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Problems with Unsafe Languages

C, C++: pervasive apps, but langs.
memory unsafe
Numerous opportunities for security 
vulnerabilities, errors

Double free
Invalid free

Uninitialized reads
Dangling pointers
Buffer overflows (stack & heap)
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Current Approaches

Unsound, may work or abort
Windows, GNU libc, etc., Rx [Zhou]

Unsound, will definitely continue
Failure oblivious [Rinard]

Sound, definitely aborts (fail-safe)
CCured [Necula], CRED [Ruwase & Lam], 
SAFECode [Dhurjati, Kowshik & Adve]

Requires C source, programmer intervention
30% to 20X slowdowns

Good for debugging, less for deployment
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Probabilistic Memory Safety

Fully-randomized memory manager
Increases odds of benign memory errors
Ensures different heaps across users

Replication
Run multiple replicas simultaneously,
vote on results

Detects crashing & non-crashing errors

Trades space for increased reliability

DieHard: correct execution in face of errors
with high probability
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Soundness for “Erroneous” Programs

Normally: memory errors ⇒ ⊥ …
Consider infinite-heap allocator:

All news fresh;
ignore delete

No dangling pointers, invalid frees,
double frees

Every object infinitely large
No buffer overflows, data overwrites

Transparent to correct program
“Erroneous” programs sound
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Approximating Infinite Heaps

Infinite ⇒ M-heaps: probabilistic soundness

Pad allocations & defer deallocations
+ Simple
– No protection from larger overflows

– pad = 8 bytes, overflow = 9 bytes…

– Deterministic: overflow crashes everyone

Better: randomize heap
+ Probabilistic protection against errors

+ Independent across heaps

? Efficient implementation…
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Implementation Choices

Conventional, freelist-based heaps
Hard to randomize, protect from errors

Double frees, heap corruption

What about bitmaps? [Wilson90]

– Catastrophic fragmentation
Each small object likely to occupy one page

obj obj objobj

pages
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Randomized Heap Layout

Bitmap-based, segregated size classes
Bit represents one object of given size

i.e., one bit = 2i+3 bytes, etc.

Prevents fragmentation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap
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Randomized Allocation

malloc(8):
compute size class = ceil(log2 sz) – 3
randomly probe bitmap for zero-bit (free)

Fast: runtime O(1)
M=2 ⇒ E[# of probes] · 2

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST  MHERST  •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

malloc(8):
compute size class = ceil(log2 sz) – 3
randomly probe bitmap for zero-bit (free)

Fast: runtime O(1)
M=2 ⇒ E[# of probes] · 2

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

Randomized Allocation
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free(ptr):
Ensure object valid – aligned to right address
Ensure allocated – bit set
Resets bit

Prevents invalid frees, double frees

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

Randomized Deallocation
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Randomized Deallocation

free(ptr):
Ensure object valid – aligned to right address
Ensure allocated – bit set
Resets bit

Prevents invalid frees, double frees

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap
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free(ptr):
Ensure object valid – aligned to right address
Ensure allocated – bit set
Resets bit

Prevents invalid frees, double frees

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

Randomized Deallocation
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Randomized Heaps & Reliability

2 34 5 3 1 6
object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

Your Mozilla: “benign” overflow

Objects randomly spread across heap
Different run = different heap

Errors across heaps independent
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DieHard software architecture

“Output equivalent” – kill failed replicas

broadcast vote

input output

execute replicas

replica3seed3

replica1seed1

replica2seed2

Each replica has different allocator
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Results

Analytical results (pictures!)
Buffer overflows
Dangling pointer errors
Uninitialized reads

Empirical results
Runtime overhead
Error avoidance

Injected faults & actual applications
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Analytical Results: Buffer Overflows

Model overflow as write of live data
Heap half full (max occupancy)
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Analytical Results: Buffer Overflows
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Analytical Results: Buffer Overflows

Replicas: Increase odds of avoiding 
overflow in at least one replica

re
p

lic
as
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Analytical Results: Buffer Overflows

Replicas: Increase odds of avoiding 
overflow in at least one replica

re
p

lic
as

P(Overflow in all replicas) = (1/2)3 = 1/8
P(No overflow in ≥ 1 replica) = 1-(1/2)3 = 7/8
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Analytical Results: Buffer Overflows

F = free space
H = heap size
N = # objects 
worth of 
overflow
k = replicas

Overflow one object



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST  MHERST  •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Empirical Results: Runtime
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Empirical Results: Runtime
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Empirical Results: Error Avoidance

Injected faults:
Dangling pointers (@50%, 10 allocations)

glibc: crashes; DieHard: 9/10 correct

Overflows (@1%, 4 bytes over) –
glibc: crashes 9/10, inf loop; DieHard: 10/10 correct

Real faults:
Avoids Squid web cache overflow

Crashes BDW & glibc

Avoids dangling pointer error in Mozilla
DoS in glibc & Windows
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Conclusion
Randomization + replicas =
probabilistic memory safety

Improves over today (0%)
Useful point between absolute 
soundness (fail-stop) and 
unsound

Trades hardware resources 
(RAM,CPU) for reliability

Hardware trends
Larger memories, multi-core CPUs

Follows in footsteps of
ECC memory, RAID
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DieHard software

http://www.cs.umass.edu/~emery/diehard

Linux, Solaris (stand-alone & replicated)
Windows (stand-alone only)


