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Explicit Memory Management

= malloc/ new

= allocates space for an object
= Tfree/delete

= returns memory to system

= Simple, but tricky to get right
= Forget to free = memory leak
= free too soon = "dangling pointer”
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Dangling Pointers

Node x = new Node (“happy”);

Node ptr = x;

delete x; // But I’'m not dead yet!
Node y = new Node (“sad”);

cout << ptr->data << end|; // sad ®

= Insidious, hard-to-track down bugs
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Solution: Garbage Collection

= No need to call free

= Garbage collector periodically scans
objects on heap
= Reclaims unreachable objects

= Won't reclaim objects until it can prove
object will not be used again
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No More Dangling Pointers

Node x = new Node (“happy”);
Node ptr = x;

// x still live (reachable through ptr)
Node y = new Node (“sad”);

cout << ptr->data << endl; // happy! ©

So why not use GC
all the time?
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Conventional Wisdom

= "GC worse than mal loc, because...”
= Extra processing (collection)
= Poor cache performance (ibid)
= Bad page locality (ibid)
= Increased footprint (delayed reclamation)
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Conventional Wisdom

= “GC improves performance, by..."”

= Quicker allocation
(fast path inlining & bump pointer alloc.)

= Better cache performance
(object reordering)

= Improved page locality
(heap compaction)
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s Motivation

= Quantifying GC performance
= A hard problem

= Oracular memory management
= Selecting & generating the Oracles

= Experimental methodology
= Results

Quantifying the Performance of GC vs. Explicit Memory Management

/here leaders are made



Quantifying GC Performance

= Apples-to-apples comparison
= Examine unaltered applications
= Runs differ only in memory manager

= Examine impact on time & space
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Quantifying GC Performance

= Evaluate state-of-art algorithms

= Garbage collectors
= Generational collectors

= Copying collectors
Standard for Java, not compatible with C/C++

= Explicit memory managers
= Fast, single-threaded allocators
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Comparing Memory Managers

Node v = malloc(sizeof(Node));

v->data= malloc(sizeof(NodeData))

memcpy(v->data, old->data,
sizeof(NodeData));

free(old->data);

v->next = old->next;

v->next->prev = v;

v->prev = old->prev;

V->prev->next = v;

free(old);

Using GC in C/C++ Is easy:
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Comparing Memory Managers

Node v = malloc(sizeof(Node));
v->data= malloc(sizeof(NodeData))
memcpy(v->data, old->data,
sizeof(NodeData));
Freetoio—data

v->next = old->next;
v->next->prev = v;

v->prev = old->prev;
V->prev->next = v;

Freetotas

...ignore calls to free.
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Comparing Memory Managers

Node node = new Node();
node.data = new NodeData();
useNode(node) ;

node = null;

ﬁéae = new Node();

ﬁéae-data = new NodeData();

Adding malloc/free to Java: not easy...
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Comparing Memory Managers

Node node = new Node();
node.data = new NodeData();

useNode(node) ; 5
node = null: free(node)”

ﬁéae = new Node():;
free(node.data)”?

ﬁéﬁe-data = new NodeData();

... Where should free be inserted?
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Inserting Free Calls

= Do not know where programmer
would call free

= Hints provided from nul I-ing pointers

= Restructure code to avoid memory leaks?

= Tests programming skills, not memory
manager

= Want unaltered applications
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Oracular Memory Manager

C malloc/free
execute program here

T perform actions at

) allocation no cost below here
Simulator ‘
U

= Consult oracle to place free calls

m Oracle does not disrupt hardware state
= Simulator inserts free..
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Object Lifetime & Oracle Placement

fr%gﬂ B freed
lifetima-based

obj = - live ¥ oracle N dead '
new Object; ”
‘ I Treachable freed by~ \_ unreachable

S A ] TP Y
T freeCobi) Y R GR R be collected

= Oracles bracket placement of frees
= Lifetime-based: most aggressive
= Reachability-based: most conservative
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Reachability Oracle Generation

Java C malloc/free

I execute program here

¥ .
allocations perform actions at

! PowerPC no cost below here
ptr updates, :
Simulator

prog roots

{

= lllegal instructions mark heap events
= Simulated identically to legal instructions
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Liveness Oracle Generation

Java C malloc/free

I execute program here

¥ .
allocations perform actions at

! PowerPC no cost below here
mem access, i
Simulator

prog roots

{

= Record allocations, memory accesses
= Preserve code, type objects, etc.
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Liveness Oracle Generation

it (T.x=y) { .}

uses address of F.X,
but may not touch f.x or F

= Preserve code, type objects, etc.

= May use objects without accessing them
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Oracular Memory Manager

C malloc/free
execute program here

1 perform actions at
no cost below here

PowerPC

Simulator allocation

e
= Consult oracle before each allocation
= When needed, modify instructions to call free

= Extra costs hidden by simulator
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Experimental Methodology

= Java platform:
=« MMTk/Jikes RVM(2.3.2)

= Simulator:

= Dynamic SimpleScalar (DSS)

= Simulates 2GHz PowerPC processor
= Gg cache configuration
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Experimental Methodology

= Garbage collectors:

= GenMS, GenCopy, GenRC, SemiSpace, CopyMS,
MarkSweep

= Explicit memory managers:
= Lea, MSExplicit (MS + explicit deallocation)
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Experimental Methodology

= Perfectly repeatable runs

= Pseudoadaptive compiler
= Same sequence of optimizations
= Advice generated from mean of 5 runs

=« Deterministic thread switching
=« Deterministic system clock
= Use "“illegal” instructions in all runs
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Execution Time for pseudoJBB
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GC performance can be competitive
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Footprint at Quickest Run
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GC uses much more memory
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Footprint at Quickest Run
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GC uses much more memory
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Avg. Relative Cycles and Footprint
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GC trades space for time
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Javac Paging Performance
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pseudoJBB Paging Performance

Lifetime analysis adds little
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Summary of Results

= Best collector equals Lea's
performance...

= Up to 10% faster on some benchmarks

= ... but uses more memory
= Quickest runs use 5x or more memory
= At least twice mean footprint
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Take-home: Practitioners

s GC ok if:

= system has more than 3x needed RAM,
= and no competition with other processes

= GC not so good if:
=« Limited RAM
= Competition for physical memory

= Relies upon RAM for performance
= In-memory database
= Search engines, etc.
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Take-home: Researchers

s GC performance already good enough
with enough RAM

= Problems:
= Paging is a killer
=« Performance suffers when RAM limited
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Future Work

= Obvious dimensions

= Other collectors:
= Bookmarking collector [PLDI o5]
= Parallel collectors

= Other allocators:

= New version of DLmalloc (2.8.2)
= VAM [ISMM o5]

= Other architectures:
= Examine impact of cache size
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Future Work

= Other memory management methods
= Regions, reaps
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Conclusion

= Code available at:
http://www-cs.canisius.edu/~hertzm
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