
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

DieHard:
Probabilistic Memory Safety for
Unsafe Programming Languages

Emery Berger
University of Massachusetts

Amherst

Ben Zorn
Microsoft Research

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Problems with Unsafe Languages

C, C++: pervasive apps, but langs.
memory unsafe
Numerous opportunities for security
vulnerabilities, errors

Double free
Invalid free

Uninitialized reads
Dangling pointers
Buffer overflows (stack & heap)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Current Approaches

Unsound, may work or abort
Windows, GNU libc, etc., Rx [Zhou]

Unsound, will definitely continue
Failure oblivious [Rinard]

Sound, definitely aborts (fail-safe)
CCured [Necula], CRED [Ruwase & Lam],
SAFECode [Dhurjati, Kowshik & Adve]

Requires C source, programmer intervention
30% to 20X slowdowns

Good for debugging, less for deployment

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Probabilistic Memory Safety

Fully-randomized memory manager
Increases odds of benign memory errors
Ensures different heaps across users

Replication
Run multiple replicas simultaneously,
vote on results

Detects crashing & non-crashing errors

Trades space for increased reliability

DieHard: correct execution in face of errors
with high probability

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Soundness for “Erroneous” Programs

Normally: memory errors ⇒ ⊥ …
Consider infinite-heap allocator:

All news fresh;
ignore delete

No dangling pointers, invalid frees,
double frees

Every object infinitely large
No buffer overflows, data overwrites

Transparent to correct program
“Erroneous” programs sound

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Approximating Infinite Heaps

Infinite ⇒ M-heaps: probabilistic soundness

Pad allocations & defer deallocations
+ Simple
– No protection from larger overflows

– pad = 8 bytes, overflow = 9 bytes…

– Deterministic: overflow crashes everyone

Better: randomize heap
+ Probabilistic protection against errors

+ Independent across heaps

? Efficient implementation…

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Implementation Choices

Conventional, freelist-based heaps
Hard to randomize, protect from errors

Double frees, heap corruption

What about bitmaps? [Wilson90]

– Catastrophic fragmentation
Each small object likely to occupy one page

obj obj objobj

pages

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Randomized Heap Layout

Bitmap-based, segregated size classes
Bit represents one object of given size

i.e., one bit = 2i+3 bytes, etc.

Prevents fragmentation

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Randomized Allocation

malloc(8):
compute size class = ceil(log2 sz) – 3
randomly probe bitmap for zero-bit (free)

Fast: runtime O(1)
M=2 ⇒ E[# of probes] · 2

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

malloc(8):
compute size class = ceil(log2 sz) – 3
randomly probe bitmap for zero-bit (free)

Fast: runtime O(1)
M=2 ⇒ E[# of probes] · 2

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

Randomized Allocation

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

free(ptr):
Ensure object valid – aligned to right address
Ensure allocated – bit set
Resets bit

Prevents invalid frees, double frees

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

Randomized Deallocation

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Randomized Deallocation

free(ptr):
Ensure object valid – aligned to right address
Ensure allocated – bit set
Resets bit

Prevents invalid frees, double frees

00010001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

free(ptr):
Ensure object valid – aligned to right address
Ensure allocated – bit set
Resets bit

Prevents invalid frees, double frees

00000001 1010 10
size = 2i+3 2i+4 2i+5

metadata

heap

Randomized Deallocation

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Randomized Heaps & Reliability

2 34 5 3 1 6
object size = 2i+4object size = 2i+3

…

11 6 3 2 5 4 …

My Mozilla: “malignant” overflow

Your Mozilla: “benign” overflow

Objects randomly spread across heap
Different run = different heap

Errors across heaps independent

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

DieHard software architecture

“Output equivalent” – kill failed replicas

broadcast vote

input output

execute replicas

replica3seed3

replica1seed1

replica2seed2

Each replica has different allocator

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Results

Analytical results (pictures!)
Buffer overflows
Dangling pointer errors
Uninitialized reads

Empirical results
Runtime overhead
Error avoidance

Injected faults & actual applications

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

Model overflow as write of live data
Heap half full (max occupancy)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

Model overflow as write of live data
Heap half full (max occupancy)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

Model overflow as write of live data
Heap half full (max occupancy)

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

Replicas: Increase odds of avoiding
overflow in at least one replica

re
p

lic
as

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

Replicas: Increase odds of avoiding
overflow in at least one replica

re
p

lic
as

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

Replicas: Increase odds of avoiding
overflow in at least one replica

re
p

lic
as

P(Overflow in all replicas) = (1/2)3 = 1/8
P(No overflow in ≥ 1 replica) = 1-(1/2)3 = 7/8

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Analytical Results: Buffer Overflows

F = free space
H = heap size
N = # objects
worth of
overflow
k = replicas

Overflow one object

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Empirical Results: Runtime

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Empirical Results: Runtime

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Empirical Results: Error Avoidance

Injected faults:
Dangling pointers (@50%, 10 allocations)

glibc: crashes; DieHard: 9/10 correct

Overflows (@1%, 4 bytes over) –
glibc: crashes 9/10, inf loop; DieHard: 10/10 correct

Real faults:
Avoids Squid web cache overflow

Crashes BDW & glibc

Avoids dangling pointer error in Mozilla
DoS in glibc & Windows

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

Conclusion
Randomization + replicas =
probabilistic memory safety

Improves over today (0%)
Useful point between absolute
soundness (fail-stop) and
unsound

Trades hardware resources
(RAM,CPU) for reliability

Hardware trends
Larger memories, multi-core CPUs

Follows in footsteps of
ECC memory, RAID

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science •• PLDI 2006PLDI 2006

DieHard software

http://www.cs.umass.edu/~emery/diehard

Linux, Solaris (stand-alone & replicated)
Windows (stand-alone only)

