Compositional Development of Performance Models in POEMS

J. C. Browne and E. Berger A. Dube
Department of Computer Science Microsoft Corporation
University of Texas Redmond, Washington 98052
Austin, TX 78712 adube@Exchange.Microsoft.com

{ browne,emery} @cs.utexas.edu

Abstract

Performance models are software systems where the components implement abstractions
of the behavior of a total system. This paper describes a capability for semi-automatic
development of performance models of computer systems spanning applications,
operating systems and hardware by composition from a library of components.
Compositional development of performance models is a domain specific instance of the
general problem of software component reuse or design reuse. The concepts enabling
compositional development of performance models in POEMS are encapsulation of
analysis level objects with associative interfaces and hierarchical dynamic data flow
graphs as a structuring model. Objects with associative interfaces will be called
compositional objects. Compositional objects and hierarchical dynamic data flow graphs
provide a framework for development of performance models which incorporate multiple
modes of evaluation, span multiple semantic domains, span multiple levels of abstraction
and parallel implementation. Algorithms for composition through associative interfaces

with automatic generation of parallel executables for the performance models will be
defined.

1. Introduction

The goal of the Performance Oriented End-to-end Modeling System (POEMS)
project is to create and experimentally evaluate a problem solving environment for end-
to-end performance modeling of complex parallel/distributed systems, spanning
application software, runtime and operating system software, and hardware architecture.
The POEMS project combines innovations from communication models, data mediation,
parallel programming, performance modeling, software engineering, and CAD/CAE to
realize this goal. The motivation for POEMS is that determining the end-to-end
performance of large-scale parallel and distributed systems across all stages of design
enables more effective development of these complex software/hardware systems. But if
performance modeling is to be useful then the cost and effort of developing performance
models must be a small fraction of the cost of system development. Compositional
development of performance models from libraries of models of components is a
necessary ingredient of cost/effort minimization for development of performance models.

The POEMS compositional process has been sketched in [1]. This paper extends
the overview given in [1] and adds definition and description of the algorithms for



automated composition and generation of executable parallel programs for performance
models.

1.1 Definition of Terms
The terms in which performance models are defined in this paper are:

Component - A component is a logical or physical element of a system. An example of
a component is a cache in a model of the system level architecture of a processor/memory
system.

Component Model - A component model is a representation of a component which
resolves some or all of the behavior of the component. A component may be represented
by many different instances of component models.

Transaction - A transaction is a unit of work to be executed. A transaction has an
identity and a state which may persist across execution sites. Instances of transactions
cross interfaces to generate interactions among model instances. [

Interaction - A simple interaction is the flow of a transaction across component
interfaces. An interaction may be simple or compound. A compound interaction is a
sequence of simple interactions governed by a protocol.

Interface — An interface is an encapsulation of a component model. An interface
specifies the interactions in which a component model can participate both as invoker and
invokee. The interactions in which a component model can participate are specified in
the interface by an associative characterization of its behavior. (Section 2.3)

1.2 Performance Models as Software Systems
Performance models are software systems with characteristics as follows:

(a) Performance models span three (or more) semantic domains:
(i) An application domain,
(i) The operating system and the runtime systems used by the application,
(iii) The hardware architecture of the execution environment.

Any given model may or may not explicitly incorporate all three domains.

(b) Components are frequently defined at multiple levels of resolution in a performance
model. Transactions may have to be translated across levels of resolution of component
models.

(c) Multiple methods of evaluation (different simulators and/or a mixture of procedural
and analytic evaluation methods) may be applied to components of a given system model.
(d) Performance models must maintain a logical clock.

The result of these characteristics is that end-to-end performance models of computer
systems are software systems which are challenging to develop. But the individual



components of performance-oriented models of computer systems typically have
relatively simple and precise semantics.

1.3 Overview

Section 2 defines and describes the conceptual framework for automated
composition of performance models, Section 3 gives the algorithms for composition and
trandation. Section 4 gives the current status of the project. Section 5 briefly surveys
related research.

2. Conceptual Framework.

The conceptual elements of the POEMS process for automated composition of
performance models from components are:

(a) Abstraction hierarchies.

(b) Domain and object models [16, 14, 5].

(c) Associative interfaces [3] which are used to encapsulate standard objects to create
compositional objects.

(d) Dynamic hierarchical dependence graphs [12] as a uniform structuring mechanism for
the software systems implementing performance models.

The familiar concepts, abstraction hierarchies, standard object models and data flow
graphs, will be treated only briefly to sketch their use in the compositional process.

2.1 Abstraction Hierarchies

Abstraction hierarchies decompose a system into layers of coherent semantic
elements. The obvious abstraction hierarchy for representation of end-to-end models of
computer systems is shown in Figure 1. Each layer of the abstraction hierarchy defines a
Semantic domain for the development of an object model of components and component
models for that domain.

Application

Operating System and Runtime Systems

Hardware Architecture

Figure 1 - Abstraction Hierarchy for Performance Models of Computer Systems

Each layer has quite different functionality and different models of computation.
Typically software is represented in an asynchronous model of computation which may
be either sequential or parallel. Operating systems are typically defined in an
asynchronous parallel model of computation. The operations of software systems are



often of substantial semantic complexity. Applications such as matrix computations are
composed from operations which are very different from the operations such as
scheduling and queue management which are characteristic of operating systems.
Hardware is typically represented in a synchronous parallel model of computation in
which the operations have simple semantics.

Components in lower levels of the abstraction hierarchy are referred to as being in
the implementing domains for the higher level objects.

2.2 Domain and Object Models

Development of object models [16, 14, 5] for software systems begins with
partitioning of systems into coherent semantic domains. This partitioning we accomplish
for computer system models with definition of the abstraction hierarchy of Figure 1.

The first step in development of an object model for a domain is to identify the
objects (in our case components) which occur in the domain. Identification of objects and
thus components in the application domain of our abstraction hierarchy follows the
conventional process [16, 14, 5]. Identification of objects (components) in the operating
system and hardware architecture domains is determined by the systems being modeled
and by the level of resolution at which the models are defined.

The properties of each object are defined in terms of a set of attributes which
characterize the states and behaviors of the objects. Each attribute is a simple or
enumerated type where the value set is determined by domain experts as a part of domain
analysis. Objects which are to represent component models for performance models of
computer systems require additional attributes including the level of resolution of the
models for the components and the mode of evaluation of the component models. For
example, a “resolution” attribute will specify a measure of the faithfulness with which a
component model represents the actual component.

The third step in definition of standard objects is usually the definition of
relationships among objects. The associative interface carries the information captured in
relationships. The compositional process implicitly determines the relationships among
objects.

We use a simplified model of hardware architecture at the memory system level
to illustrate associative interfaces and compositional objects. The components (=objects)
of a hardware architecture at the memory system level include caches and memories. A
cache object might have as attributes: size, mapping algorithm, and line width. A
Mmemory object might have as attributes: size, line width and latency. The simple system
model given following couples a cache directly to a memory. This simplification
corresponds to a system where bus delay is ignored. This simple example does not
require the full capabilities of compositional objects but it demonstrates the fundamentals
of associative interfaces. An example of a segment of a generic object model for a
memory architecture with cache and memory components is seen in Figure 2.

A set of component models for the memory system architecture domain might include
four or five instances of the cache component, each with a different set of attribute
values.



2.3 Associative Interfaces and Compositional Objects

Associative interfaces encapsulate standard objects (components) with an
interface which specifies all of the interactions in which a component model can
participate and which specifies the behaviors it implements in terms of the attributes
which define the behavior and the states of the standard objects. An associative interface
has two elements: an accepts interface and a requests interface.

Cache Memory
*Map *Size

*Size *Line Width
*Line Width *Latency

* Resolution * Resolution
* Status * Status

Figure 2 — Object Definitions of Cache and Memory Components

The accepts interface for a component is a set of three tuples (profile, transaction,
protocol).

A profileis a set of attribute/value pairs.

A transaction specifies the functionality and the parameters of the units of work which
are executed on a given interaction by this instance of the component.

A protocol defines the sequence of simple interactions necessary to complete the
interaction specified by this accepts interface entry. The two allowed values of protocol
are “call return” and “data flow.”

The requests interface is a set of three-tuples (selector, transaction, protocol).

A selector is a conditional expression over the attributes of the objects in its domain and
the other domains with which it has interactions. The conditional expression of a selector
is a template with slots for attribute name/value pairs specified in the profiles of other
object instances. A selector is said to match a profile whenever the conditional
expression of the selector evaluates to true when the attribute values from the profile are
inserted into or compared with the slots in the template of the conditional expression.
Figure 3 shows an instance of a cache object encapsulated with accept and request
interfaces.

The informal syntax of accepts and requests interface tuples is

Accepts <Component name> {profile([attribute/value pairs];
transaction= transaction specification;
protocol = protocol specification }



Requests <Component name> {selector(conditional expression over attributes);
transaction = transaction specification;
protocol = protocol specification }

A compositional object may have multiple accepts and requestsin its associative
interface. Multiple accepts arise when a component model implements more than one
behavior. Multiple requests arise from requirements for parallel execution and/or
requests targeting different domains. A component model may have a request instance
for a service from an implementing domain and a request instance for continuation of
execution in its own domain.

The compositional object specification of a cache component model given in
Figure 3 accepts transaction "return-value" for the value associated with a given address
and either "returns” the value or invokes a component model of a memory to "fetch” the
value if necessary. The "Resolution = trace" attribute selection in the profile stipulates
that this instance of a cache model is capable of accepting actual address traces. This
selection implies (but does not guarantee) that this component model of a cache
maintains its storage state. The requests interface has a "Resolution = any" specification
which implies that the memory model need not resolve addresses. That is, the memory
model may simply return a "value" after a time delay. The memory model also has a
"return-value" transaction.

Accepts Cache-CPU

{profile (Map = direct, Resolution = trace, Size = 256K, Line Width = 32B,
Status = accept-address);

transaction = return-val ue(address);

protocol = call return }

*Size

*Line Width
* Resolution
* Status

Requests Cache-Memory

{selector = (Memory, Resolution = any, Line Width = 32B, latency = 0.5,
Status = accept-address);

transaction = return-val ue(address);

protocol = (call return)}

Figure 3 — Compositional Object for a Cache Component

In general components require entries in the Accepts and Requests interfaces for
every interaction. However, the Cache component model does not require a Requests
interface entry for returning a value to the CPU component model since the Cache
component model is invoked through a synchronous protocol. Similarly the Memory



Component model does not require a Requests interface entry for returning a value to the
Cache component since it is invoked only through a call return protocol.

Associative interfaces, together with a runtime system carry the information
necessary: to enable matching of component models, to invoke runtime system
procedures, to implement translation of transactions across levels of abstraction and to
sequence interactions to implement protocols required by the matchings between
component models. Translation of transactions across levels of abstraction is a
generalization of the compiler mechanism of type coercion. In this case, since the cache
model transaction sends an address, compilation of the model will drop the argument
"address" if the available memory model does not use the address.

An instance of a memory component model with an accepts interface which will match
the requests interface of the cache component model of Figure 3 is given in Figure 4.

2.4 Specification of Object Behaviors

In most variants of the standard object model the behavior of objects are defined
by some type of state machines which transition among the set of states defined by the
allowed values of the attributes of the object. The operations which implement the
actions associated with a state transition are initiated by the arrival of an event. Selector-
transaction pairs in POEMS correspond closely to events in the standard object model.
The composition process described following binds events (selector/transaction/protocol
tuples) to actions (profile/transaction/protocol tuples).

Accepts Memory-Cache

{profile = (Memory, Resolution = trace, Line Width = 32B,Status = accept-
address)

transaction = (return-val ue(address))

protocol = (call return)}

Memory

*Line Width
*Size
*Latency

* Resolution

Figure 4 — Compositional Object Model for a Memory Component

The behavior of a component model will be described by either of:
(i) one or more programs written in some simulation language, Maisie [2],
SES/Workbench [17] or SimpleScalar [6]
(i1) one or more programs which supply a value determined by an analytical solution of a
behavioral specification or
(ii1) the actual source or executable code of the component model.

The arrival of a selector/transaction pair will cause the invocation of the operation
of the transaction in the selected component.



2.5 Program Structure

A PSL (POEMS Specification Language) program consists of a set of component
models and a set of attribute/value pairs from each domain. The set of component
models consists of a mandatory Start node, a set of component models which the analyst
specifically wants to include in the performance model and a mandatory Stop node. A
Start node has only a requests interface. A Stop node has only an accepts interface. The
set of component models included in the program can range from the complete set of
component models which are to be composed to the empty set. Composition is initiated
by the requests interfaces of the Start node and terminates with the accepts interfaces of
the Stop node.

The component models for each domain are kept in a database which is accessible
to analysts and to the compilers and translators. The database will include definitions of
transaction types and definitions of type coercion routines for mapping among transaction
types. The database will also include definitions of the protocols for implementation of
multi-step interactions.

The database will be populated by analysts constructing components in
conformance to the object model and entering them into the domain model database.
Analysts will be able to extend the domain models by defining new objects, attributes and
relationships as required.

3. Compositional and Translation of PSL Programs into System Models
3.1 Composition Algorithm

Composition of component models is accomplished through matching of
component model interfaces. A selector expression is a conditional expression over the
values of the attributes of the domains of the system model. When evaluated using the
attribute values of a profile, a selector is said to match the profile whenever it evaluates to
true. A match that causes the selector to evaluate to true selects an object as the target of
an interaction. The match is completed and the component models are bound only if the
transactions of the requests interface entry and the accepts interface entry are
conformable and if the protocol specifications of the requests interface entry and the
accepts interface entry are identical. Transactions are conformable if the signatures either
match or the POEMS component model library includes a routine to translate the
parameters of the transaction in the requests interface instance to the parameters of the
transaction in the matched accepts interface and vice versa.

The composition algorithm is as follows:

a) The compositional compiler attempts to find matches for the entries in the
requests interface of the Start node. Search begins with the set of component
models in the initial set provided by the analyst and proceeds to the
component data base if necessary. Type coercion of transaction parameters is
done where necessary.



b) The compiler then attempts to match the entries in the requests interfaces of
the component models bound to the start node in step a to the accepts
interfaces of the component models in the analyst supplied component model
set or in the component model data base.

C) The matching process continues until the requests interfaces of all of the
selected component models terminate on the accepts interfaces of the Stop
node.

d) If any entry in the requests interface of any component model which has been
bound to the system model cannot be matched the compiler generates a
message notifying the analyst that system model composition cannot be
completed.

The result of a successtul application of the composition algorithm is a directed
graph program structure where the bound components define an end-to-end performance
model. The next step is to instantiate this program structure into an executable parallel
program.

3.2 Translation to Executable

The executable program is realized by instantiating the PSL data flow graph
program as a program in the CODE [12] parallel programming system.

The source code for CODE is a generalized hierarchical dynamic dependence
graph (HDGDGs) [12]. Each node in a CODE HDGDG is either a type declaration for a
node which executes an atomic computation or a type definition of a subgraph. Each
node consists of a set of input ports, firing rule, a computation, a routing rule and a set of
output ports. (Information on CODE can be found at the url
http://www.cs.utexas.edu/users/code.) Ports are typed containers for values. Firing rules
are predicates over the states of the input ports. The computation is a C function or
procedure. Routing rules are predicates over the state of the computation and the input
ports which map values to output ports. Each arc in the HDGDFG carries data from an
output port of one instance of a node type to an input port of some instance of some node
type. Arcs are conceptually unbounded FIFO queues. The connectivity of the graph is
determined by the matches among the associative interfaces of the component models.
The number of instances of each node is specified as a parameter which can be varied at
runtime.

Translation of the nodes and arcs of the data flow graph generated by the
composition algorithm to the nodes and arcs of a CODE graph is straightforward. The
translation converts each node in the PSL data flow graph to a node in the CODE
HDDFG format. An input port is generated for each accepts transaction which has been
matched. An output port is generated for each requests transaction which has been
matched. The firing rule for the CODE nodes is either an “and” over all of the input
ports or an “exclusive or” over all of the input ports. Each binding of a requests interface
entry to an accepts interface entry is converted into a CODE arc binding an output port to
an input port. Call return protocols generate arc pairs. Data flow protocols generate a
single arc.

3.4 Data Flow Graph Based Management of Simulation Time



Execution of discrete event simulation models in general and performance models
with components which use discrete event simulation as an evaluation mechanism
requires explicit management of simulation time. Parallel and distributed
implementations of discrete event simulations have been and are a major research
problem. A recent survey of research in parallel and distributed simulation is given by
Low, et. al. [11]. We sketch briefly here the data flow graph based mechanism used for
management of simulation time in the parallel/distributed discrete event programs
generated by the PSL compilation system.

a) The simulation time is set to zero by the Start node.

b) Each node maintains a local simulation time clock.

c) Each source/sink node pair which is connected by a data arc also has a clock
arc which sends the local time at which the atomic execution of the source
node terminated to the sink node.

d) The set of local clocks are updated by the Lamport algorithm [10].

This simulation clock maintains causality consistent with some paralléel execution of the
system represented by the performance model. A paper describing this mechanism for
management of simulation time is in preparation.

4. Status and Summary

A specification language for performance models based on compositional objects
as described in this paper has been defined [7]. A feasibility demonstration compiler
which maps programs written in this specification language to the CODE [12] parallel
programming system has been written [7]. Simple models have been translated to
CODE. The models and the translations can be found in [7]. A more robust compiler is
under development.

5. Related Research

Space limitations preclude detailed discussion of the great volume of conceptually
related work. Associative interfaces have been adapted from Bayerdorffer's [3, 4]
associative broadcast model of communication. The most directly related work is the
Linda [9] programming system. Linda and associative interactions are both instances of a
communication model derived from the top classification of a taxonomy of naming
models [3]. (Java Spaces [18] is a distributed form of Linda.) Concepts equivalent to
associative interfaces have long been used in research on knowledge based systems [8].
Associative interfaces are also generalizations of typed ports which have a long history in
both operating systems and programming systems. Object brokers, for example Corba
[13], and COM/DCOM [15] implement composition through some type of mediation
interface.

6. Acknowledgements

10



This work was supported by DARPA/ITO under Contract N66001-97-C-8533, “End-to-
End Performance Modeling of Large Heterogeneous Adaptive Parallel/Distributed
Computer/Communication Systems.” Formulation of the composition, translation and
time management algorithms owes much to the members (V. Adve, R. Bagrodia, E.
Deelman, E. Houstis, P. Teller, J. Rice and M. Vernon) of the POEMS project.

7. References

[1] Adve, V., R. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. Houstis, J. Rice, R.
Sakellariou, D. Sundaram-Stukel, P. Teller, and M. K. Vernon. POEMS: End-to-
End Performance Design of Large Parallel Adaptive Computational Systems. To
appear in IEEE Trans. on Software Engineering (special issue on Software and
Performance).

[2] Bagrodia, R., and W. Liao. Maisie: A Language for Design of Efficient Discrete-
Event Simulations. IEEE Transactions on Software Engineering, Apr. 1994.

[3] Bayerdorfter, B., Associative Broadcast and the Communication
Semantics of Naming in Concurrent Systems, Ph.D. Dissertation, Dept. of
Computer Sciences, Univ. of Texas at Austin. Dec. 1993.

[4] Bayerdorfter, B., "Distributed Programming with Associative Broadcast",
Proceedings of the Twenty-eighth Hawaii International Conference on System
Sciences, January 1995,pp. 25-35.

[5] Booch, G., J. Rumbaugh and 1. Jacobson The Unified Modeling Language User Guide
(Addison Wesley Longmans, Reading, MA. 1999)

[6] Burger, D., and T. M. Austin, The SimpleScalar Tool Set, Version 2.0, UW CS Tech.
Rept. 1442, Madison: University of Wisconsin-Madison, June 1997.

[7] Dube, A. 1998 A Language for Compositional Development of Performance Models
and its Translation. Masters Thesis, Department of Computer Science, University
of Texas at Austin.

[8] Falknerhainer, B., and K. Forbus, Compositional Modeling: Finding the Right Model
for the Job” Artificial Intelligence 51, 95-153 (1991).

[9] Gelernter, D., N. Carriero, N. Chandran and S. Chang, Parallel Programming in Linda
Proceedings of the International Conference on Parallel Processing (St. Charles,
IL, August 1985) pp. 255-263.

[10] Lamport, L., Time, Clocks, and the Ordering of Events in a Distributed System,
Communications of the ACM 17:8, 558-565 (1978).

[11] Low, Y-H. et. al. Survey of Languages and Runtime Libraries for Parallel Discrete
Event Simulation Simulation 72:3,170-186(1999)

[12] Newton, P., and J. C. Browne The CODE 2.0 Graphical Parallel Programming
Language, Proceedings of the 1992 International Conference on Supercomputing,
Washington, DC, July 1992, pp. 177-177.

[13] The Object Management Group, The Common Object Request Broker: Architecture
and Specification. Revision 2 (OMG, June 1995)

[14] Rumbaugh, J., et. al. Object-Oriented Modeling and Design (Prentice-Hall,
Englewood Clifts, NJ, 1991)

[15] Sessions, R., COM and DCOM: Microsoft's Vision for Distributed Objects_(John
Wiley,1997)

11



[16] Shlaer, S. and S. Mellor Object Lifecycles: Modeling the World in States (Yourdon
Press, New York, 1992)

[17] SES. 1996. SES/Workbench 3.1 Users Reference Manual. SES, Austin, Texas.

[18] Sun Microsystems The Java Spaces Specification. [online] Available:
(http://www.sun.comvjini/specs/js-spec.html)

12



