) IMlassAmhe

Quantifying the Performance of
Garbage Collection vs.
Explicit Memory Management

Matthew Hertz
Canisius College

Emery Berger
University of Massachusetts Amherst

Explicit Memory Management

= malloc/ new

= allocates space for an object
= Tfree/delete

= returns memory to system

= Simple, but tricky to get right
= Forget to free = memory leak
= free too soon = "dangling pointer”

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Dangling Pointers

Node x = new Node (“happy”);

Node ptr = x;

delete x; // But I’'m not dead yet!
Node y = new Node (“sad”);

cout << ptr->data << end|; // sad ®

= Insidious, hard-to-track down bugs

Quantifying the Performance of GC vs. Explicit Memory Management oot

Solution: Garbage Collection

= No need to call free

= Garbage collector periodically scans
objects on heap
= Reclaims unreachable objects

= Won't reclaim objects until it can prove
object will not be used again

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

No More Dangling Pointers

Node x = new Node (“happy”);
Node ptr = x;

// x still live (reachable through ptr)
Node y = new Node (“sad”);

cout << ptr->data << endl; // happy! ©

So why not use GC
all the time?

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Conventional Wisdom

= "GC worse than mal loc, because...”
= Extra processing (collection)
= Poor cache performance (ibid)
= Bad page locality (ibid)
= Increased footprint (delayed reclamation)

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Conventional Wisdom

= “GC improves performance, by..."”

= Quicker allocation
(fast path inlining & bump pointer alloc.)

= Better cache performance
(object reordering)

= Improved page locality
(heap compaction)

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

s Motivation

= Quantifying GC performance
= A hard problem

= Oracular memory management
= Selecting & generating the Oracles

= Experimental methodology
= Results

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Quantifying GC Performance

= Apples-to-apples comparison
= Examine unaltered applications
= Runs differ only in memory manager

= Examine impact on time & space

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Quantifying GC Performance

= Evaluate state-of-art algorithms

= Garbage collectors
= Generational collectors

= Copying collectors
Standard for Java, not compatible with C/C++

= Explicit memory managers
= Fast, single-threaded allocators

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Comparing Memory Managers

Node v = malloc(sizeof(Node));

v->data= malloc(sizeof(NodeData))

memcpy(v->data, old->data,
sizeof(NodeData));

free(old->data);

v->next = old->next;

v->next->prev = v;

v->prev = old->prev;

V->prev->next = v;

free(old);

Using GC in C/C++ Is easy:

Quantifying the Performance of GC vs. Explicit Memory Management

C.E]I]]'S'IUS
L L E G E
Brs arg e

Comparing Memory Managers

Node v = malloc(sizeof(Node));
v->data= malloc(sizeof(NodeData))
memcpy(v->data, old->data,
sizeof(NodeData));
Freetoio—data

v->next = old->next;
v->next->prev = v;

v->prev = old->prev;
V->prev->next = v;

Freetotas

...ignore calls to free.

Quantifying the Performance of GC vs. Explicit Memory Management

&IﬂSiUS
L L E G E
ers are =]

Comparing Memory Managers

Node node = new Node();
node.data = new NodeData();
useNode(node) ;

node = null;

ﬁéae = new Node();

ﬁéae-data = new NodeData();

Adding malloc/free to Java: not easy...

Canisius
cC O L L E G E
Where leaders are made

Quantifying the Performance of GC vs. Explicit Memory Management

Comparing Memory Managers

Node node = new Node();
node.data = new NodeData();

useNode(node) ; 5
node = null: free(node)”

ﬁéae = new Node():;
free(node.data)”?

ﬁéﬁe-data = new NodeData();

... Where should free be inserted?

Quantifying the Performance of GC vs. Explicit Memory Management

&IﬂSiUS
L L E G E
ers are =]

Inserting Free Calls

= Do not know where programmer
would call free

= Hints provided from nul I-ing pointers

= Restructure code to avoid memory leaks?

= Tests programming skills, not memory
manager

= Want unaltered applications

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Oracular Memory Manager

C malloc/free
execute program here

T perform actions at

) allocation no cost below here
Simulator ‘
U

= Consult oracle to place free calls

m Oracle does not disrupt hardware state
= Simulator inserts free..

Quantifying the Performance of GC vs. Explicit Memory Management

Canisius
cCO L L E G E
Where leaders are made

Object Lifetime & Oracle Placement

fr%gﬂ B freed
lifetima-based

obj = - live ¥ oracle N dead '
new Object; ”
‘ I Treachable freed by~ _ unreachable

S A] TP Y
T freeCobi) Y R GR R be collected

= Oracles bracket placement of frees
= Lifetime-based: most aggressive
= Reachability-based: most conservative

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Reachability Oracle Generation

Java C malloc/free

I execute program here

¥ .
allocations perform actions at

! PowerPC no cost below here
ptr updates, :
Simulator

prog roots

{

= lllegal instructions mark heap events
= Simulated identically to legal instructions

Canisius
cCO L L E G E
Where leaders are made

Quantifying the Performance of GC vs. Explicit Memory Management

Liveness Oracle Generation

Java C malloc/free

I execute program here

¥ .
allocations perform actions at

! PowerPC no cost below here
mem access, i
Simulator

prog roots

{

= Record allocations, memory accesses
= Preserve code, type objects, etc.

Quantifying the Performance of GC vs. Explicit Memory Management

= May use objects without accessing them

Canisius
cCO L L E G E
Where leaders are made

Liveness Oracle Generation

it (T.x=y) { .}

uses address of F.X,
but may not touch f.x or F

= Preserve code, type objects, etc.

= May use objects without accessing them

Quantifying the Performance of GC vs. Explicit Memory Management

Oracular Memory Manager

C malloc/free
execute program here

1 perform actions at
no cost below here

PowerPC

Simulator allocation

e
= Consult oracle before each allocation
= When needed, modify instructions to call free

= Extra costs hidden by simulator

Canisius
cCO L L E G E
Where leaders are made

Quantifying the Performance of GC vs. Explicit Memory Management

Experimental Methodology

= Java platform:
=« MMTk/Jikes RVM(2.3.2)

= Simulator:

= Dynamic SimpleScalar (DSS)

= Simulates 2GHz PowerPC processor
= Gg cache configuration

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Experimental Methodology

= Garbage collectors:

= GenMS, GenCopy, GenRC, SemiSpace, CopyMS,
MarkSweep

= Explicit memory managers:
= Lea, MSExplicit (MS + explicit deallocation)

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Experimental Methodology

= Perfectly repeatable runs

= Pseudoadaptive compiler
= Same sequence of optimizations
= Advice generated from mean of 5 runs

=« Deterministic thread switching
=« Deterministic system clock
= Use "“illegal” instructions in all runs

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Execution Time for pseudoJBB

Simulatec Cycles Relat.ve 10 Lea w7/ Reach

1.9 | | | 1

Lea w' Reazh —

Lea wr Live —

MSExpl icit wr Reazh ——

MSExpliclt wr Llue ———
1.4 GenYS —»&—]

GenCooy ¢

GenWC

1 » 3 B =]
1 » E B =]

1 1.5 2 2.5 3 3.5 4
Heap Size Relaztive to Collector Mininumr

GC performance can be competitive

Quantifying the Performance of GC vs. Explicit Memory Management

Footprint at Quickest Run

800%

700%

600%

500%

400%

300%

200%

100% I—

0% T .

Leaw/ Reach Leaw/ Life MSExplicit Kingsley GenMS GenCopy CopyMS Sem Space Mar kSweep
w/ Reach

GC uses much more memory

Quantifying the Performance of GC vs. Explicit Memory Management

Canisius
Cc O 1 | E G E
made

Where leaders are

Footprint at Quickest Run

800%

7.6
7.09
700%
600% 6
5.10
coons | 4.84
400%
300%
200%
1.61
1.38
1.00
100%
’ 0.63
N
Leaw/ Reach Leaw/ Life MSExplicit Kingsley GenMS GenCopy CopyMS Semi Space Mar kSweep
w/ Reach

GC uses much more memory

Quantifying the Performance of GC vs. Explicit Memory Management

Avg. Relative Cycles and Footprint

.o I I I | I

Lea w’ Reazh ——
s Lea w’ Live —
s L.7 | > MSExplicit w’s Reach —— _
1% i MSExpliclt wr Lloe ——
~ GenMS —»¢—
=2 1.5 F 1 GenCooy ¢ -
o Gen3c
wr
-
O 1-5 — -
s
@
2 1.4 | -
L
X
e 1.3 | -
w LR
—
s 1.2 -
o
O
L&]
o
.l.'l-
n
E
=
£

Aa.39 1 1 1 1 1
1 2 3 < S [

Footprint Relaztive to Lea w” Reach

GC trades space for time

Quantifying the Performance of GC vs. Explicit Memory Management

(}m]sms

Where leader:

Javac Paging Performance

imated Time Needed {s} {log>

-
L]

Es

Estimated Tim= by Available Menory for .Javac

le+@56 I] I I I I] I I
Lea wr LiIfellime Oracle F
Lea ws 2eachablllty Oracle &
MSExplicit i
henvs x _
. 1215151%) A GenCooay v]
3 GenC o
B Copy's a
?1 MarkSwe=p »
19888 4% -
I %\ih
1ee@ | -- ;
[\ = : TG ,]
ii = i S iy " S i SN
186 |- e N‘I-—-\._]
- *\-_.
- TR .
ie | o .
1 1 1 1 1 1 1 1 1
@ 12 2e 38 40 1% (=17 70 80 1%

Avallable Memcr

Quantifying the Performance of GC vs. Explicit Memory Management

Much slower in limited physical RAM

(}m]sms

Where leader:

pseudoJBB Paging Performance

Lifetime analysis adds little

Quantifying the Performance of GC vs. Explicit Memory Management

Estimated Time >y Avai_able Memo~y for pseudo.JBB
le+@% I] I I I I] I I
Lea were LlIfellme Oracle x
Lea ws 2eachablllty Oracle &
MSExplicit i
~ I hGenvs X -
'6” 128888 GenCosy + 1
- GenC o
. i Copy's a
0 MarkSwe=p »
e 189888 | -
") -
@
=
= [‘H“H‘“1hqm—=—u -
z 1888 | T, S KM
e e = TP
w = P : = = b
£ > i = =3 z S e I
— I .
D 180 | _ ”\‘—"\;
a S '
E i —
w 10 | .
Ll i 1
1 1 1 1 1 1 1 1 1 1
@ 12 2e 38 40 1% 68 70 g8a o8
Avallable Memcr (MB>

Summary of Results

= Best collector equals Lea's
performance...

= Up to 10% faster on some benchmarks

= ... but uses more memory
= Quickest runs use 5x or more memory
= At least twice mean footprint

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Take-home: Practitioners

s GC ok if:

= system has more than 3x needed RAM,
= and no competition with other processes

= GC not so good if:
=« Limited RAM
= Competition for physical memory

= Relies upon RAM for performance
= In-memory database
= Search engines, etc.

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Take-home: Researchers

s GC performance already good enough
with enough RAM

= Problems:
= Paging is a killer
=« Performance suffers when RAM limited

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Future Work

= Obvious dimensions

= Other collectors:
= Bookmarking collector [PLDI o5]
= Parallel collectors

= Other allocators:

= New version of DLmalloc (2.8.2)
= VAM [ISMM o5]

= Other architectures:
= Examine impact of cache size

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made

Future Work

= Other memory management methods
= Regions, reaps

Quantifying the Performance of GC vs. Explicit Memory Management

Conclusion

= Code available at:
http://www-cs.canisius.edu/~hertzm

Quantifying the Performance of GC vs. Explicit Memory Management

