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Motivation: Image Server

Client
Requests image @ 
desired quality, size

Server
Images: RAW
Compresses to JPG
Caches requests
Sends to client

http://server/Easter-bunny/
200x100/75

not found

client

image
server
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Problem: Concurrency

Sequential fine until:
More clients
Bigger server

Multicores, multiprocessors

One approach: threads
Limit reuse,
risk deadlock,
burden programmer
Complicate debugging
Mixes program logic & 
concurrency control clients

image
server
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The Flux Programming Language

Flux = Components + Flow + Atomicity
Components = off-the-shelf C, C++, or Java
Flow = path through components

Implicitly parallel
Atomicity = lightweight constraints

Compiler generates:
Deadlock-free server

Runtime independent (threads, events, …)
Discrete event simulator

High-performance & deadlock-free
concurrent programming w/ sequential components
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Outline

Intro to Flux: building a server
Components
Flows
Atomicity

Performance results
Server performance
Performance prediction

Future work
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Flux Server: Main

Source: one flow per connection
Conceptually: separate thread
Executes inside implicit infinite loop

ReadRequest WriteCompress Complete
Listen

ReadRequest WriteCompress Complete
ReadRequest WriteCompress Complete

source Listen → Image;

image server
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Flux Image Server

ReadRequest WriteCompress Complete

libjpeg sockethttp http

Basic image server requires:
HTTP parsing (http)
Socket handling (socket)
JPEG compression (libjpeg)

Single flow implements basic server:

Image = ReadRequest → Compress → Write → Complete;

image server
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Listen

Adding Caching

Cache frequently requested images
Increase performance

Direct data flow with predicates
Type test applied to output

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete
hit

typedef hit TestInCache;
Handler:[_,_,hit] = ;
Handler:[_,_,_] = ReadFromDisk → Compress → StoreInCache;

handler

handler
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Listen

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Completehit
ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Completehit

Supporting Concurrency
Many clients = concurrent flows

Must keep cache consistent

Atomicity constraints
Same name = mutual exclusion
Multiple names, reader/writer, per-client (see paper)

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Completehit

atomic CheckCache {cacheLock};
atomic Complete {cacheLock};
atomic StoreInCache {cacheLock};

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete

hit

handler

handler
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Preventing Deadlock

Naïve execution can deadlock

Establish canonical lock order
Currently alphabetic by name

atomic A: {z,y};
atomic B: {y,z};

atomic A: {y,z};
atomic B: {y,z};
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Preventing Deadlock, II

A = B;
C = D;
atomic A{z};
atomic B{y};
atomic C{y,z}

B
A

C
B

A:{z}
C

B
A:{z}

C:{y}

A = B;
C = D;
atomic A{y,z};
atomic B{y};
atomic C{y,z}

Harder with abstract nodes

Solution: Elevate constraints

B
A:{y,z}

C
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Listen

Finally: Handling Errors

What if image requested doesn’t exist?
Error = negative return value from component

Can designate error handlers
Go to alternate paths on error

FourOhFour

handle error ReadInFromDisk → FourOhFour;

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete

hit

handler

handler
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Complete Flux Image Server

Listen
image
server

Concise, readable expression of server logic
No threads, etc.: simplifies programming, debugging

source Listen → Image;
Image = 
ReadRequest → CheckCache → Handler → Write → Complete;

Handler[_,_,hit] = ;
Handler[_,_,_] = ReadFromDisk → Compress → StoreInCache;

atomic CheckCache: {cacheLock};
atomic StoreInCache: {cacheLock};
atomic Complete: {cacheLock};

handle error ReadInFromDisk → FourOhFour; 

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete

hit

handler

handler
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Outline

Intro to Flux: building a server
Components, flow
Atomicity, deadlock avoidance

Performance results
Server performance
Performance prediction

Future work
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Results

Four servers:
Image server (+ libjpeg)  [23 lines of Flux]
Multi-player online game [54]
BitTorrent (2 undergrads: 1 week!) [84]
Web server (+ PHP) [36]

Evaluation
Benchmark: variant of SPECweb99
Three different runtimes

Thread, Thread pool, Event-Driven

Compared to Capriccio [SOSP03], SEDA [SOSP01]
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Web Server
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Performance Prediction

observed
parameters
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Future Work

Different runtimes
Distributed architectures

Clusters

Embedded, power-aware systems
Turtles!
Embedded space similar to servers
eFlux: includes power constraints

Removes/adds flows dynamically
in response to power



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST  MHERST  •• Department of Computer ScienceDepartment of Computer Science

Conclusion

Flux: language for server 
programming

Uses sequential code
Separates logic and runtime
Deadlock-free high-
performance servers
+ simulators

flux.cs.umass.edu
Hosted by Flux web server; 
download via Flux BitTorrent

flux: from Latin fluxus,
p.p. of fluere = “to flow”



UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST  MHERST  •• Department of Computer ScienceDepartment of Computer Science

Backup Slides
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Relaxed Atomicity

Reader / writer constraints
Multiple readers or single writer

atomicatomic ReadList:    {listAccess?};
atomicatomic AddToList: {listAccess!};

Per-session constraints
One constraint per client / session

atomicatomic AddHasChunk: {chunks(session)};


