
Quantifying the Performance of
Garbage Collection vs.

Explicit Memory Management

Matthew Hertz
Canisius College

Emery Berger
University of Massachusetts Amherst

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Explicit Memory Management

� malloc / new
� allocates space for an object

� free / delete
� returns memory to system

� Simple, but tricky to get right
� Forget to free Ö memory leak
� free too soon Ö “dangling pointer”

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Dangling Pointers

Node x = new Node (“happy”);
Node ptr = x;
delete x; // But I’m not dead yet!
Node y = new Node (“sad”);
cout << ptr->data << endl; // sad /

Node x = new Node (“happy”);
Node ptr = x;
delete x; // But I’m not dead yet!
Node y = new Node (“sad”);
cout << ptr->data << endl; // sad /

� Insidious, hard-to-track down bugs

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Solution: Garbage Collection

� No need to call free
� Garbage collector periodically scans

objects on heap
� Reclaims unreachable objects

� Won’t reclaim objects until it can prove
object will not be used again

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

No More Dangling Pointers

Node x = new Node (“happy”);
Node ptr = x;
// x still live (reachable through ptr)
Node y = new Node (“sad”);
cout << ptr->data << endl; // happy! ☺

Node x = new Node (“happy”);
Node ptr = x;
// x still live (reachable through ptr)
Node y = new Node (“sad”);
cout << ptr->data << endl; // happy! ☺

So why not use GC
all the time?

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Conventional Wisdom

� “GC worse than malloc, because…”
� Extra processing (collection)
� Poor cache performance (ibid)
� Bad page locality (ibid)
� Increased footprint (delayed reclamation)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Conventional Wisdom

� “GC improves performance, by…”
� Quicker allocation

(fast path inlining & bump pointer alloc.)
� Better cache performance

(object reordering)
� Improved page locality

(heap compaction)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Outline

� Motivation
� Quantifying GC performance

� A hard problem

� Oracular memory management
� Selecting & generating the Oracles

� Experimental methodology
� Results

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Quantifying GC Performance

� Apples-to-apples comparison
� Examine unaltered applications
� Runs differ only in memory manager

� Examine impact on time & space

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Quantifying GC Performance

� Evaluate state-of-art algorithms
� Garbage collectors

� Generational collectors
� Copying collectors

� Standard for Java, not compatible with C/C++

� Explicit memory managers
� Fast, single-threaded allocators

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

BDW
Collector

Node v = malloc(sizeof(Node));
v->data= malloc(sizeof(NodeData));
memcpy(v->data, old->data,

sizeof(NodeData));
free(old->data);
v->next = old->next;
v->next->prev = v;
v->prev = old->prev;
v->prev->next = v;
free(old);

Using GC in C/C++ is easy:

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

BDW
Collector

Node v = malloc(sizeof(Node));
v->data= malloc(sizeof(NodeData));
memcpy(v->data, old->data,

sizeof(NodeData));
free(old->data);
v->next = old->next;
v->next->prev = v;
v->prev = old->prev;
v->prev->next = v;
free(old);

…ignore calls to free.

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

Lea
Allocator

Node node = new Node();
node.data = new NodeData();
useNode(node);
node = null;
...
node = new Node();
...
node.data = new NodeData();
...

Adding malloc/free to Java: not easy…

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

Lea
Allocator

Node node = new Node();
node.data = new NodeData();
useNode(node);
node = null;
...
node = new Node();
...
node.data = new NodeData();
...

... where should free be inserted?

free(node.data)?

free(node)?

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Inserting Free Calls

� Do not know where programmer
would call free
� Hints provided from null-ing pointers
� Restructure code to avoid memory leaks?

� Tests programming skills, not memory
manager

� Want unaltered applications

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Oracular Memory Manager

Java

Simulator

C malloc/free

perform actions at
no cost below here

execute program here

allocation

Oracle

� Consult oracle to place free calls
� Oracle does not disrupt hardware state
� Simulator inserts free…

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Object Lifetime & Oracle Placement

� Oracles bracket placement of frees
� Lifetime-based: most aggressive
� Reachability-based: most conservative

unreachable

live dead

reachable

freed by
lifetime-based
oracle

freed by
reachability-based

oracle
can be collectedfree(obj)

obj =
new Object;

obj =
new Object;

can be freed

free(obj) free(??)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Reachability Oracle Generation

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

trace
file

allocations,
ptr updates,
prog roots

Merlin
analysis

� Illegal instructions mark heap events
� Simulated identically to legal instructions

Oracle

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Liveness Oracle Generation

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

trace
file

allocations,
mem access,
prog roots

Post-
process

� Record allocations, memory accesses
� Preserve code, type objects, etc.
� May use objects without accessing them

Oracle

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Liveness Oracle Generation

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

trace
file

allocation,
mem access,
prog. roots

Post-
process

� Record allocations, memory accesses
� Preserve code, type objects, etc.
� May use objects without accessing them

Oracle

if (f.x == y) { … }

uses address of f.x,
but may not touch f.x or f

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Oracular Memory Manager

Java

PowerPC
Simulator

C malloc/free

perform actions at
no cost below here

execute program here

oracle

allocation

� Consult oracle before each allocation
� When needed, modify instructions to call free
� Extra costs hidden by simulator

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

� Java platform:
� MMTk/Jikes RVM(2.3.2)

� Simulator:
� Dynamic SimpleScalar (DSS)
� Simulates 2GHz PowerPC processor

� G5 cache configuration

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

� Garbage collectors:
� GenMS, GenCopy, GenRC, SemiSpace, CopyMS,

MarkSweep

� Explicit memory managers:
� Lea, MSExplicit (MS + explicit deallocation)

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

� Perfectly repeatable runs
� Pseudoadaptive compiler

� Same sequence of optimizations
� Advice generated from mean of 5 runs

� Deterministic thread switching
� Deterministic system clock
� Use “illegal” instructions in all runs

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Execution Time for pseudoJBB

GC performance can be competitive

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

0%

100%

200%

300%

400%

500%

600%

700%

800%

Lea w/ Reach Lea w/ Li f e MSExpl ici t
w/ Reach

Kingsley GenMS GenCopy CopyMS SemiSpace Mar kSweep

Footprint at Quickest Run

GC uses much more memory

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

0%

100%

200%

300%

400%

500%

600%

700%

800%

Lea w/ Reach Lea w/ Li f e MSExpl ici t
w/ Reach

Kingsley GenMS GenCopy CopyMS SemiSpace Mar kSweep

Footprint at Quickest Run

GC uses much more memory

1.00
1.38 1.61

5.10
5.66

4.84

7.69
7.09

0.63

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Avg. Relative Cycles and Footprint

GC trades space for time

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Javac Paging Performance

Much slower in limited physical RAM

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

pseudoJBB Paging Performance

Lifetime analysis adds little

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Summary of Results

� Best collector equals Lea's
performance…
� Up to 10% faster on some benchmarks

� ... but uses more memory
� Quickest runs use 5x or more memory
� At least twice mean footprint

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Take-home: Practitioners

� GC ok if:
� system has more than 3x needed RAM,
� and no competition with other processes

� GC not so good if:
� Limited RAM
� Competition for physical memory
� Relies upon RAM for performance

� In-memory database
� Search engines, etc.

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Take-home: Researchers

� GC performance already good enough
with enough RAM

� Problems:
� Paging is a killer
� Performance suffers when RAM limited

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Future Work

� Obvious dimensions
� Other collectors:

� Bookmarking collector [PLDI 05]
� Parallel collectors

� Other allocators:
� New version of DLmalloc (2.8.2)
� VAM [ISMM 05]

� Other architectures:
� Examine impact of cache size

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Future Work

� Other memory management methods
� Regions, reaps

Quantifying the Performance of GC vs. Explicit Memory ManagementQuantifying the Performance of GC vs. Explicit Memory Management

Conclusion

� Code available at:
http://www-cs.canisius.edu/~hertzm

