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Abstract
Memory errors are a notorious source of security vulnerabilities
that can lead to service interruptions, information leakage and
unauthorized access. Because such errors are also difficult to debug,
the absence of timely patches can leave users vulnerable to attack
for long periods of time. A variety of approaches have been intro-
duced to combat these errors, but these often incur large runtime
overheads and generally abort on errors, threatening availability.

This paper presents Archipelago, a runtime system that takes
advantage of available address space to substantially reduce the
likelihood that a memory error will affect program execution.
Archipelago randomly allocates heap objects far apart in virtual
address space, effectively isolating each object from buffer over-
flows. Archipelago also protects against dangling pointer errors by
preserving the contents of freed objects after they are freed. Archi-
pelago thus trades virtual address space—a plentiful resource on
64-bit systems—for significantly improved program reliability and
security, while limiting physical memory consumption by tracking
the working set of an application and compacting cold objects. We
show that Archipelago allows applications to continue to run cor-
rectly in the face of thousands of memory errors. Across a suite of
server applications, Archipelago’s performance overhead is 6% on
average (between -7% and 22%), making it especially suitable to
protect servers that have known security vulnerabilities due to heap
memory errors.

Categories and Subject Descriptors D.2.0 [Software Engineer-
ing]: Protection mechanisms; D.2.5 [Software Engineering]: Er-
ror handling and recovery; D.3.3 [Programming Languages]:
Dynamic storage management; G.3 [Probability and Statistics]:
Probabilistic algorithms

General Terms Algorithms, Languages, Reliability, Security

Keywords Archipelago, buffer overflow, dynamic memory allo-
cation, memory errors, probabilistic memory safety, randomized
algorithms, virtual memory
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1. Introduction
Memory errors in C and C++ programs continue to be a significant
problem. They are difficult to debug and often easy to exploit.
Memory-based attacks are an effective way to compromise Internet
servers, either by crashing them, which causes service interruptions
and data loss, or by making them execute arbitrary code. Because
these bugs are difficult to debug, it can take weeks before even
critical errors are repaired [33], leaving applications vulnerable to
attack.

A variety of approaches have been developed to help program-
mers avoid memory errors. These approaches can be roughly clas-
sified into three categories: testing tools, garbage collectors, and
compiler-based tools. Testing tools, such as Valgrind [24, 31] and
Purify [16], impose performance overheads that make their use
acceptable only for testing. Conservative garbage collectors [7]
protect against dangling pointer errors but provide no protection
against buffer overflows. Compiler-based approaches [2, 3, 11, 13,
19, 23, 26, 35, 37] typically incur unacceptably-large runtime over-
heads or require programmer intervention, and also require source
code, which may not be available. They also generally abort pro-
gram execution in response to memory errors, reducing availability
and leaving systems vulnerable to denial-of-service attacks.

Contributions: This paper presents Archipelago, a runtime system
that significantly improves the resilience of applications to heap-
based memory errors.1 Archipelago treats heap objects as indi-
vidual islands, surrounded by stretches of unused address space.
On modern architectures, especially 64-bit systems, virtual address
space is a plentiful resource. Archipelago trades this plentiful re-
source for a high degree of probabilistic memory safety [4]; that is,
Archipelago can use available virtual memory to significantly in-
crease the likelihood that a program will run correctly in the face
of memory errors.

To control physical memory consumption, Archipelago lever-
ages the following key insight: once the distance between objects
crosses a certain threshold, each page holds exactly one (small) ob-
ject. At this point, additional address-space expansion is free: the
virtual memory system does not need to allocate physical frames
for unused address space between objects. Archipelago takes ad-
vantage of this insight and directly allocates one object per page,
leaving the virtual address space between objects uncommitted. It

1 An archipelago is an expanse of water with many scattered islands, such
as the Aegean Sea.



further limits physical memory consumption by selectively com-
pacting pages of the heap that are infrequently used.

The class of applications that are most sensitive to memory er-
rors and associated security vulnerabilities are servers: they are at-
tractive, high-value targets that are connected directly to the Inter-
net. We show that Archipelago can provide high levels of safety
and reliability for this class of applications. We show that Archi-
pelago can let applications run even in the face of thousands of
memory errors, while keeping performance impact to acceptably-
low levels. Archipelago slows down execution of a range of server
applications by just 6% on average (from -7% to 22%). This mod-
est performance impact makes Archipelago a realistic approach to
protect deployed server applications against known and unknown
heap-based security vulnerabilities.

The rest of the paper is organized as follows. Section 2 reviews
operating system support for virtual memory, and explains proba-
bilistic memory safety. Section 3 describes the software architec-
ture of Archipelago in detail. Section 4 evaluates the effectiveness
of Archipelago at withstanding memory errors and measures its
overhead. Section 5 surveys related work, Section 6 discusses fu-
ture directions, and Section 7 concludes.

2. Background
2.1 Virtual Memory
Because Archipelago makes extensive use of operating system
support for virtual memory management that may not be familiar,
we define some important terms and concepts here.

A key distinction is the difference between virtual and physi-
cal memory. Virtual memory refers to the full addressable range of
memory. Operating systems map virtual memory to available phys-
ical memory. On 64-bit systems, virtual memory is plentiful (e.g.,
248 bytes on x86-64) while physical memory is in relatively short
supply (e.g., on the order of 1–8 gigabytes (230–233) bytes).

Virtual memory is divided into pages that are typically 4K
chunks. Pages can be in three states: unmapped, reserved, and
committed. An unmapped page is not available for use by the
process, and access to it triggers a segmentation violation.

When a process obtains a page from the system (via mmap in
Unix, or VirtualAlloc in Windows), the virtual address range is
reserved so that a subsequent call is guaranteed to return virtual
memory from a different range. However, a reserved page does not
initially have an associated physical page frame.

When a reserved page is touched for the first time, the page is
committed: a physical page frame is allocated and associated with
the virtual page. The kernel initializes all page contents to zero
when they are first touched. Subsequent touches do not result in
any page faults unless, due to memory pressure, the page is evicted
to disk. In this case, the page’s contents are generally written to the
disk, and then the page is decommitted (but remains reserved). A
subsequent touch triggers a page fault, and the kernel will fill the
page with the contents previously saved on disk.

Many operating systems allow programmers to direct the ker-
nel’s treatment of pages. In Unix, an application can invoke
madvise(MADV FREE) to inform the kernel that the data on a
range of pages is no longer needed, and thus there is no need to
write the contents to disk. In contrast to the munmap system call,
madvise(MADV FREE) does not unmap the virtual page. If a page
is accessed after its contents are discarded, the kernel allocates a
fresh, zero-filled page. This call reclaims a page’s physical frame,
making it available for reuse by the system. Archipelago makes use
of madvise to limit its physical memory footprint, as Section 3.1
describes. madvise can also be used to provide hints to guide the
virtual memory manager’s page replacement algorithm, a feature
that Archipelago also uses.

Additionally, an application can protect access to a page so that
accesses trigger a signal, even if the page has been committed. For
example, an application can invoke mprotect(...,PROT NONE)
on a range of pages: future attempts to read, write, or execute
memory on any of these pages will raise a signal. By installing a
custom handler to handle these signals, an application can intercept
reads or writes to particular pages. Appel and Li describe numerous
ways that user-level programs can take advantage of these virtual
memory operations [1]. Archipelago uses these calls to manage its
compaction and uncompaction of cold objects (see Section 3.2).

2.2 Probabilistic Memory Safety
The motivation for our work comes from the ideas of infinite heaps
and probabilistic memory safety originally introduced by Berger
and Zorn and implemented in their DieHard system [4].

An infinite heap memory manager is an ideal, unrealizable run-
time system that allows programs containing memory errors to ex-
ecute soundly and to completion. In such a system, the heap area
is infinitely large and can never be exhausted. All objects are al-
located fresh, infinitely far away from each other, and are never
deallocated.

Because every object is infinitely far away from any other ob-
ject, buffer overflows become benign, and dangling pointers also
vanish since objects are never deallocated or reused. A portable cor-
rect C program cannot distinguish between an infinite heap memory
manager and a normal allocator, while a program containing mem-
ory errors would execute correctly for reasons outlined above, as
long as it does not contain uninitialized reads.

Of course, it is impossible to build a true infinite heap mem-
ory manager. However, one can approximate its behavior by using
an M -heap—a heap that is M times larger than needed. By plac-
ing objects uniformly randomly across an M -heap, we get an ex-
pected separation between any two objects of M − 1 objects, so
that smaller overflows become benign, with high probability. By
randomizing the choice of freed objects to reuse, we minimize the
likelihood of recently freed objects being reallocated and subse-
quently overwritten, and therefore of a malignant dangling pointer
error. This heap thus provides probabilistic memory safety, a prob-
abilistic guarantee that memory errors occurring in the program are
benign during its execution.

In an M -heap, the likelihood of no live objects being overwrit-
ten by an overflow N objects in size is (1− 1

M
)N [4].

This formula shows that one way to increase the probability of
correct execution in the presence of memory error is to make the
heap expansion factor (M ) large. For example, M = 100 yields a
99% probability that a buffer overflow smaller or equal to the size
of an object will be benign. However, DieHard is impractical with
large values of M because of its correspondingly large physical
memory consumption (see Section 4).

Archipelago achieves these probabilistic guarantees against
buffer overflows while consuming only a correspondingly large
amount of virtual memory. It effectively controls physical memory
consumption and provides lower CPU overheads than a comparably-
sized DieHard heap, as Sections 4.2 and 4.5 show.

3. Archipelago Architecture
Archipelago consists of three parts: a randomizing object-per-
page memory allocator, a hot object space, and a cold storage
module, which controls the overall physical memory consumption
of the program. Figure 1 illustrates the architecture. These parts are
compiled into a dynamically-linked library that, when pre-loaded
before an executable, replaces standard memory management rou-
tines, such as malloc and free, with calls to the Archipelago allo-
cator.



virtual memory pool (available pages for random allocation)

hot object space
(1 object per page)

cold objects
(compacted and protected)

cold storage heap
(holds compacted objects)

Figure 1. Archipelago’s software architecture. Archipelago ran-
domly allocates heap objects in virtual address space (Section 3.1).
It tracks the hot objects, which are stored one per page (Sec-
tion 3.2). Cold objects are compacted and placed in cold storage,
and the physical memory associated with their page frames is re-
linquished (Section 3.3).

1 void * malloc (size_t size) {
2 void * page = NULL;
3 if (size <= PAGE_SIZE) {
4 // object fits on a page
5 // obtain random page from the pool
6 page = getRandomPage ();
7 }
8 if (page == NULL) {
9 // object doesn ’t fit on the page

10 //or pool is full
11 //mmap memory directly
12 page =
13 mmap(roundUpToPageSize(size),
14 MAP_ANONYMOUS );
15 }
16 if (page == NULL) {
17 //mmap failed
18 return NULL;
19 }
20 //add coloring
21 void *ptr =
22 getRandomColoring(page , size);
23 // register page(s) as part
24 //of working set
25 registerActivePages(page , ptr , size);
26 return ptr;
27 }

Figure 2. Pseudo-code for Archipelago’s malloc.

3.1 Randomizing Object-Per-Page Allocator
Key to Archipelago’s protection from memory errors is its object-
per-page memory allocator. It is constructed using the Heap Layers
infrastructure [6]. As implied by its name, the object-per-page
allocator places each allocated object on a separate virtual memory
page. It reserves (but does not commit) a portion of the address
space using mmap, and uses this space as a pool from which to draw
pages to satisfy allocation requests. Figures 2 and 3 present pseudo-
code for malloc and free.

The size of the pool of available pages is a parameter to Archi-
pelago (defaulting to 512 megabytes) that represents the trade-off
between the protection Archipelago provides and its virtual mem-
ory consumption. A larger pool provides more robust protection
against errors, but at the cost of increased virtual memory con-

1 void free (void * ptr) {
2 // retrieve size
3 size_t size = getObjectSize(ptr);
4 //get first page
5 void *page = getStartPage(ptr);
6 // unregister pages being deleted
7 unregisterActivePages(page , ptr , size);
8 // discard pages
9 //that have been compacted

10 discardCompactedPages(page , ptr , size);
11 if (size <= PAGE_SIZE) {
12 // object fits on page:
13 // discard contents
14 madvise(page , MADV_FREE );
15 } else {
16 // object doesn ’t fit on page:
17 //unmap it
18 munmap(page ,
19 roundUpToPageSize(size ));
20 }
21 }

Figure 3. Pseudo-code for Archipelago’s free.

sumption. Note that under memory pressure, the operating system’s
virtual memory manager first reclaims any committed but unused
pages in the pool, reducing the footprint of the application. Archi-
pelago’s physical memory consumption is thus independent of the
size of this pool.

Allocation: Objects are placed on pages randomly chosen
from the pool (Figure 2, line 6). The object-per-page allocator
uses a bitmap to distinguish between used and unused pages.
To satisfy allocation requests, it probes the bitmap randomly
(getRandomPage()) until it finds an unused page. The object-
per-page allocator bounds the expected number of probes to find
an empty page by keeping the pool no more than half full. This
policy bounds the worst-case expected number of probes to a small
constant (2).

Because pages in the pool are allocated randomly, no local-
ity of reference exists between different pages. Archipelago uses
madvise(MADV RANDOM) to inform the virtual memory man-
ager that no locality exists and that it should not prefetch pages
within the pool. Archipelago thus ensures that pages are not instan-
tiated in physical memory until they are actually needed.

To reduce cache conflicts, Archipelago uses coloring to place
objects on pages. Objects are allocated at random offsets on pages,
taking care to keep objects within their pages’ boundaries (lines
21–22). Coloring helps reduce L2 misses due to cache conflicts,
which can improve performance (see Section 4.4).

Deallocation: When an object smaller than a page in size is
deleted, the object-per-page allocator marks the page as free (Fig-
ure 3, lines 5–10). Moreover, it instructs the virtual memory man-
ager using madvise(MADV FREE) to discard the contents of the
page without writing them to disk, therefore reducing the overhead
of the system due to page eviction (line 14).

Large objects: Objects that do not fit on a single page are
treated specially by the object-per-page allocator. Archipelago cur-
rently does not search for ranges of free pages in the pool but in-
stead allocates memory directly using mmap (Figure 2, lines 7–13).
When the memory pool becomes more than half full, all objects are
allocated via mmap to avoid large numbers of repeated probes for
free pages in the pool.



Because current Linux kernels randomize locations of memory-
mapped objects in the address space, the object-per-page allocator
need not take further action. When an object that was allocated
using mmap is freed, its memory is immediately released back to
the operating system using munmap (Figure 3, lines 18–19).

3.2 Hot Object Space Management
Running programs with the object-per-page allocator alone would
consume so much physical memory that it would be impractical
for deployed programs. To limit its physical memory consumption,
Archipelago relies on the observed temporal locality of memory
accesses in most programs, known as the working set hypothesis.
At any given time, a program has a working set, a subset of the live
objects on which the program is actively operating.

The notion of a working set is extensively used in virtual mem-
ory managers [10], which attempt to keep the working sets of run-
ning programs in memory while evicting rarely used data to disk.

Archipelago follows a similar design. First, the programmer
specifies the desired maximum working set size of the program
through an environment variable. Archipelago then compacts cold
objects not in the working set. It then informs the OS that these
now-redundant page frames can be discarded without the need to
write them back to disk.

Archipelago keeps all the pages occupied by live objects (the
working set) in a bounded FIFO queue. In our current implemen-
tation, the size of this FIFO queue is fixed at startup time, either
read in from an environment variable or defaulting to 5000 objects.
Pages are added to the back of the queue at allocation time. As the
queue becomes full, pages at the front of the queue are removed and
compacted. Upon access to a compacted page, the page is restored
and added to the end of the queue as well.

Our design decision to use FIFO to track the working set is
somewhat unconventional. In operating systems, because paging
is so expensive, virtual memory managers typically use LRU or
CLOCK-based algorithms to manage the working set [8]. These
algorithms rely on hardware-managed dirty and reference bits to
track information about which pages are in use. However, these
bits are maintained by the kernel and are generally unavailable
to the user. It is possible to track every page reference in user-
space via memory protection mechanisms, but this strategy would
impose prohibitively high overhead. An alternative is to modify the
operating system, adding a system call to allow users to query page-
level dirty and reference bits.

However, for Archipelago, the use of precise algorithms that
need to track detailed page activity is unnecessary. Our insight is
that the cost of a mistake for Archipelago—compacting and then
uncompacting a page that is in the working set—is much lower
than the cost of paging to disk. This fact allows us to use a cheap but
imprecise approximation such as FIFO to speed the common case.
It is more efficient to use a fast algorithm that occasionally goes
wrong (with far lower costs than those paid by an OS when paging
to disk), rather than using a more intelligent but more expensive
strategy.

3.3 Cold Storage
Archipelago compacts pages not in the current working set, thus
reducing its physical memory requirements. It uses an in-memory
compaction mechanism that stores compacted objects in a separate
heap managed by a standard allocator (the Lea allocator [21]).

When Archipelago compacts a page, it recomputes the actual
size of the object on that page by scanning it backwards until the
first non-zero word. It then copies all of the non-zero contents—
which may contain a buffer overflow—into the internal heap (Fig-
ure 4, lines 2–8). It next disables direct access to the page by remov-
ing read and write access via mprotect(line 10), so that Archipe-

1 void deflate (void *page) {
2 // allocate space in cold store
3 void *coldStore = coldHeap.malloc(
4 hotPages[page]->getDataSize ());
5 // copy the data
6 memcpy(coldStore ,
7 hotPages[page]->getDataStart (),
8 hotPages[page]->getDataSize ());
9 // set trap on future accesses

10 mprotect(page , PROT_NONE );
11 // mark page as cold
12 coldPages[page] = hotPages[page];
13 hotPages.remove(page);
14 // remember the location of the data
15 coldPages[page].
16 setColdStore(coldStore );
17 // return physical page to OS
18 madvise(page , MADV_FREE );
19 }
20

21 bool inflate (void *page) {
22 // check page is valid
23 if (! coldPages.hasKey(page))
24 return false;
25 // enable access to the page
26 mprotect(page , PROT_READ | PROT_WRITE );
27 // restore data
28 memcpy(coldPages[page]. getStart(),
29 coldPages[page]. getColdStore (),
30 coldPages[page]. getSize ());
31 // free the cold space
32 coldHeap.free(
33 coldPages[page]. getColdStore ());
34 // mark page as hot
35 hotPages[page] = coldPages[page];
36 coldPages.remove(page);
37 return true;
38 }
39

40 void sigsegv_handler(void *addr) {
41 if (! inflate(getPageStart(addr ))) {
42 // Access outside heap
43 abort ();
44 }
45 }

Figure 4. Pseudo-code for Archipelago’s compaction and uncom-
paction routines (Section 3.3).

lago receives a signal the next time the application tries to access
the page. Finally, Archipelago removes the page from the hot space
and calls madvise to instruct the virtual memory manager to dis-
card the page contents to disk rather than write them to disk (lines
11–18).

Archipelago installs a custom signal handler that receives seg-
mentation violation signals and manages restoring objects from
cold storage on demand (Figure 4, lines 40–45). When the han-
dler receives a signal, it first checks if the access is a true seg-
mentation violation, which terminates the program. However, if the
application was trying to access an object in cold storage, the han-
dler “inflates” the object. The handler first unprotects the page and
copies the data back from cold storage (Figure 4, lines 26–30). It
also places the page back in the hot space, and frees the space used



to hold the object in cold storage (Figure 4, lines 32–36). Control
then passes back to the application, which can now safely continue.

While compacting pages imposes additional runtime overhead,
it effectively controls physical memory overhead, as Section 4.5
shows.

4. Evaluation
In our evaluation, we answer the following questions:

1. What is the runtime overhead of using Archipelago?

2. What is the memory overhead of using Archipelago?

3. What is the effect of changing Archipelago’s heap and pool
sizes?

4. How effective is Archipelago against both injected faults and
real errors?

4.1 Experimental Methodology
We perform our evaluation on a quiescent dual-processor with 8
gigabytes of RAM. Each processor is a 4-core 64-bit Intel Xeon
running at 2.33 Ghz and equipped with a 4MB L2 cache.

We compare Archipelago to the GNU C library, which uses a
variant of the Lea allocator [21], and to DieHard, version 1.1. This
version, available from the project website, is an adaptive variant
that dynamically grows its heap [5], and so is more space-efficient
than the original, published description [4].

One important caveat is that we run all experiments on a par-
ticular version of a recent Linux kernel, version 2.6.22-rc2-mm1.
This kernel version uses a more sophisticated algorithm for manag-
ing physical memory pages that were initially used by applications,
but then returned to the kernel. This page laundering process up-
dates a number of kernel data structures and potentially writes the
page’s contents to secondary storage. Linux kernel versions up to
and including 2.6.23 launder pages eagerly whenever an applica-
tion calls madvise. However, Linux version 2.6.22-rc2-mm1 laun-
ders pages lazily, waiting until more physical memory pages are
actually needed. Without memory pressure, this policy doubles our
system’s performance on a memory-intensive microbenchmark, be-
cause madvise is on Archipelago’s normal deallocation path. Be-
cause of its performance advantages for ordinary workloads (e.g.
MySQL), we expect that this patch, or one similar to it, will be
adopted in future versions of the Linux kernel.

4.2 Server Application Performance
To quantify the performance overhead of using Archipelago, we
measure the runtime of a range of server applications running
with and without Archipelago. In our experiments, Archipelago
uses a memory pool of 512 megabytes, when not otherwise stated.
We also compare performance against DieHard with two different
heap multiplier values: 2 and 1024. The first multiplier provides
performance and protection similar to the results reported in the
original DieHard paper, while the second multiplier more closely
approximates the level of protection that Archipelago achieves.

We use three different server applications: the thttpd web server,
the bftpd ftp server, and the OpenSSH server. For the first two,
we record total throughput achieved with 50 simultaneous clients
issuing 100 requests each. For OpenSSH, we record the time it
takes to perform authentication, spawn a shell, and disconnect. We
run each benchmark 10 times and report the mean and its 95%
confidence interval.

We focus on the CPU impact of our benchmarks by performing
all our experiments over the loopback network interface, so that
any performance impact is not swamped by network latency. These
measured runtime overheads are thus conservative estimates of the
performance overhead one would see in practice.
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Figure 5. Performance across a range of server applications (Sec-
tion 4.2), normalized to GNU libc (smaller is better).



0

5

10

15

20

25

30

Runtime L2 Misses DTLB Misses

GNU libc DieHard-2 DieHard-1024 Archipelago

Figure 6. Performance metrics for the memory-intensive espresso
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Figure 7. Runtime of the memory-intensive espresso benchmark
under memory pressure (Section 4.3).

Table 2 presents the allocation characteristics of the servers in
our benchmark suite. Because Archipelago’s allocator both uses
more CPU time and more space than conventional allocators, its
time and space overheads are dependent on the number of heap
allocations during the program and the number of live objects.
These server benchmarks have low allocation rates and few live
objects, keeping Archipelago’s overhead low.

Figure 5 presents the results of these experiments, normalized
to GNU libc. These results show that Archipelago can protect
servers without sacrificing server performance. Archipelago’s run-
time overhead is less than 3% for bftpd and thttpd, and 17% for
OpenSSH. Because these applications never use a large amount of
live memory, the number of L2 and TLB misses is low for every
allocator. This result shows that neither DieHard nor Archipelago
hurt memory system performance for these server applications.

4.3 Memory-Intensive Program Performance
To evaluate the worst-case overhead one could expect for Archi-
pelago, we also measure the performance impact of Archipelago

on an extremely memory-intensive benchmark, espresso. Espresso
allocates and deallocates approximately 1.5 million objects in less
than a second. This allocation rate greatly exceeds that of a typical
server application. In our experiments, we run espresso with the
same allocators we use in our server experiments.

Figure 6 shows the runtime and number of L2 and DTLB misses
of espresso with all the memory managers, normalized to GNU
libc. As expected, Archipelago’s impact on espresso’s runtime is
significantly higher than on the server applications. Compared to
GNU libc, espresso runs 1.24, 2.92 and 7.32 times slower with
DieHard-2, DieHard-1024 and Archipelago, respectively. How-
ever, as Figure 7 shows, Archipelago’s ability to control its work-
ing set size yields far better performance than DieHard-1024 in the
presence of memory pressure. As available memory decreases from
1GB to 384MB, espresso running with Archipelago takes between
5.27s and 9.47s. With DieHard-1024, its runtime spikes to 1443
seconds (more than 24 minutes) at 896MB available, and does not
run in any reasonable time for smaller amounts of available physi-
cal memory.

4.4 Impact of Coloring
As described in Section 3.1, Archipelago’s object-per-page allo-
cator uses coloring to reduce cache conflicts. Somewhat surpris-
ingly, the impact of coloring is undetectable on both the server
benchmarks and espresso. However, it dramatically improves per-
formance on an adversarial microbenchmark. This program allo-
cates 4096 small objects and repeatedly reads them in order of al-
location. Without coloring, each access causes a cache miss be-
cause all of the objects map to a few sets in the cache. With random
coloring, performance improves significantly as the entire cache is
utilized, running almost 3 times faster than the version without col-
oring. Since this optimization offers the potential to substantially
improve performance but does not degrade performance for any of
the benchmarks, we leave it enabled.

4.5 Space Overhead
We evaluate the additional memory consumption incurred by using
Archipelago, and compare this to DieHard and GNU libc, both with
and without memory pressure. We simulate memory pressure by
locking an increasing amount of memory until the application’s
working set no longer fits in physical memory, and report that
number as the working set size.

Figures 8(a) shows the resident memory consumption of thttpd,
bftpd, and sshd without memory pressure. Note that unlike the other
allocators, Archipelago preallocates a large memory pool at start-
up, increasing its virtual memory consumption. A large fraction of
that allocated space—more than 70%—is never actually committed
to memory. This effect inflates Archipelago’s apparent resident set
size, which ranges from 3.18 to 7.87 times as much as with GNU
libc, making it comparable to DieHard-1024.

However, Figure 8(b) reveals that under memory pressure, the
amount of actual physical memory needed with Archipelago is
strictly less than with DieHard-1024. For thttpd, bftpd, and sshd,
Archipelago consumes 1.37, 4.29, and 3.99 times as much memory
as GNU libc, while DieHard-1024 consumes 1.57, 5.97, and 5.64
times as much.

4.6 Address Space and Hot Space Sizing
Archipelago’s performance is dependent on two user-supplied pa-
rameters: the size of the virtual address space used for allocation, as
well as the size of the hot object space (i.e., the maximum number
of uncompacted pages). Increasing the amount of virtual address
space available increases the effectiveness of Archipelago’s buffer
overflow protection, but at the possible cost of degraded TLB per-
formance and increased page table overhead. Increasing the num-
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(a) Resident memory usage, without memory pressure.
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Figure 8. Resident memory usage with and without memory pressure (Section 4.5), normalized to GNU libc. Under memory pressure, Linux
quickly reclaims Archipelago’s uncommitted pages, making its physical memory consumption strictly lower than with DieHard-1024.

ber of pages used for hot objects reduces overhead due to object
compaction, but significantly increases memory overhead.

In order to explore these tradeoffs, we performed experiments
varying these parameters for espresso. Figure 9 shows how these
parameters affect execution time. Varying the hot space size has
predictable results: too small a space (128 MB) significantly de-
grades performance because the working set does not fit, leading to
repeated compaction and uncompaction of hot objects. Increasing
to 256MB captures the working set, so increasing the hot space to
512MB has little effect.

Increasing the amount of virtual address space available to
Archipelago shows a consistent trend. A larger virtual address
space has little impact on user time, but results in increasing time
spent in the kernel. This time is due to a poor fit between the
requirements of Archipelago and the current design of Linux’s in-
ternal data structures, which tend to grow linearly as the number of
pages that are randomly protected and unprotected grows.

4.7 Avoiding Injected Faults
We evaluate the effectiveness of Archipelago in tackling memory
errors by using two different types of fault injectors: an overflow in-
jector and a dangling pointer injector. We inject faults into espresso
running with GNU libc, DieHard and Archipelago. We perform
all our injection experiments 100 times, and record the number of
times that espresso produces correct output. Table 1 summarizes
these results.

Buffer overflows: We perform three sets of experiments with
the overflow injector. We inject 8-byte overflows with 0.01 proba-
bility, 4K overflows with 0.001 probability, and 8K overflows with
0.0001 probability. These probabilities correspond to thousands,
hundreds, and tens of injected faults, respectively.

In this set of experiments, GNU libc crashes every time, as
expected. Archipelago substantially outperforms both variants of
DieHard across the range of overflow sizes and frequencies. With
small and frequent overflows, Archipelago runs correctly every
time. DieHard-1024 does reasonably well, running correctly 77%
of the time, while DieHard-2 only runs correctly 29% of the time.

With large but infrequent overflows, Archipelago runs correctly
68% of the time. In this case, DieHard-1024 runs correctly only
23% of the time, while DieHard-2 crashes every time. Even in the

worst case of large and reasonably frequent overflows, Archipelago
lets espresso run correctly 42% of the time, while it only runs 2%
of the time with DieHard-1024 (DieHard-2 crashes every time in
this case).

These results show that Archipelago provides excellent protec-
tion against buffer overflows and offers dramatic improvement over
DieHard, even with an expansion factor of 1024.

Dangling pointers: Archipelago’s design goal was to limit the
impact of buffer overflows, but it also provides a measure of protec-
tion against dangling pointers. To measure the impact of dangling
pointers on runtime systems, we injected dangling pointer faults
that free objects 5, 10 and 20 allocations early with probabilities
0.01, 0.001 and 0.0001, respectively.

These experiments show that, as expected, DieHard-1024 offers
better protection from dangling pointer errors than Archipelago: it
has vastly more available object slots for reuse. Archipelago has
fewer potential slots to place new objects, since it only allows one
object per page. Archipelago also instructs the operating system
that all freed objects are available for the operating system to reuse
at its discretion. If the operating system reuses a page, the original
contents will be lost, and access through a dangling pointer to this
data will trigger a fault (effectively detecting, but not correcting, the
error). Nonetheless, Archipelago provides substantial protection
against these errors, running correctly 29% of the time in the first
experiment, 67% of the time in the second, and 98% in the third.

4.8 Avoiding Real Buffer Overflows
To evaluate the effectiveness of Archipelago against real-life buffer
overflows, we reproduce two well-known buffer overflow-based
exploits: one in the pine mail reader, and the other in the Squid
web cache proxy.

We reproduce an exploit in pine version 4.44. The exploit is a
buffer overflow that can be triggered by a malformed email mes-
sage and causes pine to crash and fail to restart until the message
is manually removed. When we place a malformed message in a
user’s mailbox, pine with GNU libc crashes whenever the user at-
tempts to open that mailbox. However, when running with Archipe-
lago, pine successfully opens the mailbox and performs all standard
operations with messages in it, including the malicious message,
without any user-noticeable slowdown.



Injection experiments (% correct executions)
espresso GNU libc DieHard-2 DieHard-1024 Archipelago

buffer overflows
8 bytes, p = 0.01 0% 29% 77% 100%
8K, p = 0.0001 0% 0% 23% 68%
4K, p = 0.001 0% 0% 2% 42%

dangling pointers
5 mallocs, p = 0.01 0% 8% 91% 29%
10 mallocs, p = 0.001 0% 75% 100% 67%
20 mallocs, p = 0.0001 0% 96% 100% 98%

Table 1. The performance of various runtime systems in response to injected memory errors (Section 4.7). Archipelago provides the best
protection against overflows of all sizes and frequencies, and reasonable protection against dangling pointer errors (all executions fail with
GNU libc).
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Figure 9. Impact of sizing parameters on espresso runtime (Sec-
tion 4.6).

We also test Archipelago’s ability to withstand a heap buffer
overflow for the squid web cache. For version 2.3.STABLE5, a
maliciously formed request causes a buffer overflow that corrupts
heap meta-data (this causes GNU libc to terminate). When running

with Archipelago, squid consistently handles the malicious request
correctly, without crashing.

5. Related Work
This section first discusses past work that exploits large address
spaces, and then describes related work in the spheres of memory
management, fault tolerance, and software engineering that address
the problem of memory errors in C/C++ programs.

The advent of 64-bit processors sparked research in operating
systems designed for large address spaces [9]. Druschel and Peter-
son point out that this address space is sufficiently large that it can
be used to provide high performance protection and security by hid-
ing processes from each other [15]. Anonymous RPC (ARPC) uses
random placement of processes in a large address space to elim-
inate expensive hardware context switches on cross-domain RPC
calls [36]. Archipelago also leverages a large address space, but in-
stead of using the space to protect independent processes from each
other, it isolates individual objects from memory errors within the
same process.

Archipelago builds on the ideas of Berger and Zorn’s DieHard
system [4]. Like DieHard, Archipelago uses a randomized memory
manager to provide protection from buffer overflows and dangling
pointer errors. Unlike DieHard, Archipelago achieves high reliabil-
ity by dramatically increasing the size of the address space and does
not use replication. By exploiting both standard OS mechanisms
and common program behavior, Archipelago provides greater re-
silience to buffer overflow errors with moderate and acceptable
CPU and memory overhead.

Exterminator is another runtime system that, like DieHard, is
based on randomized, over-provisioned heaps [25]. The focus of
Exterminator is on automatic error detection and correction based
on accumulating data from multiple executions. While Archipelago
can also be used for overflow detection, it is closer in spirit to
DieHard, and unlike Exterminator, provides greater error tolerance
without the requirement that errors first be detected.

Numerous compiler-assisted approaches have been introduced
to combat memory errors. Semantics provided by Archipelago to
programs containing buffer overflows are similar to those of Ri-
nard et al.’s Boundless Memory Blocks [29]. Because Boundless
Memory Blocks uses a fixed-size LRU cache to store the values of
out-of-bounds writes, accesses to out-of-bounds addresses are un-
defined if the object has been evicted from the cache. Several other
unsound approaches have been proposed [14, 30]. Dhurjati et al.
use pool allocation to provide an efficient form of memory safety
that guarantees that structure fields are referenced with the cor-
rect type. While they guarantee type-safety, there is no guarantee
that the object the programmer had intended to access is correctly
accessed [14]. Unlike this previous work, Archipelago provides a



strong, quantifiable probabilistic guarantee that the intended pro-
gram behavior will be preserved.

More traditional safe-C compilers [32, 23, 26] use modified
versions of C and some combination of static analysis and dynamic
checks to provide protection from memory errors. Cyclone [19,
32] augments C with an advanced type system to provide safe
explicit memory management. CCured [23] inserts dynamic checks
into the compiled program and uses static analysis to eliminate
checks from places where memory errors cannot occur. CRED [26]
only targets string buffer overflows, and inserts dynamic checks
on memory accesses that use out-of-bounds pointers. All of these
techniques are aimed at detecting memory errors and terminating
the program in response. Archipelago, on the other hand, is aimed
at avoiding memory errors and allowing the program to continue
running correctly.

Like Archipelago, Rx can help avoid memory errors [28]. It
performs periodic checkpointing of program execution, and when
an error occurs, it re-runs the program from a checkpoint in a
modified environment. In response to crashes, Rx pads allocations
to avoid buffer overflows, and delays reuse of freed memory to
prevent dangling pointers. Two fundamental limitations of Rx are
that it only works with applications that allow replay, and cannot
cope with errors that do not result in crashes. Archipelago does not
suffer from either of these limitations.

Dangling pointer errors have been addressed in several ways in
previous work. Dhurjati et al. employ a clever use of virtual mem-
ory page mapping and protection to allow them to detect dangling
pointers at low cost [12]. While Archipelago also uses virtual mem-
ory protection, our focus is on providing resilience to buffer over-
flows with less emphasis on dangling pointers. Garbage collection
is an alternative runtime system that provides safety from dangling
pointer errors. The most commonly used garbage collector for C
programs is Boehm-Demers-Weiser conservative garbage collec-
tor [7]. Unlike Archipelago, garbage collection provides no protec-
tion against buffer overflow errors. Garbage collection also imposes
significant space and time overheads to achieve reasonable perfor-
mance [17].

Finally, various testing tools and debugging allocators [20, 22,
27] can aid programmers in debugging memory errors. They in-
cur prohibitively high overhead both in terms of performance (up
to 25X) and space (10X), making them only suitable for testing.
Valgrind [24, 31] and Purify [16] use binary instrumentation or
emulation to detect memory errors at runtime. Electric Fence [27]
is a debugging allocator that, like Archipelago, allocates heap ob-
jects on separate pages. It allocates three pages for every object:
one page for the object itself (placed at the end), and a memory-
protected page before and after the object. Unlike Archipelago,
Electric Fence does not perform compression and aborts whenever
an overflow causes a memory protection fault.

6. Future Work
There are several ways that the current Archipelago implementa-
tion could be improved. One possibility is to not just compact cold
objects but to compress them, which offers the potential to fur-
ther minimize Archipelago’s memory overhead. While intuitively
appealing, the use of compression adds complexity and requires
adaptive algorithms to keep its CPU overhead low [34].

We intend to explore adaptively sizing the memory pool size to
achieve the optimal trade-off between performance overhead and
resilience to errors. Our current implementation has a static FIFO
size, and we intend to investigate techniques to grow and shrink the
FIFO size just as an OS virtual memory manager adapts working
set size.

Because our approach uses very large virtual address spaces
with sparsely mapped pages, we plan to investigate how OS support

for sparse page tables could improve Archipelago’s performance.
In addition, hardware TLBs have remained relatively small, despite
the enormous growth in physical memory sizes over the last two
decades. We anticipate that TLB designs that better accomodate
large sparse virtual memories, such as those proposed by Huck and
Hays [18], would significantly benefit Archipelago’s performance.

7. Conclusion
Archipelago is a runtime system that provides protection from

memory errors for unmodified C programs. It provides probabilistic
protection from both buffer overflows and dangling pointer errors
with high probability. Archipelago spreads objects far apart in the
address space and randomizes the choice of freed objects to reuse,
giving applications an illusion of infinite-size heap and protecting
them from memory errors. It leverages the virtual memory sub-
system of the underlying OS to efficiently provide a high level of
memory safety to target programs at low cost.

We show that Archipelago increases the resilience of programs
to both real and injected memory errors. Archipelago allows pro-
grams to correctly execute through hundreds and even thousands
of memory errors, which is a significant improvement over current
state-of-the-art systems.

We further demonstrate that the overhead of using Archipelago
is more than acceptable across a range of different server applica-
tions, both in terms of CPU performance and memory usage. We
believe Archipelago is especially suitable for deployment to pro-
tect servers that have known security vulnerabilities due to heap
memory errors.
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