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Contributory applications allow users to donate unused resources on their personal computers to

a shared pool. Applications such as SETI@home, Folding@home, and Freenet are now in wide use

and provide a variety of services, including data processing and content distribution. However,
while several research projects have proposed contributory applications that support peer-to-peer

storage systems, their adoption has been comparatively limited. We believe that a key barrier to
the adoption of contributory storage systems is that contributing a large quantity of local storage

interferes with the principal user of the machine.

To overcome this barrier, we introduce the Transparent File System (TFS). TFS provides
background tasks with large amounts of unreliable storage—all of the currently available space—

without impacting the performance of ordinary file access operations. We show that TFS allows

a peer-to-peer contributory storage system to provide 40% more storage at twice the performance
when compared to a user-space storage mechanism. We analyze the impact of TFS on replication

in peer-to-peer storage systems and show that TFS does not appreciably increase the resources

needed for file replication.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—

File Organization

General Terms: Performance

Additional Key Words and Phrases: contributory systems, fragmentation, aging, peer-to-peer

1. INTRODUCTION

Contributory applications allow users to donate unused resources from their per-
sonal computers to a shared pool. These applications harvest idle resources such
as CPU cycles, memory, network bandwidth, and local storage to serve a common
distributed system. These applications are distinct from other peer-to-peer systems
because the resources being contributed are not directly consumed by the contrib-
utor. For instance, in Freenet [Clarke et al. 2001], all users contribute storage,
and any user may make use of the storage, but there is no relationship between
user data and contributed storage. Contributory applications in wide use include
computing efforts like Folding@home [Larson et al. 2002] and anonymous publish-
ing and content distribution such as Freenet [Clarke et al. 2001]. The research
community has also developed a number of contributory applications, including
distributed backup and archival storage [Rowstron and Druschel 2001b], server-less
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network file systems [Adya et al. 2002], and distributed web caching [Freedman
et al. 2004]. However, the adoption of storage-based contributory applications has
been limited compared to those that are CPU-based.

Two major barriers impede broader participation in contributory storage sys-
tems. First, existing contributory storage systems degrade normal application
performance. While transparency—the effect that system performance is as if
no contributory application is running—has been the goal of other OS mecha-
nisms for network bandwidth [Venkataramani et al. 2002], main memory [Cipar
et al. 2006], and disk scheduling [Lumb et al. 2002], previous work on contributory
storage systems has ignored its local performance impact. In particular, as more
storage is allocated, the performance of the user’s file system operations quickly
degrades [McKusick et al. 1984].

Second, despite the fact that end-user hard drives are often half empty [Douceur
and Bolosky 1999; Huang et al. 2005], users are generally reluctant to relinquish
their free space. Though disk capacity has been steadily increasing for many years,
users view storage space as a limited resource. For example, three of the Freenet
FAQs express the implicit desire to donate less disk space [Freenet ]. Even when
users are given the choice to limit the amount of storage contribution, this option
requires the user to decide a priori what is a reasonable contribution. Users may
also try to donate as little as possible while still taking advantage of the services
provided by the contributory application, thus limiting its overall effectiveness.

Contributions: This paper presents the Transparent File System (TFS), a file
system that can contribute 100% of the idle space on a disk while imposing a
negligible performance penalty on the local user. TFS operates by storing files
in the free space of the file system so that they are invisible to ordinary files. In
essence, normal file allocation proceeds as if the system were not contributing any
space at all. We show in Section 5 that TFS imposes nearly no overhead on the local
user. TFS achieves this both by minimizing interference with the file system’s block
allocation policy and by sacrificing persistence for contributed space: normal files
may overwrite contributed space at any time. TFS takes several steps that limit this
unreliability, but because contributory applications are already designed to work
with unreliable machines, they behave appropriately in the face of unreliable files.
Furthermore, we show that TFS does not appreciably impact the bandwidth needed
for replication. Users typically create little data in the course of a day [Bolosky
et al. 2000], thus the erasure of contributed storage is negligible when compared to
the rate of machine failures.

TFS is especially useful for replicated storage systems executing across relatively
stable machines with plentiful bandwidth, as in a university or corporate network.
This environment is the same one targeted by distributed storage systems such as
FARSITE [Adya et al. 2002]. As others have shown previously, for high-failure
modes, such as wide-area Internet-based systems, the key limitation is the band-
width between nodes, not the total storage. The bandwidth needed to replicate data
after failures essentially limits the amount of storage the network can use [Blake
and Rodrigues 2003]. In a stable network, TFS offers substantially more storage
than dynamic, user-space techniques for contributing storage.

Organization: In Section 2, we first provide a detailed explanation of the in-
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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terference caused by contributory applications, and discuss current alternatives for
contributing storage. Second, we present the design of TFS in Section 3, focusing on
providing transparency to normal file access. We describe a fully operating imple-
mentation of TFS. We then explain in Section 4 the interaction between machine
reliability, contributed space, and the amount of storage used by a contributory
storage system. Finally, we demonstrate in Section 5 that the performance of our
TFS prototype is on par with the file system it was derived from, and up to twice
as fast as user-space techniques for contributing storage.

2. INTERFERENCE FROM CONTRIBUTING STORAGE

All contributory applications we are aware of are configured to contribute a small,
fixed amount of storage—the contribution is small so as not to interfere with normal
machine use. This low level of contribution has little impact on file system per-
formance and files will generally only be deleted by the contributory system, not
because the user needs storage space. However, such small, fixed-size contributions
limit contribution to small-scale storage systems.

Instead of using static limits, one could use a dynamic system that monitors
the amount of storage used by local applications. The contributory storage system
could then use a significantly greater portion of the disk, while yielding space to
the local user as needed. Possible approaches include the watermarking schemes
found in Elastic Quotas [Leonard et al. 2002] and FS2 [Huang et al. 2005]. A
contributory storage system could use these approaches as follows: whenever the
current allocation exceeds the maximum watermark set by the dynamic contribution
system, it could delete contributory files until the contribution level falls below a
lower watermark.

However, if the watermarks are set to comprise all free space on the disk, the
file system is forced to delete files synchronously from contributed storage when
writing new files to disk. In this case, the performance of the disk would be severely
degraded, similar to the synchronous cleaning problem in LFS [Seltzer et al. 1993].
For this reason, Elastic Quotas and FS2 use more conservative watermarks (e.g., at
most 85%), allowing the system to delete files lazily as needed.

Choosing a proper watermark leaves the system designer with a trade-off between
the amount of storage contributed and local performance. At one end of the spec-
trum, the system can contribute little space, limiting its usefulness. At the other
end of the spectrum, local performance suffers.

To see why local performance suffers, consider the following: as a disk fills, the
file system’s block allocation algorithm becomes unable to make ideal allocation
decisions, causing fragmentation of the free space and allocated files. This fragmen-
tation increases the seek time when reading and writing files, and has a noticeable
effect on the performance of disk-bound processes. In an FFS file system, through-
put can drop by as much as 77% in a file system that is only 75% full versus an
empty file system [Smith and Seltzer 1997]—the more storage one contributes, the
worse the problem becomes. The only way to avoid this is to maintain enough free
space on the disk to allow the allocation algorithm to work properly, but this limits
contribution to only a small portion of the disk.

Though some file systems provide utilities to defragment their disk layout, these
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Fig. 1. The time required to perform a series of file system operations while contributing different
amounts of storage. As the amount of contributed space increases, the time it takes for Ext2 to

complete the experiment also increases. However, the performance of TFS stays nearly constant.

Error bars represent standard deviation.

utilities are ineffective when there is insufficient free space on the file system. For
instance, the defragmentation utility provided with older versions of Microsoft Win-
dows will not even attempt to defragment a disk if more than 85% is in use. On
modern Windows systems, the defragmentation utility will run when the disk is
more than 85% full, but will give a warning that there is not enough free space to
defragment properly [Microsoft Corporation ]. When one wants to contribute all
of the free space on the disk, they will be unable to meet these requirements of the
defragmentation utility.

Any user-space scheme to manage contributed storage will be plagued by the
performance problems introduced by the contributed storage—filling the disk with
data inevitably slows access. Given a standard file system interface, it is simply not
possible to order the allocation of data on disk to preserve performance for normal
files. As Section 3 shows, by incorporating the mechanisms for contribution into
the file system itself, TFS maintains file system performance even at high levels of
contribution.

Figure 1 depicts this effect. This figure shows the time taken to run the copy
phase of the Andrew Benchmark on file systems with different amounts of space
being consumed. The full details of the benchmark are presented in Section 5.
As the amount of consumed space increases, the time it takes to complete the
benchmark increases. We assume that the user is using 50% of the disk space
for non-contributory applications, which corresponds to results from a survey of
desktop file system contents [Douceur and Bolosky 1999]. The figure shows that
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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contributing more than 20% of the disk space will noticeably affect the file system’s
performance, even if the contributed storage would have been completely idle. As
a preview of TFS performance, note that when contributing 35% of the disk, TFS
is twice as fast as Ext2 for copying files.

3. DESIGN AND IMPLEMENTATION OF TFS

The Transparent File System (TFS) allows users to donate storage to distributed
storage systems with minimal performance impact. Because the block allocation
policy is one of the primary determinants of file system performance, designers have
devoted considerable attention to tuning it. Accordingly, deviating from that policy
can result in a loss of performance. The presence of data on the file system can be
viewed as an obstruction which causes a deviation from the default allocation policy.
The goal of TFS is to ensure the transparency of contributed data: the presence of
contributed storage should have no measurable effect on the file system, either in
performance, or in capacity. We use the term transparent files for files which have
this property, and transparent data or transparent blocks for the data belonging to
such files. A transparent application is an application which strives to minimize its
impact on other applications running on the same machine, possibly at the expense
of its own performance.

Section 3.1 shows how we achieve transparency with respect to block allocation
in the context of a popular file system, Ext2 [Card et al. 1994]. Ext2 organizes data
on disk using several rules of thumb that group data on disk according to logical
relationships. As we show in Section 5, TFS minimally perturbs the allocation pol-
icy for ordinary files, yielding a near-constant ordinary file performance regardless
of the amount of contributed storage.

In exchange for this performance, TFS sacrifices file persistence. When TFS
allocates a block for an ordinary file, it treats free blocks and transparent blocks
the same, and thus may overwrite transparent data. Files marked transparent may
be overwritten and deleted at any time. This approach may seem draconian, but
because replicated systems already deal with the failure of hosts in the network,
they can easily deal with the loss of individual files. For instance, if one deletes a
file from a BitTorrent peer, other peers automatically search for hosts that have
the file.

The design of TFS is centered around tracking which blocks are allocated to
which kind of file, preserving persistence for normal user files, and detecting the
overwriting of files in the contributed space. As the file system is now allowed to
overwrite certain other files, it is imperative that it not provide corrupt data to
the contribution system, or worse yet, to the user. While our design can preserve
transparency, we have also made several small performance concessions which have
minimal effect on normal file use, but yield a better performing contribution system.
Additionally, file systems inevitably have hot spots, possibly leading to continuous
allocation and deallocation of space to and from contribution. These hot spots could
lead to increased replication traffic elsewhere in the network. TFS incorporates a
mechanism that detects these hot-spots and avoids using them for contribution.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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3.1 Block Allocation

TFS ensures good file system performance by minimizing the amount of work that
the file system performs when writing ordinary files. TFS simply treats transparent
blocks as if they were free, overwriting whatever data might be currently stored in
them. This policy allows block allocation for ordinary files to proceed exactly
as it would if there were no transparent files present. This approach preserves
performance for ordinary files, but corrupts data stored in transparent files. If
an application were to read the transparent file after a block was overwritten,
it would receive the data from the ordinary file in place of the data that had
been overwritten. This presents two issues: applications using transparent files
must ensure the correctness of all file data, and sensitive information stored in
ordinary files must be protected from applications trying to read transparent files.
To prevent both effects, TFS records which blocks have been overwritten so that
it can avoid treating the data in those blocks as valid transparent file data. When
TFS overwrites a transparent file, it marks it as overwritten and allocates the block
to the ordinary file.

This requires some modifications to the allocation policy in Ext2. Blocks in a
typical file system can only be in one of two states: free and allocated. In contrast,
in TFS a storage block can be in one of five states: free, allocated, transparent,
free-and-overwritten, and allocated-and-overwritten.

Figure 5 shows a state transition diagram for TFS blocks. Ordinary data can
be written over free or transparent blocks. If the block was previously used by
transparent data, the file system marks these blocks as allocated-and-overwritten.
When a block is denoted as overwritten, it means that the transparent data has
been overwritten, and thus “corrupted” at some point. Transparent data can only
be written to free blocks. It cannot overwrite allocated blocks, other transparent
blocks, or overwritten blocks of any sort.

Figures 2, 3, and 4 show how these states are used from the perspective of the
block map. Figure 2 illustrates what happens when new user data is allocated
near contributed space. In a non-TFS file system, the user’s data is allocated non-
contiguously around the contributed storage. This will cause an unnecessary seek
during the write operation, and also during subsequent reads of this data. On the
other hand, TFS allows the user’s data to simply overwrite the contributed space
to maintain its preferred layout policy.

Figure 3 shows what happens when contributed storage is freed. Both figures
start off in the states they were in at the end of the scenario in figure 2. When the
contributed file is freed in a non-TFS file system, a small region of free space is left
between the user’s allocated blocks. This free space fragmentation will cause the
block allocator to make poor decisions in the future.

Figure 4 demonstrates the use of the last block state: free-and-overwritten. Like
Figure 3, the scenario depicted in this diagram starts after the scenario from Fig-
ure 2. In this case the user’s data is being freed instead of the contributed data.
In this case, the contributed storage that was overwritten is returned to the free
space pool. However, it is not sufficient to mark that space as free, since other
transparent files may try to allocate that storage. To avoid this, they are marked
as free-and-overwritten.
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Fig. 2. This figure shows how block allocation proceeds in a non-TFS and TFS file systems. In a

non-TFS system contributed space causes fragmentation in the file system.











 

Fig. 3. This figure shows how file deletion of contributed files occurs non-TFS and TFS file

systems. In the non-TFS file system the space becomes free, but fragmented, and in TFS the

space remains allocated to the user’s files.

When a process opens a transparent file, it must verify that none of the blocks
have been overwritten since the last time it was opened. If any part of the file is
overwritten, the file system returns an error to open. This signals that the file has
been deleted. TFS then deletes the inode and directory entry for the file, and marks
all of the blocks of the file as free, or allocated. As ordinary files cannot ever be
overwritten, scanning the allocation bitmaps is not necessary when opening them.
This lazy-delete scheme means that if TFS writes transparent files and never uses
them again, the disk will eventually fill with overwritten blocks that could otherwise
be used by the transparent storage application. To solve this, TFS employs a simple,
user-space cleaner that opens and closes transparent files on disk. Any corrupted
files will be detected and automatically deleted by the open operation.

Though scanning the blocks is a linear operation in the size of the file, very little
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Fig. 4. This figure demonstrates why five states are needed in the file system. If TFS did not
have an overwritten state, after a user deletion, the blocks would appear to be allocated to the

contributed file, even though they have been overwritten. With the overwritten state, it is clear

to the file system that the contributed space is no longer valid.




 
























Fig. 5. A state diagram for block allocation in TFS. The Free and Allocated states are the two

allocation states present in the original file system. TFS adds three more states.

data must be read from the disk to scan even very large files. On a typical Ext2 file
system, if we assume that file blocks are allocated contiguously, then scanning the
blocks for a 4GB file will only require 384KB to be read from the disk. In the worst
case—where the file is fragmented across every block group, and we must read
every block bitmap—approximately 9.3MB will be read during the scan, assuming
a 100GB disk.
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Many file systems, including Ext2 and NTFS, denote a block’s status using a
bitmap. TFS augments this bitmap with two additional bitmaps and provides a
total of three bits denoting one of the five states. In a 100GB file system with 4KB
blocks, these bitmaps use only 6.25MB of additional disk space. These additional
bitmaps must also be read into memory when manipulating files. However, very
little of the disk will be actively manipulated at any one time, so the additional
memory requirements are negligible.

3.2 Performance Concessions

This design leads to two issues: how TFS deals with open transparent files and
how TFS stores transparent meta-data. In each case, we make a small concession
to transparent storage at the expense of ordinary file system performance. While
both concessions are strictly unnecessary, their negative impact on performance is
negligible and their positive impact on transparent performance is substantial.

First, as TFS verifies that all blocks are clean only at open time, it prevents the file
system from overwriting the data of open transparent files. One alternative would
be to close the transparent file and kill the process with the open file descriptor if
an overwritten block is detected. However, not only would it be difficult to trace
blocks to file descriptors, but it could also lead to data corruption in the transparent
process. In our opinion, yielding to open files is the best option. We discuss other
strategies in Section 7.

It would also be possible to preserve the transparent data by implementing a
copy-on-write scheme [Peterson and Burns 2005]. In this case, the ordinary file
block would still allocate its target, and the transparent data block would be moved
to another location. This is to ensure transparency with regards to the ordinary file
allocation policy. However, to use this strategy, there must be a way to efficiently
determine which inode the transparent data block belongs to, so that it can be
relinked to point to the new block. In Ext2, and most other file systems, the file
system does not keep a mapping from data blocks to inodes. Accordingly, using
copy-on-write to preserve transparent data would require a scan of all inodes to
determine the owner of the block, which would be prohibitively expensive. It is
imaginable that a future file system would provide an efficient mapping from data
blocks to inodes, which would allow TFS to make use of copy-on-write to preserve
transparent data, but this conflicts with our goal of requiring minimal modifications
to an existing operating system.

Second, TFS stores transparent meta-data such as inodes and indirect blocks as
ordinary data, rather than transparent blocks. This will impact the usable space
for ordinary files and cause some variation in ordinary block allocation decisions.
However, consider what would happen if the transparent meta-data were overwrit-
ten. If the data included the root inode of a large amount of transparent data, all
of that data would be lost and leave an even larger number of garbage blocks in
the file system. Determining liveness typically requires a full tracing from the root
as data blocks do not have reverse mappings to inodes and indirect blocks. Storing
transparent storage metadata as ordinary blocks avoids both issues.

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Fig. 6. Cumulative histogram of two user machine’s block allocations. 70% of the blocks on
machine 2’s disk were never allocated during the test period, and 90% of the blocks were allocated

at a rate of 0.1kB/s or less. This corresponds to the rate at which TFS would overwrite transparent

data if it were to use a given amount of the disk.

3.3 Transparent Data Allocation

As donated storage is constantly being overwritten by ordinary data, one concern is
that constant deletion will have ill effects on any distributed storage system. Every
time a file is deleted, the distributed system must detect and replicate that file,
meanwhile returning errors to any peers that request it. To mitigate these effects,
TFS identifies and avoids using the hot spots in the file system that could otherwise
be used for donation. The total amount of space that is not used for donation
depends on the bandwidth limits of the distributed system and is configurable, as
shown in this section.

By design, the allocation policy for Ext2 and other logically organized file systems
exhibits a high degree of spatial locality. Blocks tend to be allocated to only a small
number of places on the disk, and are allocated repeatedly. To measure this effect,
we modified a Linux kernel to record block allocations on two user workstations
machines in our lab. A cumulative histogram of the two traces is shown in Figure 6.
Machine 1 includes 27 trace days, and machine 2 includes 13 trace days. We can
observe two behaviors from this graph. First, while one user is a lot more active
than the other, both show a great deal of locality in their access—machine 2 never
allocated any blocks in 70% of the disk. Second, an average of 1KB/s of block
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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allocations is approximately 84MB of allocations per day. Note that this is not
the same as creating 84MB/s of data per day—the trace includes many short-lived
allocations such as temporary lock files.

Using this observation as a starting point, TFS can balance the rate of block
deletion with the usable storage on the disk. Using the same mechanism that we
used to record the block allocation traces shown in Figure 6, TFS generates a trace
of the block addresses of all ordinary file allocations. It maintains a histogram of
the number of allocations that occurred in each block and periodically sorts the
blocks by the number of allocations. Using this sorted list, it finds the smallest set
of blocks responsible for a given fraction of the allocations.

The fraction of the allocations to avoid, f , affects the rate at which transparent
data is overwritten. Increasing the value of f means fewer ordinary data allocations
will overwrite transparent data. On the other hand, by decreasing the value of
f , more storage becomes available to transparent data. Because the effects of
changing f are dependent on a particular file system’s usage pattern, we have found
it convenient to set a target loss rate and allow TFS to determine automatically an
appropriate value for f . Suppose ordinary data blocks are allocated at a rate of α
blocks per second. If f is set to 0 – meaning that TFS determines that the entire
disk is usable by transparent data – then transparent data will be overwritten at a
rate approximately equal to α. The rate at which transparent data is overwritten
t is approximately β = (1 − f)α. Solving for f gives f = 1 − β

α . Using this, TFS
can determine the amount of storage available to transparent files, given a target
rate. Using this map of hot blocks in the file system, the allocator for transparent
blocks treats them as if they were already allocated to transparent data.

However, rather than tracking allocations block-by-block, we divide the disk into
groups of disk blocks, called chunks, and track allocations to chunks. Each chunk
is defined to be one eighth of a block group. This number was chosen so that each
block group could keep a single byte as a bitmap representing which blocks should
be avoided by transparent data. For the default block size of 4096 bytes, and the
maximum block group size, each chunk would be 16MB.

Dividing the disk into multi-block chunks rather than considering blocks indi-
vidually greatly reduces the memory and CPU requirements of maintaining the
histogram, and due to spatial locality, a write to one block is a good predictor of
writes to other blocks in the same chunk. This gives the histogram predictive power
in avoiding hot blocks.

It should be noted that the rate at which transparent data is overwritten is not
exactly α because, when a transparent data block is overwritten, an entire file is lost.
However, because of the large chunk size and the high locality of chunk allocations,
subsequent allocations for ordinary data tend to overwrite other blocks of the same
transparent file, making the rate at which transparent data lost approximately equal
to the rate at which blocks are overwritten.

The figure of merit is the rate of data erased for a reasonably high allocation
of donated storage. To examine TFS under various allocations, we constructed a
simulator using the block allocation traces used earlier in the section. The simulator
processes the trace sequentially, and periodically picks a set of chunks to avoid.
Whenever the simulator sees an allocation to a chunk which is not being avoided, it

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Fig. 7. This shows the simulated rate of TFS data loss when using block avoidance to avoid hot

spots on the disk. For example, when TFS allows 3% of the disk to go unused, the file system will
allocate data in the used portion of the disk at a rate of 0.1kB/s. By using block avoidance, TFS

provides more storage to contributory applications without increasing the rate at which data is

lost.

counts this as an overwrite. We ran this simulator with various fixed values of f , the
fraction of blocks to avoid, and recorded the average amount of space contributed,
and the rate of data being overwritten. Figure 7 graphs these results. Note that
the graph starts at 80% utilization. This is dependent on the highest value for
f we used in our test. In our simulation, this was 0.99999. Also notice that, for
contributions less than approximately 85%, the simulated number of overwrites is
greater than the number given in Figure 6. This is because, for very high values
of f , the simulator’s adaptive algorithm must choose between many chunks, none
of which have received very many allocations. In this case, it is prone to make
mistakes, and may place transparent data in places that will see allocations in the
near future. These results demonstrate that for machine 2’s usage pattern, TFS
can donate all but 3% of the disk, while only erasing contributed storage files at
0.08kB/s. As we demonstrate in the section 4, when compared to the replication
traffic due to machine failures, this is negligible.

3.4 TFS Implementation

We have implemented a working prototype of TFS in the Linux kernel (2.6.13.4).
Various versions of TFS have been used by one of the developers for over six months
to store his home directory as ordinary data and Freenet data as transparent data.
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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TFS comprises an in-kernel file system and a user-space tool for designating files
and directories as either transparent or opaque, called setpri. We implemented
TFS using Ext2 as a starting point, adding or modifying about 600 lines of kernel
code, in addition to approximately 300 lines of user-space code. The primary modi-
fications we made to Ext2 were to augment the file system with additional bitmaps,
and to change the block allocation to account for the states described in Section 3.
Additionally, the open VFS call implements the lazy-delete system described in the
design. In user-space, we modified several of the standard tools (including mke2fs
and fsck) to use the additional bitmaps that TFS requires. We implemented the
hot block avoidance histograms in user-space using a special interface to the kernel
driver. This made implementation and experimentation somewhat easier; however,
future versions will incorporate those functions into the kernel. An additional ben-
efit is that the file system reports the amount of space available to ordinary files
as the free space of this disk. This causes utilities such as df, which are used to
determine disk utilization, to ignore transparent data. This addresses the concerns
of users who may be worried that contributory applications are consuming their
entire disk.

In our current implementation, the additional block bitmaps are stored next to
the original bitmaps as file system metadata. This means that our implementation
is not backwards-compatible with Ext2. However, if we moved the block bitmaps
to Ext2 data blocks, we could create a completely backwards-compatible version,
easing adoption. We believe that TFS could be incorporated into almost any file
system, including Ext3 and NTFS.

4. STORAGE CAPACITY AND BANDWIDTH

The usefulness of TFS depends on the characteristics of the distributed system it
contributes to, including the dynamics of machine availability, the available band-
width, and the quantity of available storage at each host. In this section, we show
the relationship between these factors, and how they affect the amount of storage
available to contributory systems. We define the storage contributed as a function
of the available bandwidth, the uptime of hosts, and the rate at which hosts join
and leave the network. Throughout the section we will be deriving equations which
will be used in our evaluation.

4.1 Replication Degree

Many contributory storage systems use replication to ensure availability. However,
replication limits the capacity of the storage system in two ways. First, by storing
redundant copies of data on the network, there is less overall space [Bhagwan et al.
2004]. Second, whenever data is lost, the system must create a new replica.

First we calculate the degree replication needed as a function of the average node
uptime. We assume that nodes join and leave the network independently. Though
this assumption is not true in the general case, it greatly simplifies the calculations
here, and holds true in networks where the only downtime is a result of node
failures, such as a corporate LAN. In a WAN where this assumption does not hold,
these results still provide an approximation which can be used as insight towards
the system’s behavior. Mickens and Noble provide a more in-depth evaluation of
availability in peer-to-peer networks [Mickens and Noble 2006].
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To determine the number of replicas needed, we use a result from Blake and
Rodrigues [Blake and Rodrigues 2003]. If the fraction of time each host was online
is u, and each file is replicated r times, then the probability that no replicas of a
file will be available at a particular time is

(1 − u)r. (1)

To maintain an availability of a, the number of replicas must satisfy the equation

a = 1 − (1 − u)r. (2)

Solving for r gives the number of replicas needed.

r =
ln(1 − a)
ln(1 − u)

(3)

We consider the desired availability a to be a fixed constant. A common rule of
thumb is that “five nines” of availability, or a = 0.99999 is acceptable, and the value
u is a characteristic of host uptime and downtime in the network. Replication could
be accomplished by keeping complete copies of each file, in which case r would have
to be an integer. Replication could also be implemented using a coding scheme that
would allow non-integer values for r [Rodrigues and Liskov 2005], and a different
calculation for availability. In our analysis, we simply assume that r can take any
value greater than 1.

4.2 Calculating the Replication Bandwidth

The second limiting effect in storage is the demand for replication bandwidth.
As many contributory systems exhibit a high degree of churn, the effect of hosts
frequently joining and leaving the network [Stutzbach and Rejaie 2004; Goedfrey
et al. 2006], repairing failures can prevent a system from using all of its available
storage [Blake and Rodrigues 2003]. When a host leaves the network for any reason,
it is unknown when or if the host will return. Accordingly, all files which the host
was storing must be replicated to another machine. For hosts that were storing a
large volume of data, failure imposes a large bandwidth demand on the remaining
machines. For instance, a failure of one host storing 100GB of data every 100
seconds imposes an aggregate bandwidth demand of 1GB/s across the remaining
hosts. In this section, we consider the average bandwidth consumed by each node.
When a node leaves the network, all of its data must be replicated. However,
this data does not have to be replicated to a single node. By distributing the
replication, the maximum bandwidth demanded by the network can be very close
to the average.

The critical metric in determining the bandwidth required for a particular storage
size is the session time of hosts in the network: the period starting when the
host joins the network, and ending when its data must be replicated. This is not
necessarily the same as the time a host is online—hosts frequently leave the network
for a short interval before returning.

Suppose the average storage contribution of each host is c, and the average session
time is T . During a host’s session, it must download all of the data that it will
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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store from other machines on the network. With a session time of T , and a storage
contribution of c, the average downstream bandwidth used by the host is B =
c
T . Because all data transfers occur within the contributory storage network, the
average downstream bandwidth equals the average upstream bandwidth.

In addition to replication due to machine failures, both TFS and dynamic water-
marking cause an additional burden due to the local erasure of files. If each host
loses file data at a rate of F , then the total bandwidth needed for replication is

B =
c

T
+ F. (4)

Solving for the storage capacity as a function of bandwidth gives

c = T · (B − F ). (5)

The file failure rate F in TFS is measurable using the methods of the previous
section. The rate at which files are lost when contributing storage by the dynamic
watermarking scheme is less than the rate of file loss with TFS. When using wa-
termarking, this rate is directly tied to the rate at which the user creates new
data.

If the value c is the total amount of storage contributed by each host in the
network, then for a replication factor of r, the amount of unique storage contributed
by each host is

C =
c

r
=

T · (B − F )
r

. (6)

The session time, T , is the time between when a host comes online and when
its data must be replicated to another host, because it is going offline, or has been
offline for a certain amount of time. By employing lazy replication—waiting for
some threshold of time, t, before replicating its data—we can extend the average
session time of the hosts [Bhagwan et al. 2004]. However, lazy replication reduces
the number of replicas of a file that are actually online at any given time, and thus
increases the number of replicas needed to maintain availability. Thus, both T , the
session time, and r, the degree of replication, are functions of t, this threshold time.

C =
T (t)(B − F )

r(t)
(7)

The functions T (t) and r(t) are sensitive to the failure model of the network
in question. For instance, in a corporate network, machine failures are rare, and
session times are long. However, in an Internet-based contributory system, users
frequently sign on for only a few hours at time.

5. TFS EVALUATION

Our goal in evaluating TFS is to assess its utility for contributing storage to a
peer-to-peer file system. We compare each method of storage contribution that we
describe in Section 2 to determine how much storage can be contributed, and the
effects on the user’s application performance. We compare these based on several
metrics: the amount of storage contributed, the effect on the block allocation policy,
and the overall effect on local performance.
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In scenarios that are highly dynamic and bandwidth-limited, static contribution
yields as much storage capacity as any of the other three. If the network is more
stable, and has more bandwidth, the dynamic scheme provides many times the
storage of the static scheme; however, it does so at the detriment of local perfor-
mance. When bandwidth is sufficient and the network is relatively stable, as in a
corporate network, TFS provides 40% more storage than dynamic watermarking,
with no impact on local performance. TFS always provides at least as much storage
as the other schemes without impacting local performance.

5.1 Contributed Storage Capacity

To determine the amount of storage available to a contributory system, we conduct
trace-based analyses using the block avoidance results from Section 3, the analy-
sis of the availability trace outlined in Section 3.3, and the relationship between
bandwidth and storage described in Section 4.2. From these, we use Equation 7 to
determine the amount of storage that can be donated by each host in a network
using each of the three methods of contribution.

We assume a network of identical hosts, each with 100GB disks that are 50%
full, and we use the block traces for Machine 2 in Section 3.3 as this machine
represents the worst-case of the two machines. Given a fixed rate of data loss
caused by TFS, we determine the maximum amount of data that can be stored
by TFS based on the data from Figure 7. We assume that the fixed contribution
and the dynamic contribution methods cause no data loss. Though the dynamic
contribution method does cause data loss as the user creates more data on the disk,
the rate of data creation by users in the long term is low [Bolosky et al. 2000].
We assume that the amount of non-contributed storage being used on the disk is
fixed at 50%. For fixed contribution, each host contributes 5% of the disk (5 GB),
the dynamic system contributes 35% of the disk, and TFS contributes about 47%,
leaving 3% free to account for block avoidance.

To determine the functions T (t) and r(t), we analyze availability traces gathered
from two different types of networks which exhibit different failure behavior. These
networks are the Microsoft corporate network [Bolosky et al. 2000] and Skype super-
peers [Guha et al. 2006]. The traces contain a list of time intervals for which each
host was online contiguously. To determine the session time for a given threshold
t, we first combine intervals that were separated by less than t. We then use the
average length of the remaining intervals and add the value t to it. The additional
period t represents the time after a node leaves the network, but before the system
decides to replicate its data.

We use these assumptions to calculate the amount of storage given to contributory
systems with different amounts of bandwidth. For each amount of bandwidth, we
find the value for the threshold time (Section 4.2) that maximizes the contributed
storage for each combination of file system, availability trace, and bandwidth. We
use this value to compute the amount of storage available using Equation 7. Fig-
ure 8 shows the bandwidth vs. storage curve using the reliability model based on
availability traces of corporate workstations at Microsoft [Bolosky et al. 2000]. Fig-
ure 9 shows similar curves using the reliability model derived from traces of the
Skype peer-to-peer Internet telephone network [Guha et al. 2006].

Each curve has two regions. In the first region, the total amount of storage
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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Fig. 8. The amount of storage that can be donated for contributions of network bandwidth,

assuming a corporate-like failure model. With reliable machines, TFS is able to contribute more
storage than other systems, even when highly bandwidth-limited.

is limited by the available bandwidth, and increases linearly as the bandwidth is
increased. The slope of the first part of the curve is determined by the frequency
of machine failures and file failures. This line is steeper in networks where hosts
tend to be more reliable, because less bandwidth is needed to replicate a large
amount of data. In this case, the amount of available storage does not affect the
amount of usable storage. This means that, for the first part of the curve when the
systems are bandwidth-limited, TFS contributes an amount of storage similar to
the other two systems. Though TFS contributes slightly less because of file failures,
the additional bandwidth needed to handle failures is small.

The second part of the curve starts when the amount of storage reaches the
maximum allowed by that contribution technique. For instance, when the small
contribution reaches 5% of the disk, it flattens out. This part of the curve represents
systems that have sufficient replication bandwidth to use all of the storage they are
given, and are only limited by the amount of available storage. In this case, TFS
is capable of contributing significantly more storage than other methods.

In the Microsoft trace, the corporate systems have a relatively high degree of
reliability, so the bandwidth-limited portion of the curves is short. This high relia-
bility means that, even for small bandwidth allocations, TFS is able to contribute
the most storage. The Skype system shows a less reliable network of hosts. Much
more network bandwidth is required before TFS is able to contribute more stor-
age than the other storage techniques can—in fact, much more bandwidth than is
typically available in Internet connected hosts. However, even when operating in

ACM Transactions on Storage, Vol. V, No. N, Month 20YY.



18 · James Cipar et al.

15

20

25
C

o
n

tr
ib

u
ti

o
n

 (
G

B
)

TFS

Watermarking

Fixed Contribution

0

5

10

0 200 400 600 800 1000 1200

C
o

n
tr

ib
u

ti
o

n
 (

G
B

)

Bandwidth (kB/s)

Fig. 9. The amount of storage that can be donated for contributions of network bandwidth,

assuming an Internet-like failure model. Because peer-to-peer nodes on the Internet are less

reliable, the amount of contribution by TFS does not surpass the other techniques until large
amounts of bandwidth become available.

a bandwidth-limited setting, TFS is able to contribute as much as the other tech-
niques. One method to mitigate these bandwidth demands is to employ background
file transfer techniques such as TCP-Nice [Venkataramani et al. 2002].

From these results, we can conclude that TFS donates nearly as much storage
as other methods in the worst case. However, TFS is most effective for networks
of reliable machines, where it contributes 40% more storage than a dynamic wa-
termarking system. It is important to note that these systems do not exhibit the
same impact on local performance, which we demonstrate next.

5.2 Local File System Performance

To show the effects of each system on the user’s file system performance, we conduct
two similar experiments. In the first experiment, a disk is filled to 50% with ordinary
file data. To achieve a realistic mix of file sizes, these files were taken from the /usr
directory on a desktop workstation. These files represent the user’s data and do
not change during the course of the experiment. After this, files are added to the
system to represent the contributed storage.

We considered four cases: no contribution, small contribution, large contribution,
and TFS. The case where there is no simulated contribution is the baseline. Any
decrease in performance from this baseline is interference caused by the contributed
storage. The small contribution is 5% of the file system. This represents a fixed
contribution where the amount of storage contributed must be set very small. The
large contribution is 35% of the file system. This represents the case of dynamically
ACM Transactions on Storage, Vol. V, No. N, Month 20YY.
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managed contribution, where a large amount of storage can be donated. With TFS,
the disk is filled completely with transparent data. Once the contributed storage
is added, we run a version of the Modified Andrew Benchmark [Ousterhout 1990]
to determine the contribution’s effect on performance.

We perform all of the experiments using two identical Dell Optiplex SX280 sys-
tems with an Intel Pentium 4 3.4GHz CPU, 800MHz front side bus, 512MB of
RAM, and a 160GB SATA 7200RPM disk with 8MB of cache. The trials were
striped across the machines to account for any subtle differences in the hardware.
We conduct ten trials of each experiment, rebooting between each trial, and present
the average of the results. The error bars in all figures in this section represent the
standard deviation of our measurements. In all cases, the standard deviation was
less than 14% of the mean.

5.2.1 The Andrew Benchmark. The Andrew Benchmark [Howard et al. 1988]
is designed to simulate the workload of a development workstation. Though most
users do not compile programs frequently, the Andrew Benchmark can be viewed
as a test of general small-file performance, which is relevant to all workstation file
systems. The benchmark starts with a source tree located on the file system being
tested. It proceeds in six phases: mkdir, copy, stat, read, compile, and delete.

Mkdir. During the mkdir phase, the directory structure of the source tree is
scanned, and recreated in another location on the file system being tested.

Copy. The copy phase then copies all of the non-directory files from the original
source tree to the newly created directory structure. This tests small file perfor-
mance of the target file system, both in reading and writing.

Stat. The stat phase then scans the newly created source tree and calls stat on
every file.

Read. The read phase simply reads all data created during the copy phase.
Compile. The compile phase compiles the target program from the newly created

source tree.
Delete. The delete phase deletes the new source tree.

The Andrew Benchmark has been criticized for being an old benchmark, with
results that are not meaningful to modern systems. It is argued that the work-
load being tested is not realistic for most users. Furthermore, the original Andrew
Benchmark used a source tree which is too small to produce meaningful results on
modern systems [Howard et al. 1988]. However, as we stated above, the Bench-
mark’s emphasis on small file performance is still relevant to modern systems. We
modified the Andrew Benchmark to use a Linux 2.6.14 source tree, which consists
of 249MB of data in 19577 files. Unfortunately, even with this larger source tree,
most of the data used by the benchmark can be kept in the operating system’s page
cache. The only phase where file system performance has a significant impact is
the copy phase.

Despite these shortcomings, we have found that the results of the Andrew Bench-
mark clearly demonstrate the negative effects of contributing storage. Though the
only significant difference between the contributing case and the non-contributing
case is in the copy phase of the benchmark, we include all results for completeness.
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Fig. 10. Andrew benchmark results for 4 different unaged file systems. The first is an Ext2 sys-
tem with no contributory application. The second is Ext2 with a minimal amount of contribution

(5%). The third has a significant contribution (35%). The fourth is TFS with complete contribu-

tion. TFS performance is on par with Ext2 with no contribution. Error bars represent standard
deviation in total time.

The results of this first experiment are shown in Figure 10. The only system in
which contribution causes any appreciable effect on the user’s performance is the
case of a large contribution with Ext2. Both the small contribution and TFS are
nearly equal in performance to the case of no contribution.

It is interesting to note that the performance of TFS with 50% contribution is
slightly better than the performance of Ext2 with 0% contribution. However, this
does not show that TFS is generally faster than Ext2, but that for this particular
benchmark TFS displays better performance. We suspect that this is an artifact
of the way the block allocation strategy was be modified to accommodate TFS. As
we show in Section 5.3, when running our Andrew Benchmark experiment, TFS
tends to allocate the files used by the benchmark to a different part of the disk
than Ext2, which gives TFS slightly better performance compared to Ext2. This
is not indicative of a major change in the allocation strategy; Ext2 tries to allocate
data blocks to the same block group as the inode they belong to [Card et al. 1994].
In our Andrew Benchmark experiments, there are already many inodes owned by
the transparent files, so the benchmark files are allocated to different inodes, and
therefore different block groups.

The second experiment is designed to show the effects of file system aging [Smith
and Seltzer 1997] using these three systems. Smith and Seltzer have noted that
aging effects can change the results of file system benchmarks, and that aged file
systems provide a more realistic testbed for file system performance. Though our
aging techniques are purely artificial, they capture the long term effects of continu-
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Fig. 11. Andrew benchmark results for 4 different aged file systems. The first is an Ext2 system

with no contributory application. The second is Ext2 with a minimal amount of contribution (5%).
The third has a significant contribution (35%). The fourth is TFS with complete contribution.

TFS performance is still comparable to Ext2 with no contribution. Error bars represent standard

deviation in total time.

ously creating and deleting files. As contributory files are created and deleted, they
are replaced by files which are often allocated to different places on the disk. The
long term effect is that the free space of the disk becomes fragmented, and this frag-
mentation interferes with the block allocation algorithm. To simulate this effect,
we ran an experiment very similar to the first. However, rather than simply adding
files to represent contributed storage, we created and deleted contributory files at
random, always staying within 5% of the target disk utilization. After repeating
this 200 times, we proceeded to benchmark the file system.

Figure 11 shows the results of this experiment. As with the previous experiment,
the only system that causes any interference with the user’s applications is the large
contribution with Ext2. In this case, Ext2 with 35% contribution takes almost 180
seconds to complete the benchmark. This is about 20 seconds longer than the
same system without aging. This shows that file activity caused by contributory
applications can have a noticeable impact on performance, even after considering
the impact of the presence of those files. On the other hand, the time that TFS
takes to complete the benchmark is unchanged by aging in the contributory files.
There are no long-term effects of file activity by contributory systems in TFS.

5.3 Block Allocation Layout

A closer look at the block allocation layout reveals the cause of the performance
difference between Ext2 and TFS. We analyzed the block layout of files in four
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Fig. 12. Block allocation pattern for several contribution levels in Ext2 and TFS. Both TFS and

Ext2 with 0% contribution show high locality. Ext2 with 40% contribution does not because the
contributed files interfere with the block allocation policy.

occupied file systems. Three of these systems were using Ext2, the third was TFS.
Each file system was filled to 50% capacity with ordinary data. Data was then
added to simulate different amounts of data contribution. For Ext2, we consider
three levels of contribution: 0%, 5% and 35%. 0% and 35% were chosen as examples
of good and bad Ext2 performance from Figure 1. The TFS system was filled to
50% capacity with ordinary data, and the rest of the disk was filled with transparent
files. We then copied the files that would be used in the Andrew Benchmark into
these disks, and recorded which data blocks were allocated for the benchmark files.

Figure 12 shows the results of this experiment. The horizontal axis represents the
location of the block on the disk. Every block that contains data to be used in the
Andrew Benchmark is marked black. The remaining blocks are white, demonstrat-
ing the amount of fragmentation in the Andrew Benchmark files. Note that both
Ext2 with 0% contribution, and TFS show very little fragmentation. However, the
35% case shows a high degree of fragmentation. This fragmentation is the primary
cause of the performance difference between Ext2 with and without contribution
in the other benchmarks.

6. RELATED WORK

Our work brings together two areas of research: techniques to make use of the free
space in file systems, and the study of churn in peer-to-peer networks.

Using Free Disk Space: Recognizing that the file system on a typical desktop
is nearly half-empty, researchers have investigated ways to make use of the extra
storage. FS2 [Huang et al. 2005] is a file system that uses the extra space on the disk
for block-level replication to reduce average seek time. FS2 dynamically analyzes
disk traffic to determine which blocks are frequently used together. It then creates
replicas of blocks so that the spatial locality on disk matches the observed temporal
locality. FS2 uses a policy that deletes replicas on-demand as space is needed. We
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believe that it could benefit from a TFS-like allocation policy, where all replicas
except the primary one would be stored as transparent blocks. In this way, the
entire disk could be used for block replication.

A number of peer-to-peer storage systems have been proposed that make use
of replication and free disk space to provide reliability. These include distributed
hash tables such as Chord [Morris et al. 2001] and Pastry [Rowstron and Druschel
2001a], as well as complete file systems like the Chord File System [Dabek et al.
2001], and Past [Rowstron and Druschel 2001b].

Churn in Peer-to-Peer Networks: The research community has also been
active in studying the dynamic behavior of deployed peer-to-peer networks. Mea-
surements of churn in live systems have been gathered and studied as well. Chu et
al. studied the availability of nodes in the Napster and Gnutella networks [Chu et al.
2002]. The Bamboo DHT was designed as an architecture that can withstand high
levels of churn [Rhea et al. 2003]. Mahajan et. al. [Mahajan et al. 2003] characterize
the maintenance bandwidth required for high-churn networks, and present adap-
tive techniques for reducing churn We believe that these studies give a somewhat
pessimistic estimate of the stability of future peer-to-peer networks. As machines
become more stable and better connected, remain on continuously, and are pre-
installed with stable peer-to-peer applications or middleware, the level of churn
will greatly diminish, increasing the value of TFS.

7. FUTURE WORK

TFS was designed to require minimal support from contributory applications. The
file semantics provided by TFS are no different than any ordinary file system.
However, modifying the file semantics would provide opportunities for contributory
applications to make better use of free space. For instance, if only a small number
of blocks from a large file are overwritten, TFS will delete the entire file. One can
imagine an implementation of TFS where the application would be able to recover
the non-overwritten blocks. When a file with overwritten blocks is opened, the open
system call could return a value indicating that the file was successfully opened,
but some blocks may have been overwritten. The application can then use ioctl
calls to determine which blocks have been overwritten. An attempt to read data
from an overwritten block will fill the read buffer with zeros.

In the current implementation of TFS, once a transparent file is opened, its
blocks cannot be overwritten until the file is closed. This allows applications to
assume, as they normally do, that once a file is opened, reads and writes to the
file will succeed. However, this means that transparent files may interfere with
ordinary file activity. To prevent this, it would be possible to allow data from
opened files to be overwritten. If an application attempts to read a block which
has been overwritten, the read call could return an error indicating why the block
is not available.

Both of these features could improve the service provided by TFS. By allowing
applications to recover files that have been partially overwritten, the replication
bandwidth needed by systems using TFS is reduced to the rate at which the user
creates new data. By allowing open files to be overwritten, transparent applications
may keep large files open for extended periods without impacting the performance
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of other applications. Despite these benefits, one of our design goals for TFS is
that it should be usable by unmodified applications. Both of these features would
require extensive support from contributory applications, violating this principle.

8. CONCLUSIONS

We have presented three methods for contributing disk space in peer-to-peer storage
systems. We have included two user-space techniques, and a novel file system, TFS,
specifically designed for contributory applications. We have demonstrated that the
key benefit of TFS is that it leaves the allocation for local files intact, avoiding
issues of fragmentation—TFS stores files such that they are completely transparent
to local access. The design of TFS includes modifications to the free bitmaps and
a method to avoid hot-spots on the disk.

We evaluated each of the file systems based the amount of contribution and its
cost to the local user’s performance. We quantified the unreliability of files in
TFS and the amount of replication bandwidth that is needed to handle deleted
files. We conclude that out of three techniques, TFS consistently provides at least
as much storage with no detriment to local performance. When the network is
relatively stable and adequate bandwidth is available, TFS provides 40% more
storage over the best user-space technique. Further, TFS is completely transparent
to the local user, while the user-space technique creates up to a 100% overhead on
local performance. We believe that the key to encouraging contribution to peer-to-
peer systems is removing the barriers to contribution, which is precisely the aim of
TFS.

The source code for TFS is available at http://prisms.cs.umass.edu/tcsm/.
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