage collection, butmost often the main consideration is making nor-mal program operations e�cient. Tagging schemesare usually chosen primarily to make type dispatch-ing, arithmetic operations, and pointer dereferencingas fast as possible; which scheme is best dependslargely on the language semantics and the strategyfor ensuring that the most frequent operations are fast[KKR+86, GG86, SH87, Ros88, Gud93].In some systems, individual objects do not haveheaders, and type information is encoded by segre-gating objects of particular types into separate sets ofpages. This \big bag of pages" or BiBOP techniqueassociates types with pages, and constrains the allo-44On many architectures, normal loads and stores must bealigned on word boundaries, and on others there is a timepenalty for unaligned accesses.45This typically requires clever implementation strategies tooptimize away the heap allocation of most integers [Yua90a].46For example, if using page marking or card marking forgenerational collection, headers make it much simpler to scanpages.

cator to allocate objects in the appropriate pages. Atype test requires masking and shifting a pointer toderive the page number, and a table lookup to �ndthe type descriptor for objects in that page. BiBOPencoding can save space by letting a tag per page suf-�ce to encode the types of many objects.Another variation on conventional tagging schemesis to avoid putting object headers directly on the ob-jects, and to store them in a parallel array; this mayhave advantages for locality of reference by separatingout the data relevant to normal program operationfrom those that are only of interest to the collectorand allocator.6.2 Conservative Pointer FindingAn extreme case of catering to other aspects of a lan-guage implementation is conservative pointer-�nding,which is a strategy for coping with compilers thatdon't o�er any support for runtime type identi�ca-tion or garbage collection [BW88].47 In such a system,the collector treats anything that might be a pointeras a pointer|e.g., any properly-aligned bit patternthat could be the address of an object in the heap.The collector may mistake other values (such as aninteger with the same bit pattern) for pointers, andretain objects unnecessarily, but several techniquescan be used to make the probability of such mistakesvery small. Surprisingly, these techniques are e�ec-tive enough that most C programs can be garbagecollected fairly e�ciently, with little or no modi�ca-tion [Boe93]. This simpli�es the garbage collection ofprograms written without garbage collection in mind,and programs written in multiple languages, some ofwhich are uncooperative [WDH89].(Making such a collector generational requires spe-cial techniques, due to the lack of compiler cooperationin implementing a write barrier to detect intergenera-tional pointers. Virtual memory dirty bits or access-protection traps can be used to detect which pagesare written to, so that they can be scanned at collec-tion time to detect pointers into younger generations[DWH+90].)Conservative pointer �nding imposes additionalconstraints on the garbage collector. In particular, thecollector is not free to move objects and update poin-ters, because a non-pointer might be mistaken for apointer and mistakenly updated. (This could result in47These techniques are usually associated with Boehm andhis associates, who have developed them to a high degree, butsimilar techniques appear to have been used earlier in the KyotoCommon Lisp system and perhaps elsewhere.51

mysterious and unpredictable changes to nonpointerdata like integers and character strings.) Conservativecollectors therefore can't use a straightforward copy-ing traversal algorithm.Conservative pointer �nding can be combined withother techniques to cope with language implementa-tions that are only partly cooperative. For example,Barlett's and Detlefs' \mostly-copying" collectors useheaders to decode �elds of objects in the heap, butrely on conservative techniques to �nd pointers fromthe activation stack [Bar88, Det91]. This supportscopying techniques that relocate and compact most(but not all) objects. Objects conservatively identi-�ed as being pointed to from the stack are \pinned"in place, and cannot be moved.48The choice of conservative stack scanning and moreprecise heap tracing is often reasonable, because it isusually easier to retro�t object headers into a languagethan it is to modify the compiler to make stack frameformats decodable. Headers can be added to objectsby a heap allocation routine, which may simply bea library routine that can be changed or substitutedeasily. Compilers often record enough information todecode record layouts, for debugging purposes, andthat information can be captured and massaged intoruntime type identi�cation for heap-allocated objects[WJ93].Conservative pointer-�nding can be defeated bylanguage-level facilities such as the ability to cast poin-ters to integers, destroy the original pointer, and per-form arbitrary arithmetic on the integer value. Ifthe original value is then restored and cast back to apointer, the referred-to object may no longer exist|the garbage collector may have reclaimed the objectbecause it couldn't tell that the integer value \pointedto" the object, even when viewed as a pointer value.Fortunately, most programs do not perform this se-quence of operations|they may cast a pointer to aninteger, but the original pointer is likely to still bepresent, and the object will therefore be retained.Compiler optimizations can perform similar opera-tions on pointers, and this is unfortunately harder forthe programmer to avoid|the compiler may use alge-braic transformations on pointer expressions, disguis-ing the pointers, or they may perform operations on48Such objects are pinned in place in memory, but can beadvanced to an older generation by changing the set to whicha page belongs|that is, objects belong to pages, and pagesbelong to generations, but an entire page can be moved to adi�erent generation simply by changing the tables that recordwhich pages belong to which generations. In essence, objects'ages are encoded using something like a BiBOP tagging scheme.

subword parts of a pointer, with temporary inconsis-tencies in the state of the pointer. While most compil-ers don't perform these optimizations very often, theydo occur, and a few compilers do them regularly. Formost compilers, it is su�cient to turn o� the highestlevels of optimization to avoid such pointer-manglingoptimizations, but this is not reliable across compil-ers, and typically costs a few percent in runtime e�-ciency due to missed optimizations. Since most com-pilers do not provide the ability to selectively turno� only the optimizations that are troublesome forgarbage collectors, it is usually necessary to turn o�several optimizations, i.e., the \high level" optimiza-tions. To avoid this problem, garbage collector design-ers have proposed a set of constraints that compilerscan preserve to ensure that garbage collection is pos-sible; these constraints do not require major changesto existing compilers [Boe91, BC91].Similarly, programming guidelines have been pro-posed to ensure that programmers in C++ avoid con-structions that make correct garbage collection im-possible [ED93]; by programming in a very slightlyrestricted subset of C++, it is possible to ensure thata cooperative compiler can support correct garbagecollection. By using a slightly more restricted (\safe")subset of C++, it is possible to ensure that even buggyprograms do not break the basic memory abstractionsand produce hard-to-diagnose errors.Some people object to conservative pointer-�ndingtechniques because they are known not to be\correct"|it is possible, for example, for an integerto be mistaken for a pointer, causing garbage to beretained. In the worst case, this may cause consider-able garbage to go unreclaimed, and a program maysimply run out of memory and crash. Advocates ofconservative pointer-�nding counter that the proba-bility of such an occurrence can be made very small,and that such errors are much less likely than fatal er-rors due to programmers' mistakes in explicit heapmanagement. In practice, therefore, the use of an\incorrect" technique may be better than having pro-grammers write programs that are even less correct.In the long run, it is hoped, conservative pointer �nd-ing will make garbage collection widely usable, andonce it's widely used, compiler vendors will providesome degree of support for more precise techniques.52

6.3 Linguistic Support and SmartPointersAnother approach to retro�tting garbage collectioninto existing systems is to use the extension facili-ties provided by the language, and implement gar-bage collection within the language itself. The mostcommon form of this is to implement a special set ofgarbage-collected data types with a restricted set ofaccess functions that preserve the garbage collectorconstraints. For example, a reference-counted datatype might be implemented, and accessor functions(or macros) used to perform assignments|the acces-sor functions maintain the reference counts as well asperforming the actual assignments.A somewhat more elegant approach is to use ex-tension mechanisms such as operator overloading toallow normal program operators to be used on gar-bage collected types, with the compiler automaticallyselecting the appropriate user-de�ned operation forgiven operands. In C++, it is common to de�ne\smart pointer" classes that can be used with garbage-collectible classes [Str87], with appropriately de�nedmeanings for pointer-manipulatingoperations (such as* and ->) and for the address-taking operation (&) oncollectible objects. Unfortunately, these user-de�nedpointer types can't be used in exactly the same waysas built-in pointer types, for several reasons [Ede92].One reason is that there is no way to de�ne all of theautomatic coercions that the compiler performs auto-matically for built-in types. Another problem is thatnot all operators can be overloaded in this way. C++provides most, but not all, of the extensibility neces-sary to integrate garbage collection into the languagegracefully. (It is apparently easier in Ada [Bak93b],because the overloading system is more powerful andthe builtin pointer types have fewer subtleties whichmust be emulated.) Yet another limitation is that it isimpossible to re-de�ne operations on built-in classes,making it di�cult to enhance the existing parts of thelanguage|only user-de�ned types can be garbage col-lected gracefully.Still another limitation is that garbage collectionis di�cult to implement e�ciently within the lan-guage, because it is impossible to tell the compilerhow to compile for certain important special cases[Det92, Ede92] For example, in C++ or Ada, thereis no way to specialize an operation for objects thatare known at compile time not to be allocated in theheap.4949In C++ terminology, operators can only be specialized on

Recent work in reective systems has explored lan-guages with very powerful and regular extension mech-anisms, and which expose some of the underlyingimplementation to allow e�cient reimplementation ofexisting language features [KdRB91, MN88, YS92].While most existing reective languages supply gar-bage collection as part of the base language, it is possi-ble to imagine implementing garbage collection withina small, powerful reective language. As in any reec-tive system, however, it is important to expose onlythe most important low-level issues, to avoid limitingthe choices of the base language implementor; this isan area of active research.6.4 Compiler Cooperation and Opti-mizationsIn any garbage-collected system, there must be a set ofconventions used by both the garbage collector and therest of the system (the interpreter or compiled code),to ensure that the garbage collector can recognize ob-jects and pointers. In a conservative pointer-�ndingsystem, the \contract" between the compiler and col-lector is very weak indeed, but it's still there|if thecompiler avoids strange optimizations that can defeatthe collector. In most systems, the compiler is muchmore cooperative, ensuring that the collector can �ndpointers in the stack and from registers.6.4.1 GC-Anytime vs. Safe-Points CollectionTypically, the contract between the collector and run-ning code takes one of two forms, which we call thegc-anytime and safe-points strategies. In a gc-anytimesystem, the compiler ensures that running code can beinterrupted at any point, and it will be safe to performa garbage collection|information will be available to�nd all of the currently active pointer variables, anddecode their formats so that reachable objects can befound.In a safe-points system, the compiler only ensuresthat garbage collection will be possible at certainselected points during program execution, and thatthese points will occur reasonably frequently and reg-ularly. In many systems, procedure calls and back-ward branches are guaranteed to be safe points, en-suring that the program cannot loop (or recurse) in-de�nitely without reaching a safe point|the longestpossible time between safe points is the time to takethe longest noncalling forward path through any pro-the types of their arguments, not the arguments' storage class.53

cedure. (Finer-grained responsiveness can be guaran-teed by introducing intermediate safe points, if neces-sary.)The advantage of a safe-points scheme is that thecompiler is free to use arbitrarily complex optimiza-tions within the unsafe regions between safe points,and it is not obligated to record the information nec-essary to make it possible to locate and de-optimizepointer values.50 One disadvantage of a safe pointsscheme is that it restricts implementation strategiesfor lightweight processes (threads). If several threadsof control are executing simultaneously in the samegarbage-collected heap, and one thread forces a gar-bage collection, the collection must wait until allthreads have reached a safe point and stopped.One implementation of this scheme is to mask hard-ware interrupts between safe points; a more commonone is to provide a small routine which can handlethe actual low-level interrupt at any time by sim-ply recording basic information about it, setting aag, and resuming normal execution. Compiled codechecks the ag at each safe point, and dispatches toa high-level interrupt handler if it is set. This intro-duces a higher-level notion of interrupts, somewhatinsulated from actual machine interrupts|and with asomewhat longer latency.With either a safe-points or a gc-anytime strategy,there are many possible conventions for ensuring thatpointers can be identi�ed for garbage collection; witha safe-points system, however, the compiler is free toviolate the convention in between safe points.6.4.2 Partitioned Register Sets vs. VariableRepresentation RecordingIn many systems, the compiler respects a simple con-vention as to which registers can be used for holdingwhich kinds of values. In the T system (using theOrbit compiler [KKR+86, Kra88]), for example, someregisters are used only for tagged values, and othersonly for raw nonpointer values. The pointers are as-sumed to be in the normal format|direct pointers toknown o�set within the object, plus a tag; headerscan thus be extracted from the pointed-to objects bya simple indexed load instruction.Other register set partitionings and conventions arepossible. For example, it would be possible to haveregisters holding raw pointers, perhaps pointers any-50This is particularly important when using a high-level lan-guage such as C as an intermediate language, and it is un-desirable or impossible to prevent the C compiler from usingoptimizations that mask pointers.

where within an object, if the collector ensures thatheaders of objects can be derived from them usingalignment constraints. If a non-copying collector isused, \untraced" registers might be allowed to holdoptimized pointers (which might not actually pointwithin an object at all, due to an algebraic transforma-tion), as long as an unoptimized pointer to the sameobject is in a \traced" register in a known format.The main problem with partitioned register sets isthat it reduces the compiler's freedom to allocate pro-gram variables and temporaries in whichever registersare available. Some code sequences might require sev-eral pointer registers and very few nonpointer regis-ters, and other code sequences might require the oppo-site. This would mean that more variables would haveto be \spilled," i.e., allocated in the stack or heap in-stead of in registers, and code would run more slowly.An alternative to partitioned register sets is to givethe compiler more freedom in its use of registers, butrequire it to communicate more information to thegarbage collector|i.e., to tell it where the pointersare and how to interpret them properly. We call thisstrategy variable representation recording, because thecompiler must record its decisions about which reg-isters (or stack variables) hold pointers, and how torecover the object's address if the pointer has beentransformed by an optimization. For each range of in-structions where pointer variable representations dif-fer, the compiler must emit an annotation. This in-formation is similar to that required for debuggingoptimized code, and most optimizations can be sup-ported with little overhead. The space requirementsfor this additional information (which essentially an-notates the executable code) may not be negligible,however, and it may be desirable in some cases tochange the compiler's code generation strategy slightly[DMH92].6.4.3 Optimization of Garbage Collection It-selfWhile garbage collectors can be constrained by theirrelationship to the compiler and its optimizations, itis also possible for the compiler to assist in making thegarbage collector e�cient. For example, an optimizingcompiler may be able to optimize away unnecessaryor redundant read-or write-barrier operations, or todetect that a heap object can be safely stack-allocatedinstead.In most generational and incremental algorithms,the write barrier is only necessary when a pointer isbeing stored, but it may not be obvious at compile54

time whether a value will be a pointer or not. Indynamically typed languages, variables may be ableto take on either pointer or nonpointer values, andeven in statically typed languages, pointer variablesmay be assigned a null value. Compilers may performdataow analysis which may allow the omission of awrite barrier for more non-pointer assignment opera-tions. In the future, advanced type-ow analysis suchas that used in the Self compiler [CU89, CU91] mayprovide greater opportunities for read and write bar-rier optimizations.The compiler may also be able to assist by eliminat-ing redundant checks or marking when a write barriertests the same pointer or marks the same object mul-tiple times. (To the best of our knowledge, no exist-ing compilers currently do this.) For this to be pos-sible, however, the optimizer must be able to assumethat certain things are not changed by the collector inways that aren't obvious at compile time. For exam-ple, with a gc-anytime collector and multiple threadsof control, a thread could be pre-empted at any time,and a garbage collection could occur before the threadis resumed. In such a system, there are fewer opportu-nities for optimization because the collector can be in-voked between any two consecutive instructions. Witha safe-points system, however, the optimizer may beable to perform more optimizations across sequencesof instructions that execute atomically with respect togarbage collection.Several researchers have investigated compiler op-timizations related to heap-allocated structures, bothto detect potential aliasing and to allow heap objectsto be stack allocated when it is possible to infer thatthey become garbage at a particular point in a pro-gram [Sch75a, Sch75b, Hud86, JM81, RM88, LH88,HPR89, CWZ90, Bak90]. [Cha87] discusses interac-tions between conventional optimizations and garbagecollection, and when garbage collection-oriented opti-mizations are safe. These topics are beyond the scopeof this survey, and to the best of our knowledge noactual systems use these techniques for garbage col-lection optimizations; still, such techniques may leadto important improvements in garbage collector per-formance by shifting much of the garbage detectionwork to compile time.Certain restricted forms of lifetime analysis|for lo-cal variable binding environments only|can be sim-ple but e�ective in avoiding the need to heap-allocatemost variable bindings in languages with closures[Kra88].

6.5 Free Storage ManagementNonmoving collectors must deal with the fact thatfreed space may be distributed through memory, in-terspersed with the live objects. The traditional wayof dealing with this is to use one or more free lists,but it is possible to adapt any of the free storagemanagement techniques which have been developedfor explicitly-managed heaps [Knu69, Sta80].The simplest scheme, used in many early Lisp inter-preters, is to support only one size of heap-allocatedobject, and use a single free list to hold the freed items.When garbage is detected (e.g., during a sweep phaseor when reference counts go to zero), the objects aresimply strung together into a list, using one of thenormal data �elds to hold a list pointer.When generalizing this scheme to support multi-ple object sizes, two basic choices are possible: tomaintain separate lists for each object size (or ap-proximate object size), or to keep a single list hold-ing various sizes of freed spaces. Techniques withseparate lists for di�erent-sized objects include seg-regated storage and buddy systems [PN77]. Systemswith a uni�ed free list include sequential �t meth-ods and bitmapped techniques. An intermediate strat-egy is to use a single data structure, but use a treeor similar structure sorted by the sizes (and/or ad-dresses) of the free spaces [Ste83] to reduce searchtimes. Most of these systems and several hybrids(e.g., [BBDT84, OA85,WW88, GZ93]) are already de-scribed in the literature on memory management, andwe will not describe them here. An exception to thisis bitmapped memory management, which has beenused in several garbage collectors, but is not usuallydiscussed in the literature.Bitmapped memory management simply maintainsa bitmap corresponding to units of memory (typicallywords, or pairs of words if objects are always alignedon two-word boundaries), with the bit's value indicat-ing whether the unit is in use or not. The bitmap isupdated when objects are allocated or reclaimed. Thebitmap can be scanned to construct a free list (as in[BDS91]) or it can be searched at allocation time ina manner analogous to the search of a free list in asequential �t algorithm.6.6 Compact Representations of HeapDataRepresentations of heap data are often optimized forspeed, rather than for space. In dynamically typedlanguages, for example, most �elds of most objects55

are typically of a uniform size, large enough to hold atagged pointer. Pointers, in turn, are typically repre-sented as full-size virtual addresses in a at (nonseg-mented) address space. Much of this space is \wasted"in some sense, because many nonpointer values couldbe represented in fewer bits, and because pointers typ-ically contain very little information due to limitedheap sizes and locality of reference.At least two mechanisms have been developed to ex-ploit the regularities in data structures and allow themto be stored in a somewhat compressed form most ofthe time, and expanded on demand when they areoperated on. One of these is a �ne-grained mecha-nism called cdr coding, which is speci�c to list cellssuch as Lisp cons cells [Han69, BC79, LH86]. Theother is compressed paging, a more general-purposemechanism that operates on virtual memory pages[Wil91, Dou93, WB94]. Both mechanisms are invis-ible at the language level.Cdr-coding was used in many early Lisp systems,when random-access memory was very expensive. Un-fortunately, it tended to be rather expensive in CPUtime, because the changeable representations of listcomplicate basic list operations. Common operationssuch as CDR require extra instructions to check tosee what kind of list cell they are traversing|is it anormal cell, or one that has been compressed?The compressed representation of a list in a cdr-coded system is really an array of items correspond-ing to the items of the original list. The cdr-codingsystem works in concert with the garbage collector,which linearizes lists and packs consecutive items intoarrays holding the CAR values (list items); the CDRvalues|the pointers that link the lists|are omitted.To make this work, it is necessary to store a bit some-where (e.g., a special extra bit in the tag of the �eldholding the CAR value) saying that the CDR valueis implicitly a pointer to the next item in memory.Destructive updates to CDR values require the gen-eration of actual cons cells on demand, and the for-warding of references from the predecessor part of thearray.This scheme is really only worthwhile with specialhardware and/or microcoded routines, as found onLisp Machines. On current general-purpose proces-sors, it is seldom worth the time for the savings thatcan be gained. (Roughly half the data in a Lisp sys-tem consists of cons cells, so compressing them fromtwo words to one can only save about 25% at best.)More recently, compressed paging has been proposedas a means of reducing memory requirements on stock

hardware. The basic idea is to devote some fraction ofmain memory to storing pages in a compressed form,so that one main memory page can hold the data forseveral virtual memory pages. Normal virtual memoryaccess-protection hardware is used to detect referencesto compressed pages, and trap to a routine that willuncompress them. Once touched, a page is cached innormal (uncompressed) form for a while, so that theprogram can operate on it. After a page has not beentouched for some time, it is re-compressed and accessprotected. The compression routine is not limited tocompressing CDR �elds|it can be designed to com-press other pointers, and non-pointer data (such asintegers and character strings, or executable code).In e�ect, compressed paging adds a new level to thememory hierarchy, intermediate in cost between nor-mal RAM and disk. This may not only decrease over-all RAM requirements, but actually improve speedby reducing the number of disk seeks. Using simpleand fast (but e�ective) compression algorithms, heapdata can typically be compressed by a factor of twoto four|in considerably less time than it would taketo do a disk seek, even on a relatively slow processor[WB94]. As processor speed improvements continue tooutstrip disk speed improvements, compressed pagingbecomes increasingly attractive.7 GC-related Language Fea-turesThe main use of garbage collection is to support thesimple abstraction that in�nite amounts of uniformmemory are available for allocation, so that objectscan simply be created at will and can conceptually\live forever". Sometimes, however, it is desirable toalter this view. It is sometimes desirable to have poin-ters which do not prevent the referred-to objects frombeing reclaimed, or to trigger special routines when anobject is reclaimed. It can also be desirable to havemore than one heap, with objects allocated in di�erentheaps being treated di�erently.7.1 Weak PointersA simple extension of the garbage collection abstrac-tion is to allow programs to hold pointers to objectswithout those pointers preventing the objects from be-ing collected. Pointers that do not keep objects frombeing collected are known a weak pointers, and theyare useful in a variety of situations. One common ap-plication is the maintenance of tables which make it56

possible to enumerate all of the objects of a given kind.For example, it might be desirable to have a table ofall of the �le objects in a system, so that their bu�erscould be ushed periodically for fault tolerance. An-other common application is the maintenance of col-lections of auxiliary information about objects, wherethe information alone is useless and should not keepthe described objects alive. (Examples include prop-erty tables and documentation strings about objects|the usefulness of the description depends on the de-scribed object being otherwise interesting, not viceversa.)Weak pointers are typically implemented by the useof a special data structure, known to the garbage col-lector, recording the locations of weak pointer �elds.The garbage collector traverses all other pointers inthe system �rst, to determine which objects are reach-able via normal paths. Then the weak pointers are tra-versed; if their referents have been reached by normalpaths, the weak pointers are treated normally. (In acopying collector, they are updated to reect the newlocation of the object.) If their referents have not beenreached, however, the weak pointers are treated spe-cially, typically replaced with a nonpointer value (suchas null) to signal that their referents no longer exist.7.2 FinalizationClosely related to the notion of weak pointers is theconcept of �nalization, i.e., actions that are performedautomatically when an object is reclaimed. This is es-pecially common when an object manages a resourceother than heap memory, such as a �le or a networkconnection. For example, it may be important to closea �le when the corresponding heap object is reclaimedIn the example of annotations and documentation, itis often desirable to delete the description of an objectonce the object itself is reclaimed. Finalization canthus generalize the garbage collector, so that other re-sources are managed in much the same way as heapmemory, and with similar program structure. Thismakes it possible to write more general and reusablecode, rather than having to treat certain kinds of ob-jects very di�erently than \normal" objects. (Con-sider a routine that iterates over a list, applying anarbitrary function to each item in the list. If �le de-scriptors are garbage collected, the very same iterationroutine can be used for a list of �le descriptors as fora list of heap objects. If the list becomes unreachable,the garbage collector will reclaim the �le descriptorsalong with the list structure itself.)Finalization is typically implemented by marking �-

nalizable objects in some way and registering them ina data structure much like that used for weak poin-ters. (They may in fact use the same data structure.)Rather than simply nilling the pointers if the objectsaren't reached by the primary traversal, however, thepointers are recorded for special treatment after thecollection is �nished. After the collection is completeand the heap is once again consistent, the referred-toobjects have their �nalization operations invoked.Finalization is useful in a variety of circumstances,but it must be used with care. Because �nalization oc-curs asynchronously|i.e., whenever the collector no-tices the objects are unreachable and does somethingabout it|it is possible to create race conditions andother subtle bugs. For a more thorough discussion ofboth weak pointers and �nalization, see [Hay92].7.3 Multiple Differently-ManagedHeapsIn some systems, a garbage collected heap is providedfor convenience, and a separate, explicitly-managedheap is provided to allow very precise control over theuse of memory.In some languages, such as Modula-3 [CDG+89] andan extended version of C++ [ED93], a garbage col-lected heap coexists with an explicitly-managed heap.This supports garbage collection, while allowing pro-grammers to explicitly control deallocation of someobjects for maximum performance or predictability.Issues in the design of such multiple-heap systems arediscussed in [Del92] and [ED93].In other systems, such as large persistent or dis-tributed shared memories, it may also be desirable tohave multiple heaps with di�erent policies for distri-bution (e.g., shared vs. unshared), access privileges,and resource management [Mos89, Del92].Many language implementations have had such fea-tures internally, more or less hidden from normal pro-grammers, but there is little published informationabout them, and little standardization of program-mer interfaces. (The terminology is also not stan-dardized, and these heaps are variously called \heaps,"\zones," \areas," \arenas," \segments," \pools," \re-gions," and so on.)57

8 Overall Cost of Garbage Col-lectionThe costs of garbage collection have been studied inseveral systems, especially Lisp and Smalltalk sys-tems. Most of these studies have serious limitations,however. A common limitation is the use of a slow lan-guage implementation, e.g., an interpreter, or an inter-preted virtual machine, or a poor compiler. When pro-grams execute unrealistically slowly, the CPU costs ofgarbage collection appear very low. Another commonlimitation of cost studies is the use of \toy"programsor synthetic benchmarks. Such programs often be-have very di�erently from large, real-world applica-tions. Often, they have little long-lived data, makingtracing collection appear unrealistically e�cient. Thismay also a�ect measurements of write barrier costs ingenerational collectors, because programs with littlelong-lived data do not create many intergenerationalpointers.Yet another di�culty is that most studies are nowsomewhat dated, because of later improvements ingarbage collection implementations. The most valu-able studies are therefore the ones with detailed statis-tics about various events, which can be used to inferhow di�erent strategies would fare.Perhaps the best study to date is Zorn's investi-gation of GC cost in a large commercial CommonLisp system, using eight large programs [Zor89]. Zornfound the time cost of generational garbage collectionto be 5% to 20%. (We suspect those numbers couldbe improved signi�cantly with the use of a fast card-marking write barrier.) Shaw's thesis provides similarperformance numbers [Sha88], and Steenkiste's thesiscontains similar relevant statistics [Ste87].Zorn has also studied simple non-generational col-lector using conservative pointer-�nding [Zor93]; thisallowed him to study garbage collection using a high-performance implementation of the C language, andcompare the costs of garbage collection to those ofvarious implementations of explicit deallocation. Un-fortunately, the garbage collector used was not state-of-the art, partly due to the lack of compiler coopera-tion. Zorn found that, when compared to using a well-implemented malloc() and free(), programs usinga simple conservative GC used between 0% and 36%more CPU time, and between 40% and 280% morememory. Zorn's test programs were unusually heapallocation-intensive, however, and the costs would pre-sumably be lower for a more typical workload. We alsobelieve these �gures could be improved considerably

with a state-of-the art generational collector and com-piler cooperation.Tarditi and Diwan [TD93] studied garbage collec-tion costs in Standard ML51 of NJ and found the totaltime cost of garbage collection between 22% and 40%.While this is a very interesting and informative study,we believe these numbers to be unnecessarily high,due to extreme load on the garbage collector, causedby allocating tremendous amounts of activation infor-mation and binding environments on the heap, ratherthan on a stack (Sect. 5.2). We also believe their writebarrier could be improved.Our own estimate of the typical cost of garbage col-lection in a well-implemented non-incremental gener-ational system (for a high-performance language imp-lementation) is that it should cost roughly ten percentof running time over the cost of a well-implementedexplicit heap management system, with a space costof roughly a factor of two in data memory size. (Nat-urally, increased CPU costs could be traded for re-duced space costs.) This must be taken as an educatedguess, however, compensating for what we perceive asde�ciencies in existing systems and limitations of thestudies to date.Clearly, more studies of garbage collection in high-performance systems are called for, especially for goodimplementations of strongly-typed languages.9 Conclusions and Areas forResearchWe have argued that garbage collection is an essen-tial for fully modular programming, to allow exible,reusable code and to eliminate a large class of ex-tremely dangerous coding errors.Recent advances in garbage collection technologymake automatic storage reclamation a�ordable for usein high-performance systems. Even relatively sim-ple garbage collectors' performance is often compet-itive with conventional explicit storage management[App87, Zor93]. Generational techniques reduce thebasic costs and disruptiveness of collection by exploit-ing the empirically-observed tendency of objects to dieyoung. Incremental techniques may even make gar-bage collection relatively attractive for hard real-timesystems.We have discussed the basic operation of severalkinds of garbage collectors, to provide a framework51ML is a statically typed, general-purpose mostly-functionallanguage.58

for understanding current research in the �eld. A keypoint is that standard textbook analyses of garbagecollection algorithms usually miss the most importantcharacteristics of collectors|namely, the constant fac-tors associated with the various costs, such as writebarrier overhead and locality e�ects. Similarly, \real-time" garbage collection is a more subtle topic than iswidely recognized. These factors require garbage col-lection designers to take detailed implementation is-sues into account, and be very careful in their choicesof features. Pragmatic decisions (such as the needto interoperate with existing code in other languages)may also outweigh small di�erences in performance.Despite these complex issues, many systems actu-ally have fairly simple requirements of a garbage col-lector, and can use a collector that consists of a fewhundred lines of code. Systems with large, complexoptimizing compilers should have more attention paidto garbage collection, and use state-of-the-art tech-niques. (One promising development is the availabil-ity of garbage collectors written in portable high-levellanguages (typically C) and adaptable for use withvarious implementations of various languages.52)Garbage collector designers must also keep up withadvances in other aspects of system design. The tech-niques described in this survey appear to be su�-cient to provide good performance in most relativelyconventional uniprocessor systems, but continual ad-vances in other areas introduce new problems for gar-bage collector design.Persistent object stores [ABC+83, DSZ90, AM92]allow large interrelated data structures to be saved in-de�nitely without writing them to �les and re-readingthem when they are needed again; by automaticallypreserving pointer-linked data structures, they relievethe programmer of tedious and error-prone coding ofinput/output routines. Large persistent object storescan replace �le systems for many purposes, but this in-troduces problems of managing large amounts of long-lived data. It is very desirable for persistent stores tohave garbage collection, so that storage leaks do notresult in a large and permanent accumulation of un-reclaimed storage. Garbage collecting a large persis-tent store is a very di�erent task from garbage col-lecting the memory of a single process of bounded du-ration. In e�ect, a collector for a conventional sys-tem can avoid the problem of very long-lived data,because data written to �les \disappear" from the col-52Examples of this include the UMass Garbage CollectionToolkit [HMDW91] and Wilson and Johnstone's real-time gar-bage collector, which has been adapted for use with C++, Ei�el,Scheme, and Dylan [WJ93].

lector's point of view. A persistent store keeps thosedata within the scope of garbage collection, o�eringthe attractive prospect of automatic management oflong-lived data|as well as the challenge of doing ite�ciently.Parallel computers raise new issues for garbage col-lectors, as well. It is desirable to make the collectorconcurrent, i.e., able to run on a separate processorfrom the application, to take advantage of processorsnot in use by the application. It is also desirable tomake the collector itself parallel, so that it can be spedup to keep up with the application. Concurrent collec-tors raise issues of coordination between the collectorand the mutator which are somewhat more di�cultthan those raised by simple incremental collection.Parallel collectors also raise issues of coordination ofdi�erent parts of the garbage collection process, andof �nding su�cient parallelism, despite potential bot-tlenecks due to the topologies of the data structuresbeing traversed.Distributed systems pose still more problems[AMR92]; the limitations on parallelism are partic-ularly severe when the collection process must pro-ceed across multiple networked computers, and com-munication costs are high. In large systems withlong-running applications, networks are typically un-reliable, and distributed garbage collection strategiesfor such systems|like the applications running onthem|must be robust enough to tolerate computerand network failures.In large persistent or distributed systems, data in-tegrity is particularly important; garbage collectionstrategies must be coordinated with checkpointing andrecovery, both for e�ciency and to ensure that the col-lector itself does not fail [Kol90, Det91, ONG93].As high-performance graphics and sound capabil-ities become more widely available and economical,computers are likely to be used in more graphical andinteractive ways. Multimedia and virtual reality ap-plications will require garbage collection techniquesthat do not impose large delays, making incremen-tal techniques increasingly desirable. Increasing useof embedded microprocessors makes it desirable to fa-cilitate programming of hard real-time applications,making �ne-grained incremental techniques especiallyattractive.As computer systems become more ubiquitous, net-worked, and heterogeneous, it is increasingly desirableto integrate modules which run on di�erent comput-ers and may have been developed in extremely di�er-ent programming languages; interoperability between59

diverse systems is an important goal for the future,and garbage collection strategies must be developedfor such systems.Garbage collection is applicable to many currentgeneral-purpose and specialized programming sys-tems, but considerable work remains in adapting itto new, ever-more advanced paradigms.AcknowledgmentsReferences[ABC+83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm,P. W. Cockshott, and R. Morrison. An ap-proach to persistent programming. ComputerJournal, 26(4):360{365, December 1983.[AEL88] Andrew W. Appel, John R. Ellis, and KaiLi. Real-time concurrent garbage collectionon stock multiprocessors. In Proceedings ofthe 1988 SIGPLAN Conference on Program-ming Language Design and Implementation[PLD88], pages 11{20.[AM92] Antonio Albano and Ron Morrison, editors.Fifth International Workshop on PersistentObject Systems, San Miniato, Italy, Septem-ber 1992. Springer-Verlag.[AMR92] Saleh E. Abdullahi, Eliot E. Miranda, andGraem A. Ringwood. Distributed garbagecollection. In Bekkers and Cohen [BC92],pages 43{81.[And86] David L. Andre. Paging in Lisp programs.Master's thesis, University of Maryland, Col-lege Park, Maryland, 1986.[AP87] S. Abraham and J. Patel. Parallel gar-bage collection on a virtual memory sys-tem. In E. Chiricozzi and A. D'Amato,editors, International Conference on Paral-lel Processing and Applications, pages 243{246, L'Aquila, Italy, September 1987. ElsevierNorth-Holland.[App87] Andrew W. Appel. Garbage collection canbe faster than stack allocation. InformationProcessing Letters, 25(4):275{279, June 1987.[App89a] AndrewW. Appel. Runtime tags aren't neces-sary. Lisp and Symbolic Computation, 2:153{162, 1989.[App89b] Andrew W. Appel. Simple generational gar-bage collection and fast allocation. Soft-ware Practice and Experience, 19(2):171{183,February 1989.

[App91] Andrew W. Appel. Garbage collection. In Pe-ter Lee, editor, Topics in Advanced LanguageImplementation, pages 89{100. MIT Press,Cambridge, Massachusetts, 1991.[Bak78] Henry G. Baker, Jr. List processing in realtime on a serial computer. Communicationsof the ACM, 21(4):280{294, April 1978.[Bak90] Henry G. Baker, Jr. Unify and conquer: (gar-bage, updating, aliasing : : :) in functionallanguages. In Conference Record of the 1990ACM Symposium on LISP and FunctionalProgramming [LFP90], pages 218{226.[Bak91a] Henry G. Baker, Jr. Cache-conscious copy-ing collection. In OOPSLA '91 Workshop onGarbage Collection in Object-Oriented Sys-tems [OOP91]. Position paper.[Bak91b] Henry G. Baker, Jr. The Treadmill: Real-time garbage collection without motion sick-ness. In OOPSLA '91 Workshop on Gar-bage Collection in Object-Oriented Systems[OOP91]. Position paper. Also appears asSIGPLAN Notices 27(3):66{70, March 1992.[Bak93a] Henry G. Baker. Infant mortality and genera-tional garbage collection. SIGPLAN Notices,28(4):55{57, April 1993.[Bak93b] Henry G. Baker, Jr. Safe and leakproofresource management using Ada83 limitedtypes. Unpublished, 1993.[Bar88] Joel F. Bartlett. Compacting garbage collec-tion with ambiguous roots. Technical Report88/2, Digital Equipment Corporation West-ern Research Laboratory, Palo Alto, Califor-nia, February 1988.[Bar89] Joel F. Bartlett. Mostly-copying garbage col-lection picks up generations and C++. Tech-nical Note TN-12, Digital Equipment Corpo-ration Western Research Laboratory, October1989.[BBDT84] G. Bozman, W. Buco, T. P. Daly, and W. H.Tetzla�. Analysis of free storage algorithms|revisited. IBM Systems Journal, 23(1):44{64,1984.[BC79] Daniel G. Bobrow and Douglas W. Clark.Compact encodings of list structure. ACMTransactions on Programming Languages andSystems, 1(2):266{286, October 1979.[BC91] Hans-Juergen Boehm and David Chase. Aproposal for garbage-collector-safe compila-tion. The Journal of C Language Translation,4(2):126{141, December 1991.[BC92] Yves Bekkers and Jacques Cohen, editors. In-ternational Workshop on Memory Manage-60

ment, number 637 in Lecture Notes in Com-puter Science, St. Malo, France, September1992. Springer-Verlag.[BDS91] Hans-J. Boehm, Alan J. Demers, and ScottShenker. Mostly parallel garbage collection.In Proceedings of the 1991 SIGPLAN Confer-ence on Programming Language Design andImplementation [PLD91], pages 157{164.[Bla83] Ricki Blau. Paging on an object-oriented per-sonal computer for Smalltalk. In Proceedingsof the ACM SIGMETRICS Conference onMeasurement and Modeling of Computer Sys-tems, Minneapolis, Minnesota, August 1983.Also available as Technical Report UCB/CSD83/125, University of California at Berkeley,Computer Science Division (EECS), August1983.[Bob80] Daniel G. Bobrow. Managing reentrant struc-tures using reference counts. ACM Trans-actions on Programming Languages and Sys-tems, 2(3):269{273, July 1980.[Boe91] Hans-Juergen Boehm. Hardware and oper-ating system support for conservative gar-bage collection. In International Workshopon Memory Management, pages 61{67, PaloAlto, California, October 1991. IEEE Press.[Boe93] Hans-Juergen Boehm. Space-e�cient conser-vative garbage collection. In Proceedings ofthe 1993 SIGPLAN Conference on Program-ming Language Design and Implementation[PLD93], pages 197{206.[Bro84] Rodney A. Brooks. Trading data space for re-duced time and code space in real-time collec-tion on stock hardware. In Conference Recordof the 1984 ACM Symposium on LISP andFunctional Programming [LFP84], pages 108{113.[BW88] Hans-Juergen Boehm and Mark Weiser. Gar-bage collection in an uncooperative environ-ment. Software Practice and Experience,18(9):807{820, September 1988.[BZ93] David A. Barrett and Bejamin G. Zorn. Usinglifetime predictors to improve memory alloca-tion performance. In Proceedings of the 1993SIGPLAN Conference on Programming Lan-guage Design and Implementation [PLD93],pages 187{196.[CDG+89] Luca Cardelli, James Donahue, Lucille Glass-man, Mick Jordan, Bill Kalso, and Greg Nel-son. Modula-3 report (revised). Research Re-port 52, Digital Equipment Corporation Sys-tems Research Center, November 1989.

[CG77] Douglas W. Clark and C. Cordell Green.An empirical study of list structure in LISP.Communications of the ACM, 20(2):78{87,February 1977.[Cha87] David Chase. Garbage Collection and OtherOptimizations. PhD thesis, Rice University,Houston, Texas, August 1987.[Cha92] Craig Chambers. The Design and Imple-mentation of the SELF Compiler, an Opti-mizing Compiler for an Object-Oriented Pro-gramming Language. PhD thesis, StanfordUniversity, March 1992.[Che70] C. J. Cheney. A nonrecursive list compact-ing algorithm. Communications of the ACM,13(11):677{678, November 1970.[CHO88] Will Clinger, Anne Hartheimer, and Erik Ost.Implementation strategies for continuations.In Conference Record of the 1988 ACM Sym-posium on LISP and Functional Program-ming, pages 124{131, Snowbird, Utah, July1988. ACM Press.[Cla79] Douglas W. Clark. Measurements of dynamiclist structure use in Lisp. IEEE Transactionson Software Engineering, 5(1):51{59, January1979.[CN83] Jacques Cohen and Alexandru Nicolau. Com-parison of compacting algorithms for garbagecollection. ACM Transactions on Program-ming Languages and Systems, 5(4):532{553,October 1983.[Coh81] Jacques Cohen. Garbage collection oflinked data structures. Computing Surveys,13(3):341{367, September 1981.[Col60] George E. Collins. A method for overlappingand erasure of lists. Communications of theACM, 2(12):655{657, December 1960.[Cou88] Robert Courts. Improving locality of refer-ence in a garbage-collecting memory manage-ment system. Communications of the ACM,31(9):1128{1138, September 1988.[CU89] Craig Chambers and David Ungar. Cus-tomization: Optimizing compiler technologyfor Self, a dynamically-typed object-orientedlanguage. In Proceedings of SIGPLAN '89,pages 146{160, 1989.[CU91] Craig Chambers and David Ungar. Makingpure object-oriented languages practical. InPaepcke [Pae91], pages 1{15.[CWB86] Patrick J. Caudill and Allen Wirfs-Brock.A third-generation Smalltalk-80 implementa-tion. In Conference on Object Oriented Pro-gramming Systems, Languages and Applica-tions (OOPSLA '86) Proceedings, pages 119{130. ACM Press, October 1986.61

[CWZ90] David R. Chase, Mark Wegman, and F. Ken-neth Zadeck. Analysis of pointers and struc-tures. In Proceedings of the 1990 SIG-PLAN Conference on Programming LanguageDesign and Implementation, pages 296{310,White Plains, New York, June 1990. ACMPress.[Daw82] Je�rey L. Dawson. Improved e�ectivenessfrom a real-time LISP garbage collector. InConference Record of the 1982 ACM Sym-posium on LISP and Functional Program-ming, pages 159{167, Pittsburgh, Pennsylva-nia, August 1982. ACM Press.[DB76] L. Peter Deutsch and Daniel G. Bobrow.An e�cient, incremental, automatic garbagecollector. Communications of the ACM,19(9):522{526, September 1976.[Del92] V. Delacour. Allocation regions and imple-mentation contracts. In Bekkers and Cohen[BC92], pages 426{439.[DeT90] John DeTreville. Experience with concurrentgarbage collectors for Modula-2+. Techni-cal Report 64, Digital Equipment Corpora-tion Systems Research Center, Palo Alto, Cal-ifornia, August 1990.[Det91] David L. Detlefs. Concurrent, Atomic Gar-bage Collection. PhD thesis, Dept. of Com-puter Science, Carnegie Mellon University,Pittsburgh, Pennsylvania, November 1991.Technical report CMU-CS-90-177.[Det92] David L. Detlefs. Garbage collection and run-time typing as a C++ library. In USENIXC++ Conference [USE92].[DLM+78] Edsger W. Dijkstra, Leslie Lamport, A. J.Martin, C. S. Scholten, and E. F. M. Ste�ens.On-the-y garbage collection: An exercise incooperation. Communications of the ACM,21(11):966{975, November 1978.[DMH92] Amer Diwan, Eliot Moss, and Richard Hud-son. Compiler support for garbage collectionin a statically-typed language. In Proceedingsof the 1992 SIGPLAN Conference on Pro-gramming Language Design and Implementa-tion, pages 273{282, San Francisco, Califor-nia, June 1992. ACM Press.[Dou93] Fred Douglis. The compression cache: Usingon-line compression to extend physical mem-ory. In Proceedings of 1993 Winter USENIXConference, pages 519{529, San Diego, Cali-fornia, January 1993.[DSZ90] Alan Dearle, Gail M. Shaw, and Stanley B.Zdonik, editors. Implementing Persistent Ob-ject Bases: Principles and Practice (Proceed-ings of the Fourth International Workshop on

Persistent Object Systems), Martha's Vine-yard, Massachusetts, September 1990. Mor-gan Kaufman.[DTM93] Amer Diwan, David Tarditi, and Eliot Moss.Memory subsystem performance of programswith intensive heap allocation. Submitted forpublication, August 1993.[DWH+90] Alan Demers, Mark Weiser, Barry Hayes,Daniel Bobrow, and Scott Shenker. Combin-ing generational and conservative garbage col-lection: Framework and implementations. InConference Record of the Seventeenth AnnualACM Symposium on Principles of Program-ming Languages, pages 261{269, San Fran-cisco, California, January 1990. ACM Press.[ED93] John R. Ellis and David L. Detlefs. Safe, ef-�cient garbage collection for C++. TechnicalReport 102, Digital Equipment CorporationSystems Research Center, 1993.[Ede92] Daniel Ross Edelson. Smart pointers: They'resmart, but they're not pointers. In USENIXC++ Conference [USE92], pages 1{19. Tech-nical Report UCSC-CRL-92-27, University ofCalifornia at Santa Cruz, Baskin Center forComputer Engineering and Information Sci-ences, June 1992.[EV91] Steven Engelstad and Jim Vandendorp. Au-tomatic storage management for systems withreal time constraints. In OOPSLA '91Workshop on Garbage Collection in Object-Oriented Systems [OOP91]. Position paper.[FY69] Robert R. Fenichel and Jerome C. Yochelson.A LISP garbage-collector for virtual-memorycomputer systems. Communications of theACM, 12(11):611{612, November 1969.[GC93] Edward Gehringerand Ellis Chang. Hardware-assisted memorymanagement. In OOPSLA '93 Workshop onMemory Management and Garbage Collection[OOP93]. Position paper.[GG86] Ralph E. Griswold and Madge T. Griswold.The Implementation of the Icon Program-ming Language. Princeton University Press,Princeton, New Jersey, 1986.[Gol91] Benjamin Goldberg. Tag-free garbage col-lection for strongly-typed programming lan-guages. In Proceedings of the 1991 SIGPLANConference on Programming Language De-sign and Implementation [PLD91], pages 165{176.[Gre84] Richard Greenblatt. The LISP machine. InD.R. Barstow, H.E. Shrobe, and E. Sande-wall, editors, Interactive Programming Envi-ronments. McGraw Hill, 1984.62

[Gud93] David Gudeman. Representing type informa-tion in dynamically-typed languages. Techni-cal Report TR93-27, University of Arizona,Department of Computer Science, Tucson,Arizona, 1993.[GZ93] DirkGrunwald and Benjamin Zorn. CustoMalloc:E�cient synthesized memory allocators. Soft-ware Practice and Experience, 23(8):851{869,August 1993.[H�93] Urs H�olzle. A fast write barrier for gener-ational garbage collectors. In OOPSLA '93Workshop on Memory Management and Gar-bage Collection [OOP93]. Position paper.[Han69] Wilfred J. Hansen. Compact list representa-tion: De�nition, garbage collection, and sys-tem implementation. Communications of theACM, 12(9):499{507, September 1969.[Hay91] Barry Hayes. Using key object opportunismto collect old objects. In Paepcke [Pae91],pages 33{46.[Hay92] Barry Hayes. Finalization in the garbagecollector interface. In Bekkers and Cohen[BC92], pages 277{298.[HH93] Antony Hosking and Richard Hudson. Re-membered sets can alsoplay cards. In OOPSLAGC [OOP93]. Avail-able for anonymous FTP from cs.utexas.eduin /pub/garbage/GC93.[HJ92] Reed Hastings and Bob Joyce. Purify: Fastdetection of memory leaks and access errors.In USENIX Winter 1992 Technical Confer-ence, pages 125{136. USENIX Association,January 1992.[HL93] Lorenz Huelsbergen and James R. Larus. Aconcurrent copying garbage collector for lan-guages that distinguish (im)mutable data. InProceedings of the Fourth ACM SIGPLANSymposium on Principles and Practice ofParallel Programming (PPOPP), pages 73{82, San Diego, California, May 1993. ACMPress. Published as SIGPLAN Notices 28(7),July 1993.[HMDW91] Richard L. Hudson, J. Eliot B. Moss,Amer Diwan, and Christopher F. Weight.A language-independent garbage collectortoolkit. Coins Technical Report 91-47, University of Massachusetts, Amherst,MA 01003, September 1991.[HMS92] Antony L. Hosking, J. Eliot B. Moss, andDarko Stefanovi�c. A comparative perfor-mance evaluation of write barrier implemen-tations. In Andreas Paepcke, editor, Confer-

ence on Object Oriented Programming Sys-tems, Languages and Applications (OOP-SLA '92), pages 92{109, Vancouver, BritishColumbia, October 1992. ACM Press. Pub-lished as SIGPLAN Notices 27(10), October1992.[HPR89] Susan Horwitz, P. Pfei�er, and T. Reps. De-pendence analysis for pointer variables. InProceedings of the SIGPLAN '89 SIGPLANSymposium on Compiler Construction, June1989. Published as SIGPLAN Notices 24(7).[Hud86] Paul Hudak. A semantic model of refer-ence counting and its abstraction. In Con-ference Record of the 1986 ACM Symposiumon LISP and Functional Programming, pages351{363, Cambridge, Massachusetts, August1986. ACM Press.[JJ92] Niels Christian Juul and Eric Jul. Compre-hensive and robust garbage collection in adistributed system. In Bekkers and Cohen[BC92], pages 103{115.[JM81] Neil D. Jones and Steven S. Muchnick. Flowanalysis and optimization of LISP-like struc-tures. In Steven S. Muchnik and Neil D.Jones, editors, Program Flow Analysis, pages102{131. Prentice-Hall, 1981.[Joh91] Douglas Johnson. The case for a read barrier.In Fourth International Conference on Archi-tectural Support for Programming Languagesand Operating Systems (ASPLOS IV), pages96{107, Santa Clara, California, April 1991.[Joh92] Ralph E. Johnson. Reducing the latencyof a real-time garbage collector. ACM Let-ters on Programming Languages and Systems,1(1):46{58, March 1992.[KdRB91] Gregor Kiczales, Jim des Rivieres, andDaniel G. Bobrow. The Art of the MetaobjectProtocol. MIT Press, Cambridge, Massachu-setts, 1991.[Kel93] Richard Kelsey. Tail recursive stack dis-ciplines for an interpreter. Availablevia anonymous FTP from nexus.yorku.cain /pub/scheme/txt/stack-gc.ps. Slightly en-hanced version of Technical Report NU-CCS93-03, College of Computer Science,Northeastern University, 1992., 1993.[KKR+86] David A. Kranz, Richard Kelsey, JonathanRees, Paul Hudak, James Philbin, and Nor-man Adams. ORBIT: An optimizing com-piler for Scheme. In SIGPLAN Symposium onCompiler Construction, pages 219{233, PaloAlto, California, June 1986. Published asACM SIGPLAN Notices 21(7), July 1986.63

[KLS92] Phillip J. Koopman, Jr., Peter Lee, andDaniel P. Siewiorek. Cache performance ofcombinator graph reduction. ACM Trans-actions on Programming Languages and Sys-tems, 14(2):265{297, April 1992.[Knu69] Donald E. Knuth. The Art of ComputerProgramming, volume 1: Fundamental Algo-rithms. Addison-Wesley, Reading, Massachu-setts, 1969.[Kol90] Elliot Kolodner. Atomic incremental garbagecollection and recovery for large stable heap.In Dearle et al. [DSZ90], pages 185{198.[Kra88] David A. Kranz. ORBIT: An OptimizingCompiler For Scheme. PhD thesis, Yale Uni-versity, New Haven, Connecticut, February1988.[Lar77] R. G. Larson. Minimizing garbage collectionas a function of region size. SIAM Journal onComputing, 6(4):663{667, December 1977.[LD87] Bernard Lang and Francis Dupont. Incremen-tal incrementally compacting garbage collec-tion. In SIGPLAN 1987 Symposium on In-terpreters and Interpretive Techniques, pages253{263, Saint Paul, Minnesota, June 1987.ACM Press. Published as SIGPLAN Notices22(7), July 1987.[Lee88] Elgin Hoe-Sing Lee. Object storage and in-heritance for SELF, a prototype-based object-oriented programming language. Engineer'sthesis, Stanford University, Palo Alto, Cali-fornia, December 1988.[LFP84] Conference Record of the 1984 ACM Sympo-sium on LISP and Functional Programming,Austin, Texas, August 1984. ACM Press.[LFP90] Conference Record of the 1990 ACM Sympo-sium on LISP and Functional Programming,Nice, France, June 1990. ACM Press.[LH83] Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the lifetimesof objects. Communications of the ACM,26(6):419{429, June 1983.[LH86] Kai Li and Paul Hudak. A new list com-paction method. Software Practice and Ex-perience, 16(2), February 1986.[LH88] James R. Larus and Paul N. Hil�nger. De-tecting conicts between record accesses. InProceedings of the 1988 SIGPLAN Confer-ence on Programming Language Design andImplementation [PLD88], pages 21{34.[Lla91] Rene Llames. Performance Analysis of Gar-bage Collection and Dynamic Reordering in aLisp System. PhD thesis, Department of Elec-trical and Computer Engineering, Universityof Illinois, Champaign-Urbana, Illinois, 1991.

[McB63] J. Harold McBeth. On the reference countermethod. Communications of the ACM,6(9):575, September 1963.[McC60] John McCarthy. Recursive functions of sym-bolic expressions and their computation bymachine. Communications of the ACM,3(4):184{195, April 1960.[Mey88] Norman Meyrowitz, editor. Conference onObject Oriented Programming Systems, Lan-guages and Applications (OOPSLA '88) Pro-ceedings, San Diego, California, September1988. ACM Press. Published as SIGPLANNotices 23(11), November 1988.[Min63] Marvin Minsky. A LISP garbage collector al-gorithm using serial secondary storage. A.I.Memo 58, Massachusetts Institute of Tech-nology Project MAC, Cambridge, Massachu-setts, 1963.[MN88] PattieMaes and Daniele Nardi, editors. Meta-LevelArchitectures and Reection. North-Holland,Amsterdam, 1988.[Moo84] David Moon. Garbage collection in a largeLisp system. In Conference Record of the1984 ACM Symposium on LISP and Func-tional Programming [LFP84], pages 235{246.[Mos89] J. Eliot B. Moss. Addressing large distributedcollections of persistent objects: The Mnemeproject's approach. In Second InternationalWorkshop on Database Programming Lan-guages, pages 269{285, Glenedon Beach, Ore-gon, June 1989. Also available as Techni-cal Report 89-68, University of MassachusettsDept. of Computer and Information Science,Amherst, Massachusetts, 1989.[Nil88] Kelvin Nilsen. Garbage collection of stringsand linked data structures in real time. Soft-ware Practice and Experience, 18(7):613{640,July 1988.[NOPH92] Scott Nettles, James O'Toole, David Pierce,and Nicholas Haines. Replication-based in-cremental copying collection. In Bekkers andCohen [BC92], pages 357{364.[NR87] S. C. North and J. H. Reppy. Concurrent gar-bage collection on stock hardware. In GillesKahn, editor, ACM Conference on FunctionalProgramming Languages and Computer Arch-itecture, number 274 in Lecture Notes inComputer Science, pages 113{133. Springer-Verlag, September 1987.[NS90] Kelvin Nilsen and William J. Schmidt. Ahigh-level overview of hardware assisted real-time garbage collection. Technical Report64

TR 90-18a, Dept. of Computer Science, IowaState University, Ames, Iowa, 1990.[NS92] Kelvin Nilsen and William J. Schmidt.Cost-e�ective object space management forhardware-assisted real-time garbage collec-tion. ACM Letters on Programming Lan-guages and Systems, 1(4):338{355, December1992.[OA85] R. R. Oldehoeft and S. J. Allan. Adaptiveexact-�t storage management. Communica-tions of the ACM, 28(5):506{511, May 1985.[ONG93] James O'Toole, Scott Nettles, and David Gif-ford. Concurrent compacting garbage collec-tion of a persistent heap. In Proceedings of theFourteenth Symposium on Operating SystemsPrinciples, Asheville, North Carolina, Decem-ber 1993. ACM Press. Published as OperatingSystems Review 27(5).[OOP91] OOPSLA '91 Workshop on Garbage Col-lection in Object-Oriented Systems, October1991. Available for anonymous FTP fromcs.utexas.edu in /pub/garbage/GC91.[OOP93] OOPSLA '93 Workshop on Memory Man-agement and Garbage Collection, October1993. Available for anonymous FTP fromcs.utexas.edu in /pub/garbage/GC93.[Pae91] Andreas Paepcke, editor. Conference onObject Oriented Programming Systems, Lan-guages and Applications (OOPSLA '91),Phoenix, Arizona, October 1991. ACMPress. Published as SIGPLAN Notices26(11), November 1991.[PLD88] Proceedings of the 1988 SIGPLAN Confer-ence on Programming Language Design andImplementation, Atlanta, Georgia, June 1988.ACM Press.[PLD91] Proceedings of the 1991 SIGPLAN Con-ference on Programming Language Designand Implementation, Toronto, Ontario, June1991. ACM Press. Published as SIGPLANNotices 26(6), June 1992.[PLD93] Proceedings of the 1993 SIGPLAN Confer-ence on Programming Language Design andImplementation, Albuquerque, New Mexico,June 1993. ACM Press.[PN77] J. L. Peterson and T. A. Norman. Buddysystems. Communications of the ACM,20(6):421{431, June 1977.[PS89] C.-J. Peng and Gurindar S. Sohi. Cachememory design considerations to support lan-guages with dynamic heap allocation. Tech-nical Report 860, Computer Sciences Dept.University of Wisconsin, Madison, Wisconsin,July 1989.

[RM88] Christina Ruggieri and Thomas P. Murtagh.Lifetime analysis of dynamically allocated ob-jects. In Conference Record of the FifteenthAnnual ACM Symposium on Principles ofProgramming Languages, pages 285{293, SanDiego, California, January 1988. ACM Press.[Ros88] John R. Rose. Fast dispatch mechanisms forstock hardware. In Meyrowitz [Mey88], pages27{35.[Rov85] Paul Rovner. On adding garbage collectionand runtime types to a strongly-typed, stati-cally checked, concurrent language. TechnicalReport CSL-84-7, Xerox Palo Alto ResearchCenter, Palo Alto, California, July 1985.[Sch75a] Jacob T. Schwartz. Optimization of very highlevel languages|I. Value transmission and itscorollaries. Journal of Computer Languages,1:161{194, 1975.[Sch75b] Jacob T. Schwartz. Optimization of very highlevel languages|II. Deducing relationships ofinclusion and membership. Journal of Com-puter Languages, 1:197{218, 1975.[SCN84] W. R. Stoye, T. J. W. Clarke, and A. C.Norman. Some practical methods for rapidcombinator reduction. In Conference Recordof the 1984 ACM Symposium on LISP andFunctional Programming [LFP84], pages 159{166.[SH87] Peter Steenkiste and John Hennessy. Tagsand type checking in Lisp. In Second In-ternational Conference on Architectural Sup-port for Programming Languages and Operat-ing Systems (ASPLOS II), pages 50{59, PaloAlto, California, October 1987.[Sha88] Robert A. Shaw. Empirical Analysis of a LispSystem. PhD thesis, Stanford University, PaloAlto, California, February 1988. TechnicalReport CSL-TR-88-351, Stanford UniversityComputer Systems Laboratory.[Sob88] Patrick G. Sobalvarro. A lifetime-based gar-bage collector for LISP systems on general-purpose computers. B.S. thesis, Massachu-setts Institute of Technology EECS Depart-ment, Cambridge, Massachusetts, 1988.[Sta80] Thomas Standish. Data Structure Tech-niques. Addison-Wesley, Reading, Massachu-setts, 1980.[Sta82] James William Stamos. A large object-oriented virtual memory: Grouping strate-gies, measurements, and performance. Tech-nical Report SCG-82-2, Xerox Palo Alto Re-search Center, Palo Alto, California, May1982.65

[Sta84] James William Stamos. Static groupingof small objects to enhance performance ofa paged virtual memory. ACM Transac-tions on Programming Languages and Sys-tems, 2(2):155{180, May 1984.[Ste75] Guy L. Steele Jr. Multiprocessing compacti-fying garbage collection. Communications ofthe ACM, 18(9):495{508, September 1975.[Ste83] C. J. Stephenson. Fast �ts: New methods fordynamic storage allocation. In Proceedings ofthe Ninth Symposium on Operating SystemsPrinciples, pages 30{32, Bretton Woods, NewHampshire, October 1983. ACM Press. Pub-lished as Operating Systems Review 17(5), Oc-tober 1983.[Ste87] Peter Steenkiste. Lisp on a Reduced-Instruction-Set Processor: Characterizationand Optimization. PhD thesis, Stanford Uni-versity, Palo Alto, California, March 1987.Technical Report CSL-TR-87-324, StanfordUniversity Computer System Laboratory.[Str87] Bjarne Stroustrup. The evolution of C++,1985 to 1987. In USENIX C++ Workshop,pages 1{22. USENIX Association, 1987.[Sub91] Indira Subramanian. Managing discardablepages with an external pager. In USENIXMach Symposium, pages 77{85, Monterey,California, November 1991.[TD93] David Tarditi and Amer Diwan. The fullcost of a generational copying garbage collec-tion implementation. Unpublished, Septem-ber 1993.[UJ88] David Ungar and Frank Jackson. Tenuringpolicies for generation-based storage reclama-tion. In Meyrowitz [Mey88], pages 1{17.[Ung84] David M. Ungar. Generation scaveng-ing: A non-disruptive high-performance stor-age reclamation algorithm. In ACM SIG-SOFT/SIGPLAN Software Engineering Sym-posium on Practical Software DevelopmentEnvironments, pages 157{167. ACM Press,April 1984. Published as ACM SIGPLANNo-tices 19(5), May, 1987.[USE92] USENIX Association. USENIX C++ Confer-ence, Portland, Oregon, August 1992.[Wan89] Thomas Wang. MM garbage collector forC++. Master's thesis, California PolytechnicState University, San Luis Obispo, California,October 1989.[WB94] Paul R. Wilson and V. B. Balayoghan. Com-pressed paging. In preparation, 1994.

[WDH89] Mark Weiser, Alan Demers, and Carl Hauser.The portable common runtime approach tointeroperability. In Proceedings of the TwelfthSymposium on Operating Systems Principles,December 1989.[WF77] David S. Wise and Daniel P. Friedman. Theone-bit reference count. BIT, 17(3):351{359,September 1977.[WH91] Paul R. Wilson and Barry Hayes. The 1991OOPSLAWorkshop on Garbage Collection inObject Oriented Systems (organizers' report).In Jerry L. Archibald, editor, OOPSLA '91Addendum to the Proceedings, pages 63{71,Phoenix, Arizona, October 1991. ACM Press.Published as OOPS Messenger 3(4), October1992.[Whi80] Jon L. White. Address/memory managementfor a gigantic Lisp environment, or, GC con-sidered harmful. In LISP Conference, pages119{127, Redwood Estates, California, Au-gust 1980.[Wil90] Paul R. Wilson. Some issues and strategiesin heap management and memory hierarchies.In OOPSLA/ECOOP '90 Workshop on Gar-bage Collection in Object-Oriented Systems,October 1990. Also appears in SIGPLAN No-tices 23(1):45{52, January 1991.[Wil91] Paul R. Wilson. Operating system supportfor small objects. In International Workshopon Object Orientation in Operating Systems,pages 80{86, Palo Alto, California, October1991. IEEE Press. Revised version to appearin Computing Systems.[Wis85] David S. Wise. Design for a multipro-cessing heap with on-board reference count-ing. In Functional Programming Languagesand Computer Architecture, pages 289{304.Springer-Verlag, September 1985. LectureNotes in Computer Science series, no. 201.[Wit91] P. T. Withington. How real is \real time" gar-bage collection? In OOPSLA '91 Workshopon Garbage Collection in Object-OrientedSystems [OOP91]. Position paper.[WJ93] Paul R. Wilson and Mark S. Johnstone. Trulyreal-time non-copying garbage collection. InOOPSLA '93 Workshop on Memory Manage-ment and Garbage Collection [OOP93]. Ex-panded version of workshop position papersubmitted for publication.[WLM91] Paul R. Wilson, Michael S. Lam, andThomas G. Moher. E�ective static-graph re-organization to improve locality in garbage-collected systems. In Proceedings of the 199166

SIGPLAN Conference on Programming Lan-guage Design and Implementation [PLD91],pages 177{191. Published as SIGPLAN No-tices 26(6), June 1992.[WLM92] Paul R. Wilson, Michael S. Lam, andThomas G. Moher. Caching considerationsfor generational garbage collection. In Con-ference Record of the 1992 ACM Symposiumon LISP and Functional Programming, pages32{42, San Francisco, California, June 1992.ACM Press.[WM89] Paul R. Wilson and Thomas G. Moher. De-sign of the Opportunistic Garbage Collec-tor. In Conference on Object Oriented Pro-gramming Systems, Languages and Applica-tions (OOPSLA '89) Proceedings, pages 23{35, New Orleans, Louisiana, 1989. ACMPress.[WW88] Charles B. Weinstock and William A. Wulf.Quick�t: an e�cient algorithm for heap stor-age allocation. ACM SIGPLAN Notices,23(10):141{144, October 1988.[WWH87] Ifor W. Williams, Mario I. Wolczko, andTrevor P. Hopkins. Dynamic grouping in anobject-oriented virtual memory hierarchy. InEuropean Conference on Object Oriented Pro-gramming, pages 87{96, Paris, France, June1987. Springer-Verlag.[YS92] Akinori Yonezawa and Brian C. Smith, ed-itors. Reection and Meta-Level Architec-ture: Proceedings of the International Work-shop on New Models for Software Architecture'92, Tokyo, Japan, November 1992. ResearchInstitute of Software Engineering (RISE) andInformation-Technology Promotion Agency,Japan (IPA), in cooperation with ACM SIG-PLAN, JSSST, IPSJ.[Yua90a] Taichi Yuasa. The design and implementationof Kyoto Common Lisp. Journal of Informa-tion Processing, 13(3), 1990.[Yua90b] Taichi Yuasa. Real-time garbage collectionon general-purpose machines. Journal of Sys-tems and Software, 11:181{198, 1990.[Zor89] Benjamin Zorn. Comparative PerformanceEvaluation of Garbage Collection Algorithms.PhD thesis, University of California at Berke-ley, EECS Department, December 1989.Technical Report UCB/CSD 89/544.[Zor90] Benjamin Zorn. Comparing mark-and-sweepand stop-and-copy garbage collection. InConference Record of the 1990 ACM Sympo-sium on LISP and Functional Programming[LFP90], pages 87{98.

[Zor93] Benjamin Zorn. The measured cost of conser-vative garbage collection. Software|Practiceand Experience, 23(7):733{756, 1993.

67

