
UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Flux
A Language for Programming

High-Performance Servers

Brendan Burns, Kevin Grimaldi, Alex
Kostadinov, Emery Berger, Mark Corner

University of Massachusetts Amherst

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Motivation: Image Server

Client
Requests image @
desired quality, size

Server
Images: RAW
Compresses to JPG
Caches requests
Sends to client

http://server/Easter-bunny/
200x100/75

not found

client

image
server

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Problem: Concurrency

Sequential fine until:
More clients
Bigger server

Multicores, multiprocessors

One approach: threads
Limit reuse,
risk deadlock,
burden programmer
Complicate debugging
Mixes program logic &
concurrency control clients

image
server

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

The Flux Programming Language

Flux = Components + Flow + Atomicity
Components = off-the-shelf C, C++, or Java
Flow = path through components

Implicitly parallel
Atomicity = lightweight constraints

Compiler generates:
Deadlock-free server

Runtime independent (threads, events, …)
Discrete event simulator

High-performance & deadlock-free
concurrent programming w/ sequential components

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Outline

Intro to Flux: building a server
Components
Flows
Atomicity

Performance results
Server performance
Performance prediction

Future work

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Flux Server: Main

Source: one flow per connection
Conceptually: separate thread
Executes inside implicit infinite loop

ReadRequest WriteCompress Complete
Listen

ReadRequest WriteCompress Complete
ReadRequest WriteCompress Complete

source Listen → Image;

image server

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Flux Image Server

ReadRequest WriteCompress Complete

libjpeg sockethttp http

Basic image server requires:
HTTP parsing (http)
Socket handling (socket)
JPEG compression (libjpeg)

Single flow implements basic server:

Image = ReadRequest → Compress → Write → Complete;

image server

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Listen

Adding Caching

Cache frequently requested images
Increase performance

Direct data flow with predicates
Type test applied to output

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete
hit

typedef hit TestInCache;
Handler:[_,_,hit] = ;
Handler:[_,_,_] = ReadFromDisk → Compress → StoreInCache;

handler

handler

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Listen

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Completehit
ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Completehit

Supporting Concurrency
Many clients = concurrent flows

Must keep cache consistent

Atomicity constraints
Same name = mutual exclusion
Multiple names, reader/writer, per-client (see paper)

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Completehit

atomic CheckCache {cacheLock};
atomic Complete {cacheLock};
atomic StoreInCache {cacheLock};

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete

hit

handler

handler

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 10

Preventing Deadlock

Naïve execution can deadlock

Establish canonical lock order
Currently alphabetic by name

atomic A: {z,y};
atomic B: {y,z};

atomic A: {y,z};
atomic B: {y,z};

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 11

Preventing Deadlock, II

A = B;
C = D;
atomic A{z};
atomic B{y};
atomic C{y,z}

B
A

C
B

A:{z}
C

B
A:{z}

C:{y}

A = B;
C = D;
atomic A{y,z};
atomic B{y};
atomic C{y,z}

Harder with abstract nodes

Solution: Elevate constraints

B
A:{y,z}

C

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Listen

Finally: Handling Errors

What if image requested doesn’t exist?
Error = negative return value from component

Can designate error handlers
Go to alternate paths on error

FourOhFour

handle error ReadInFromDisk → FourOhFour;

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete

hit

handler

handler

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Complete Flux Image Server

Listen
image
server

Concise, readable expression of server logic
No threads, etc.: simplifies programming, debugging

source Listen → Image;
Image =
ReadRequest → CheckCache → Handler → Write → Complete;

Handler[_,_,hit] = ;
Handler[_,_,_] = ReadFromDisk → Compress → StoreInCache;

atomic CheckCache: {cacheLock};
atomic StoreInCache: {cacheLock};
atomic Complete: {cacheLock};

handle error ReadInFromDisk → FourOhFour;

ReadRequest

ReadInFromDisk

WriteCheckCache

Compress StoreInCache

Complete

hit

handler

handler

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Outline

Intro to Flux: building a server
Components, flow
Atomicity, deadlock avoidance

Performance results
Server performance
Performance prediction

Future work

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 15

Results

Four servers:
Image server (+ libjpeg) [23 lines of Flux]
Multi-player online game [54]
BitTorrent (2 undergrads: 1 week!) [84]
Web server (+ PHP) [36]

Evaluation
Benchmark: variant of SPECweb99
Three different runtimes

Thread, Thread pool, Event-Driven

Compared to Capriccio [SOSP03], SEDA [SOSP01]

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 16

Web Server

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 17

Performance Prediction

observed
parameters

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science 18

Future Work

Different runtimes
Distributed architectures

Clusters

Embedded, power-aware systems
Turtles!
Embedded space similar to servers
eFlux: includes power constraints

Removes/adds flows dynamically
in response to power

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Conclusion

Flux: language for server
programming

Uses sequential code
Separates logic and runtime
Deadlock-free high-
performance servers
+ simulators

flux.cs.umass.edu
Hosted by Flux web server;
download via Flux BitTorrent

flux: from Latin fluxus,
p.p. of fluere = “to flow”

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Backup Slides

UUNIVERSITY OF NIVERSITY OF MMASSACHUSETTS ASSACHUSETTS AAMHERST MHERST •• Department of Computer ScienceDepartment of Computer Science

Relaxed Atomicity

Reader / writer constraints
Multiple readers or single writer

atomicatomic ReadList: {listAccess?};
atomicatomic AddToList: {listAccess!};

Per-session constraints
One constraint per client / session

atomicatomic AddHasChunk: {chunks(session)};

