
Using Randomized Caches in Probabilistic
Real-Time Systems

Eduardo Quiñones
Barcelona Supercomputing Center

Barcelona, Spain
e-mail: eduardo.quinones@bsc.es

Emery D. Berger
Dept. of Computer Science

University of Massachusetts, Amherst, USA
e-mail: emery@cs.umass.edu

Guillem Bernat
Rapita Systems
York, England

e-mail: bernat@rapitasystems.com

Francisco J. Cazorla
Barcelona Supercomputing Center

Barcelona, Spain
e-mail: francisco.cazorla@bsc.es

Abstract—While hardware caches are generally effective
at improving application performance, they greatly com-
plicate performance prediction. Slight changes in memory
layout or data access patterns can lead to large and system-
atic increases in cache misses, degrading performance. In
the worst case, these misses can effectively render the cache
useless. These pathological cases, or “cache risk patterns”,
are difficult to predict, test or debug, and their presence
limits the usefulness of caches in safety critical real-time
systems, especially in hard real-time environments.

In this paper, we explore the effect of randomized cache
replacement policies in real-time systems with stringent
timing constrains. We present simulation-based results
on representative examples that illustrate the problem of
performance anomalies with standard cache replacement
policies. We show that, by eliminating dependencies on
access history, randomized replacement greatly reduces
the risk of these cache-based performance anomalies,
enabling probabilistic worst-case execution time analysis.

Index Terms: hard real-time systems; randomized hard-
ware; cache replacement policies; timing analysis

I. INTRODUCTION

In safety-critical hard real-time systems, such as flight
control systems, engine management systems or satellite
control systems, guaranteeing that all computations meet
their deadlines—computing their worst-case execution
time (WCET)—is essential [1]. Numerous approaches
exist to perform WCET analysis; see Wilhelm et al. for
a survey of methods and tools [2].

The need for more complex and demanding safety-
critical real-time systems implies that future processors
for such systems are likely to resemble current high-
performance processors. These processors have numer-

ous features designed to improve performance, such
as pipelines, multiple levels of caches, and multiple
cores. Unfortunately, the increased complexity of these
modern hardware architectures makes computing the
WCET even more difficult. On older CPUs, computing
the WCET was relatively simple because each machine
instruction ran for a fixed number of cycles. However,
systems with more advanced processor features can
lead to enormous variations in instruction execution
and memory access times, greatly complicating WCET
computation.

One key processor feature that exemplifies this prob-
lem is the cache. On one hand, caches are ubiquitous
in most microprocessors because they can dramatically
improve application peformance. By storing recently-
accessed data items in high-speed memory close to
the processor, caches exploit locality in memory access
patterns and can reduce access times by up to two orders
of magnitude [3].

On the other hand, while caches often improve per-
formance, they do not do so reliably or predictably. The
performance of caches depends both on recent access
history and the memory addresses of accessed objects,
making it difficult to predict the access time to memory
for any given object at any point in time. Memory
access times are even harder to predict in the face of
complicated cache hierarchies with multiple levels of
caches. Previous work studying the difficulties of using
caches in critical real-time systems shows that small
program changes that lead to different memory lay-
outs can trigger pathological cache behavior: systematic
cache misses that lead to large increases in worst-case
execution times [4].



The difficulty of predicting memory access times
in the presence of caches—even though the program
may never trigger pathological behaviors—can lead to
worst-case execution time estimates that are extremely
pessimistic, where each unpredictable access is assumed
to be a cache miss. This complexity has led some real-
time systems to disable caches entirely.

Contributions

The thesis of this paper is that, instead of moving
towards building hardware and software that are more
predictable and therefore have systematic pathological
worst-case scenarios, we should move towards a more
truly randomized behavior that is guaranteed by design
to exhibit pathological worst-case behavior only with an
extremely low probability. In this paper, we assess the
impact of one aspect of randomization, a randomized
replacement policy for the instruction cache.

We first show that the potential worst-case impact
of pathological cache behavior is large. We present
experimental evaluations on microbenchmarks that show
that these pathological memory layouts are likely for
cache line replacement policies like LRU and set place-
ment policies using both standard set-associative and
skewed-associative caches [5], and that they lead to
dramatic increases in cache misses. We then show that
randomized cache replacement dramatically reduces the
probability of systematic cache misses, probabilistically
reducing the worst-case number of cache misses without
substantially degrading performance. Finally, we argue
that randomization enables probabilistic timing analy-
sis because of the statistical independence of random
variables, allowing quantification of the likelyhood of a
cache risk pattern.

The remainder of this paper is organized as follows.
Section II provides background on caches, placement
policies, and replacement policies. Section III describes
the randomized replacement policy we explore here.
Section IV presents our experimental methodology and
empirical results evaluating randomized replacement in
the context of caches with different placement policies.
Section V discusses the possible impact of random-
ization on probabilistic WCET analysis. Section VI
presents related work spanning cache architecture design,
software randomization, and real-time systems. Finally,
Section VII concludes with directions for future work.

II. BACKGROUND

Caches are commonly used to hide the speed gap
between the CPU and the main memory by exploiting

TABLE I
POPULAR REPLACEMENT POLICIES AND HARDWARE PLATFORMS

WHERE THEY HAVE BEEN IMPLEMENTED.

Replacement Policies
Policy Platforms
Least Recently Used (LRU) Pentium I, MIPS 34K, LEON3
First-In First-Out (FIFO) Xscale, ARM9, ARM11
Most Recently Used (MRU) [6]
Pseudo-LRU (PLRU) PowerPC 75x, Pentium II-IV

locality in memory accesses. In order to reduce the traffic
overhead between the main memory and the cache, the
memory space is logically split in memory blocks called
cache lines (typically 32-128 bytes).

The behavior of a cache is determined by its place-
ment policy and its replacement policy. A hash function
is typically defined that indicates where in the cache a
given object should be placed. These functions map the
memory address to a cache set number. Each cache set is
identified by certain bits of the memory address, called
its index. Note that different cache lines can collide into
the same cache set.

In other to avoid cache set conflicts, caches are par-
titioned into equally-sized cache sets, called ways. The
size of each cache set is called the k-associativity of the
cache. By doing this, different cache lines that collide
into the same cache set can be distributed along the k
different ways.

A standard set-associative cache (along called stan-
dard cache) is shown in Figure 1(a). Note that the hash
function is the same for all the ways of the cache, so
given an index, the same cache set is accessed in all
cache ways.

Once all ways of a cache set are occupied, the replace-
ment policy decides which cache line is evicted to make
room for the new cache line. Numerous replacement
policies have been proposed and implemented for both
high performance and embedded processors; see Table II
for an overview.

All these algorithms are based on deterministic infor-
mation about the history of recent access patterns. Hence,
when an access pattern is repeated, the outcome of these
algorithms will be the same, which may potentially result
in a cache risk pattern [7], i.e., a sequence of memory
accesses that systematically evict cache lines that are still
in use. A well-known example is a loop over a range of
memory just larger than the cache, as shown in Figure
2.

A. Skewed-Associative Caches

In order to reduce cache conflict misses, i.e., evicting
cache-lines that are still in use, Bodin and Seznec



(a) Tag directory of a standard set-
associative cache

(b) Tag directory of a skewed-associative cache

Fig. 1. Tag directory structures of two cache structures with different hash functions for mapping cache lines to ways.

Fig. 2. Example code that causes pathological cache behavior for
LRU. When all functions overlap on the same cache lines in a four-
way set-associative cache, all function calls will trigger cache misses.

propose skewed-associative caches, or simply skewed
caches [5]. Skewed caches use a placement policy that
assigns a different hash function for each way of the
cache, so that two addresses that collide in the same
cache set in a given cache way are unlikely to also collide
in the other ways (see Figure 1(b)). Skewed caches thus
reduce the risk of colliding with a cache line that is still
in use, because the placement policy achieves a better
dispersion of data across the cache ways.

When using an LRU replacement policy (as rec-
ommended by Bodin and Seznec), skewed caches can
evict cache lines from a number of different cache sets,
depending on where the least recently used cache line is
located. Compare this to standard set-associative caches,
where the evicted cache line always belongs to the same
cache set, regardless of which way contains the least
recently used cache line.

However, while skewed caches can increase hit rates
over standard caches by reducing conflict misses, they
suffer from the same worst-case behavior. Repeated
execution of a pathological sequence that triggers catas-
trophic cache misses will continue to produce the same
performance degradation.

III. RANDOMIZED REPLACEMENT

The goal of using randomization in the context of
cache replacement policies is to both reduce the like-
lihood of cache risk patterns and to virtually eliminate

TABLE II
PERMUTATIONS OF PLACEMENT (LAYOUT) AND REPLACEMENT

ALGORITHMS EXPLORED IN THIS PAPER.

Replacement
Placement LRU Random
Fixed Standard [3] this paper
Per Way Skewed [5] this paper

the risk of systematic performance degradation. Using
randomization enables probabilistic analysis, allowing
us to quantify the likelihood of a cache risk pattern as
some fraction 1/p. Because randomization makes each
iteration effectively independent of the previous one,
the odds of a cache risk pattern occurring in multiple
iterations rapidly decreases: the likelihood that the risk
pattern occurs in each of n iterations is just (1/p)n.

We explore in this paper the effectiveness of random-
ized replacement policies, where the cache line to evict is
always chosen at random instead of depending on recent
access patterns (as with LRU). While evicting an object
at random may seem certain to degrade performance,
the worst-case effectiveness of some randomized eviction
algorithms is better than LRU [8]. The reason for this is
that it is unlikely that a random eviction algorithm will
repeatedly evict a hot cache line, since the likelihood of
evicting one particular cache line is 1/k, where k is the
associativity of the cache. Randomized replacement can
degrade average case execution time, but because the
focus of real-time systems is on reducing the worst case
execution time, this reduction in performance is accept-
able. Nonetheless, we show that this performance degra-
dation is not significant and that random replacement in
fact occasionally outperforms LRU-based policies.

Table III presents a grid describing the uses of ran-
domized replacement we explore here. Because replace-
ment policies are orthogonal to the placement (layout)



algorithms used, we can evaluate the effectivness of ran-
domized replacement both with standard set-associative
caches and with skewed caches.

IV. THE EFFECT OF MEMORY LAYOUT

The cache replacement policy has a significant influ-
ence on the performance and the predictability of the
cache. Deterministic replacement policies may result in
cache risk patterns that systematically generate cache
misses that, in turn, may potentially degrade the perfor-
mance and increase the execution time variation. Since
the cache access pattern is determined by the memory
layout, the effectiveness of the replacement policy highly
depends on the program memory layout, i.e., the set of
memory addresses where the program is stored [4].

In this section, we quantify the cache performance
impact of memory layouts by exploring all possible
memory layouts of a simple fragment of code (see
Figure 2) that resembles automatically-generated code (a
common embedded-code structure), comparing random
and LRU replacement policies. We use LRU because it is
generally considered the best replacement policy in terms
of performance and predictability [9], [7]. However,
the same conclusions can be reached by using any of
the deterministic replacement algorithms presented in
Section II.

We demonstrate that, by using a random replacement
policy, the likelihood of pathological performance is
considerably reduced, improving the worst-case execu-
tion time and reducing the execution time variation of
memory accesses.

A. Experimental Setup

All experiments presented in this section executed on
an in-house cycle-accurate, execution-driven simulator
compatible with Tricore ISA binaries [10]. The Tri-
core ISA, designed by Infineon Technologies, is widely
used in hard real-time applications because it combines
RISC, general-purpose and signal processing instructions
within a single instruction set. The simulator was derived
from CarCore [11]. We paid special attention to simula-
tor correctness, extensively validating it through a wide
range of tests.

The simulator models a memory hierarchy composed
of a first level of cache (with separate instruction and
data caches) and main memory. The first level of cache
can model two different set-associativity caches place-
ment policies: a standard set-associative cache and a
skewed-associative cache. The former uses a fixed-hash
function: log2(s) bits of the address, where s is the

TABLE III
FIRST-LEVEL INSTRUCTION CACHE CONFIGURATION

Cache parameters
Total Size 256 bytes
Cache line size 4 bytes
Associativity 4-way
Sets-per-way 16
Banks 1
Placement Policies Fixed-Hash Function

Skewed-Hash Function
Replacement Policies LRU

Random
Main Memory Access 30 cycles

number of cache sets, are used to index the cache. The
latter uses a different hash function per way [5]: fx(A) =
sx(A1)⊗ (A2), where sx(A1) is the x-bit circular shift
of A1 and A1 and A2 are the 2 × log2(s) address bits
used to index the cache (see Figure 1(b)). Moreover, each
type of cache can use two different replacement policies:
random and LRU. Table III summarizes all cache models
presented in this paper. Finally, the simulator models a
main memory with a fixed latency of 30 processor cycles
per access. The memory subsystem configuration used in
the experiments is shown in Table IV-A.

In order to explore all possible memory layouts,
we designed a small fragment of code that resembles
automatically-generated code. The code, shown in Fig-
ure 2, is formed by five functions of similar size that are
consecutively called inside a loop. The code is executed
inside our processor model presented above, with a first
level instruction cache of 256 bytes (see Table IV-A).

In order to consider conflict and capacity misses, we
designed two different sample programs: one that fits
inside the cache, with a total size of 132 bytes, and other
that does not fit inside the cache, with a total size of 312
bytes. It is clear that while the former will suffer only
conflict misses, the latter will suffer both capacity and
conflict misses. In every new simulation, we initialize the
state of the cache so in both cases, compulsory misses
will also occur.

The reason for using such small and simple code is
because it allows us to perform an exhaustive exploration
of all possible memory layouts. Executing real applica-
tions in a more realistic cache configuration would result
in a enormous space exploration making simulation and
analysis infeasible. In fact, this is one of the reasons why
predicting the cost of memory accesses in the presence
of caches, both on average and in the worst-case, is
exceedingly complex with current WCET analyses. In
fact, although previous studies [7], [12] show that certain
memory layouts result in different execution times of real



Fig. 3. Cache performance depends on memory layout: (a) Func-
tions are placed consecutively in memory (∆ =< 0, 0, 0, 0, 0 >),
(b) Functions are not placed consecutively in memory (∆ =<
24, 40, 40, 36, 32 >), resulting in a cache risk pattern.

applications, they do not conducte an exhaustive space
exploration of the range of all possible memory layouts.

B. Exploring All Memory Layouts

In order to explore all possible memory layouts, we
assume that every function is separated in memory with
respect to the previous function by δ bytes. Therefore,
considering the code presented in Figure 2, a memory
layout can be represented by five δ values, forming the
∆ vector:

∆ =< δa, δb, δc, δd, δe > (1)

Hence, every δn shifts the beginning of the function n
by δn bytes, which has the same effect as adding padding
code, resulting in a new cache pattern. The cache pattern
sequences are a range of δ values will repeat every
δn mod z, where z is the size in bytes of all cache lines
that form a way. In our case, the cache pattern repeats
every δn mod 64.1

Figure 3 shows two different cache patterns (repre-
sented by its corresponding memory layout ∆ vectors)
of the 132-byte code when executing in our 256-byte
instruction cache. In Figure 3(a), the five functions are
placed consecutively (∆ =< 0, 0, 0, 0, 0 >) so they
perfectly fit inside the cache. However, in Figure 3(b),
the memory layout (∆ =< 24, 40, 40, 36, 32 >) results
in a pathological layout in which every function will
systematically evict the next call function when using
LRU, producing a chain of cache conflict misses.

By performing an exhaustive exploration of all possi-
ble memory layouts, we can quantify how every memory
layout affects the execution time of memory accesses,

1Although the size of each way is 64 bytes, Tricore instructions
have a length of 16 and 32 bits, so each δ is required to be increased
by 2 or 4 bytes.

Fig. 4. Hit rate CDF of all possible memory layouts of a 132-byte
code executed on a standard cache using LRU.

and so determine which memory layout results in patho-
logical cache behavior. This analysis is illustrated in the
following cases.

C. Case Study: Code Fits Inside Cache

Figure 4 shows the Cumulative Distribution Function
(CDF) of the hit ratios of all possible memory layouts,
executing the 132-byte code in a standard cache that uses
LRU. As expected, almost all memory layouts (about
90%) achieve the highest possible hit rate (0.94), which
is the case when the layout yields no evictions. However,
in the worst case, there is a set of memory layouts (ap-
proximately 1/10000 of all layouts) that achieve a very
low hit rate (0.41). This high miss rate corresponds to a
dramatic increase in execution time (see Section IV-F).

By randomizing the replacement policy, the decision
to evict a cache set becomes independent of recent cache
access pattern history. In order to quantitatively compare
random and LRU replacement policies in a standard
cache, we take one memory layout of every different
hit rate obtained using LRU (represented by circles in
Figure 4), and simulate 106 executions of each layout
using LRU and random.

Figure 5 shows, from left to right, the CDF of the
seven hit ratios (from 0.41 to 0.93) using LRU (labeled
as Standard & LRU) and random (labeled as Standard &
Random). As expected, the hit rate obtained using LRU
in every execution is exactly the same because of its
deterministic behavior.

However, when using the random replacement policy
(Standard & Random), the memory layout that resulted
in a cache risk pattern under LRU (first curve on the left)
has considerably improved its hit rate ratio, obtaining



Fig. 5. From left to right, the curves show CDF of cache hit
ratios of the 132-byte code executed into a standard cache using
LRU (Standard & LRU) and random (Standard & Random) for the
seven representative layouts.

0.64 in only a few executions. In fact, one can compute
the probability of having a cache risk pattern using a
random replacement policy by raising the probability of
evicting a certain way to the power of the total amount
of memory accesses. Since the variable that models
the replacement policy is by design independent and
identically distributed, the probability of evicting any
way is 1/k, where k is the associativity of the cache. In
our case, the probability of pathological cache behavior
using random replacement is extremely low: ∼ 2.4−765.

Moreover, randomized replacement also reduces the
execution time variation of memory accesses. The worst-
case layout yields a hit rate of 0.64, while the best-case
yields a hit rate of 0.94.

D. Case Study: Code Does Not Fit Inside Cache

Figure 6 shows the CDF of the hit ratios of all
possible memory layouts executing the 312-byte code
in a standard cache that uses LRU. Since the code does
not fit inside the cache, the cache suffers both capacity
misses and conflict misses, resulting in very low hit rates.
The hit rate varies from 0.41 (worst case) to 0.5 (best
case). Note that this worst-case hit rate is the same as
that obtained by the worst case for the 132-byte code
(see Figure 4).

We then perform the same experiment presented in
the previous section, with one memory layout of every
hit rate obtained using LRU (represented by circles in
Figure 6), and simulating 106 executions of each layout
using LRU and random. Figure 7 shows, from left to
right, the CDF of the six resultant hit-rates using LRU

Fig. 6. Hit-rate CDF of all possible memory layouts of a 312-byte
code executed into a standard cache using LRU.

Fig. 7. From left to right, the curves show CDF of cache hit ratios
of 312-byte code executed in a standard cache using LRU (Standard
& LRU) and random (Standard & Random) for the six representative
layouts.

(labeled as Standard & LRU) and random (labeled as
Standard & Random).

The random replacement policy (Standard & Random)
consistently improves the hit rate of the six representative
layouts versus LRU. In addition, it virtually eliminates
the variance between the worst and the best layouts,
achieving a hit rate of 0.66 in the worst case and a hit
rate of 0.74 in the best case for all memory layouts.

E. Skewed-Associate Caches

As explained in Section II-A, skewed caches can
effectively increase the hit rate over those provided by
standard caches, by applying different hash functions for
each assigned way. Figure 8 shows the CDF of the hit
ratios of all possible memory layouts when executing the



Fig. 8. Hit-rate CDF of all possible memory layouts of a 312-byte
code when executing in a skewed cache (Standard & LRU) and a
standard cache (Skewed & LRU), using LRU in both cases.

312-byte code in a standard cache (labeled as Standard
& LRU) and a skewed cache (labeled as Skewed & LRU),
applying in both cases LRU replacement policy.

The skewed cache consistently improves the perfor-
mance of all memory layouts versus the standard cache,
improving the hit rate of the standard cache by up to 0.62
and obtaining a maximum hit rate of 0.73. However, note
that current skewed caches also suffer from pathological
cases because of their deterministic behavior. Given a
particular pathological access pattern, the skewed cache
will always achieve the same (reduced) hit rate. Such
pathological cases introduce a variation in the hit rate
ratio from 0.73 to 0.51 when comparing the best and the
worst layouts.

In order to see the effect of applying a randomized
replacement policy to skewed caches, we take the best
and the worst memory layouts obtained with the skewed
cache using LRU, and then simulate 106 executions
of each layout using both LRU and random. We also
perform the same experiment with the layouts in a
standard cache that uses random replacement.

Figure 9 shows, from left to right, the CDF of the hit-
rate of the two layouts when executing them in a skewed-
cache and LRU (labeled as Skewed & LRU), in a skewed-
cache and random (labeled as Skewed & Random) and
in a standard cache and random (labeled as Standard &
Random).

By applying randomization, the worst and the best
memory layouts achieve almost the same performance,
varying the hit rate from 0.65 to 0.75. Note that the
placement policy has no effect on performance, obtaining

Fig. 9. From left to right, the curves show the CDF hit-rate of
two representatives memory layouts of the 312-byte code executed
in a skewed-cache and LRU (Skewed & LRU) in a skewed-cache and
random (Skewed & Random) and in a standard-cache and random
(Standard & Random).

almost the same hit rate whether using a fixed-hash
function or a skewed-hash function.

F. Execution Time Analysis

While increased cache misses generally lead to de-
creases in performance, the relationship is not lin-
ear. We compute the execution time obtained with
the architecturally-detailed simulator presented in Sec-
tion IV-A. In particular, we focus on the execution time
of the best and worst case layouts of the 312-byte code
for both standard and skewed caches with LRU and
random replacement policies2. Recall that, in case of
randomized replacement, these simulations comprise one
million experiments.

Figure 10 presents these results. Execution times are
normalized to the execution time of the best memory
layout obtained with a standard cache and LRU (Fig-
ure 10(a)) and with a skewed cache and LRU (Fig-
ure 10(b)). For randomized replacement with the best
layout, we present the best execution time obtained
along the one million executions. For the worst layout,
we present the worst execution time obtained out of
one million of executions. This approach allows us to
compute the maximum execution time variation (shown
on top of graph lines).

For standard caches, randomized replacement de-
creases runtime substantially both for the best layout

2We do not present the execution time analysis of the 132-byte
code due to space limitations.



(a) Normalized execution times of the best and the worst layouts
(obtained using a standard cache with LRU) of a standard cache
with LRU and random.

(b) Normalized execution times of the best and the worst layouts
(obtained using a skewed cache with LRU) of a skewed and
standard caches with LRU and random.

Fig. 10. Normalized execution times and execution time variation of the 312-byte code executed in skewed and standard caches using LRU
and random replacement policies.

(36% faster) and for the worst case (33% faster), al-
though the execution time variation between the best and
worst layout is slightly larger (from 13% to 18%).

For skewed caches, while randomized replacement
achieves a smaller decrease for the best case (3%), it sig-
nificantly improves runtime for the worst case (running
almost 25% faster). Note that execution time is almost
the same using a random replacement policy, whether
with a standard cache or with a skewed cache. In effect,
the placement policy has no effect on performance. Ran-
domized replacement considerably decreases execution
time variation versus LRU (from 49% to 16%).

V. DISCUSSION

One key problem of WCET analysis in general is the
issue of pessimism. In the case of the execution time
analysis of memory accesses, when a particular access it
is not possible to determine if it will lead to a cache hit or
a cache miss, the only safe assumption is to consider that
it will be a cache miss, i.e., the worst scenario. This kind
of analysis may result in significant pessimism which
limits their value since the chances that all these memory
accesses result in cache misses is extremely small.

One way to address this issue is to move towards
probabilistic timing analysis [13]. In this case, the goal
is to compute the probability of the extreme case and
then make an argument that the probability is sufficiently
low. Unfortunately, current cache approaches are not
amenable to such probabilistic arguments because the
deterministic behavior of caches may result in patho-
logical cases and systematic cache misses. Applying
probabilistic arguments to current caches is unsafe pre-
cisely because probabilistic analysis techniques rely on
a hypothesis of statistical independence [13]. Unless

one can prove that the variable that models the system
or feature is independent and identically distributed
(iid), using such statistical methods is not well-founded.
Although several statistical approaches exists that deal
with arbitrary models of dependence [14], they are not
currently in widespread use.

However, applying random replacement policies in-
stead of current deterministic approaches may allow us
to argue that the execution time of memory accesses
can be analyzed using probabilistic arguments, because
the random variable modeling the system is indepen-
dent and identically-distributed. Our hypothesis is that
new advanced hardware features such as caches can be
used and analysed effectively in hard real-time systems
with designs that provide truly randomized behaviour.
This shift will enable new probabilistic timing analysis
techniques that can be used effectively in arguments
of verification, demonstrating that the probability of
pathological execution times is negligible.

VI. RELATED WORK

A. Randomized Architectures

In the early 90’s, pseudo-random interleaved memory
architectures were proposed to evenly distribute the
sequence of references across the memory modules in
order to achieve the full bandwidth of the memory
system [15], [16].

Randomized caches were first proposed by Schlansker
et al. [17] to eliminate the repetitive cache conflict
misses caused by bad strides in high performance pro-
cessors. They used a pseudo-random hash function to
randomize addresses into cache sets. By doing this, they
could develop a purely analytic approach to determine
cache performance. A similar approach was proposed by



Topham et al. [18], in which a pseudo-random indexing
scheme based on polynomial modulus functions were
proposed, allowing eliminating bad strides inherent in
some SPEC95 benchmarks.

To the best of our knowledge, randomization has never
been proposed for safety-critical systems because of its
inherent unpredictability. In fact, most of the proposals
focus on static analysability. Moreover, recent studies fo-
cus on providing predictability to advance hardware fea-
tures which allows using static analysis approaches [19],
[20], [21]. These works provide deterministic behaviour
to the different processor components, while we aim for
truly randomized processor components.

B. Replacement Policies for Real-Time

Reineke et al. present quantitative analytical results for
the predictability of some replacement policies (LRU,
FIFO, MRU and PLRU) based on two new metrics:
evict and fill [9]. These metrics indicate how quickly the
cache converges to a known state that can be statically
predicted. The authors conclude that, based on these two
metrics, the LRU replacement policy with an associativ-
ity up to eight performs better than others replacement
policies. Recently, Junier et al. have presented interesting
theoretical results that improve static instruction cache
analysis methods for set-associative instruction caches
with PLRU and a random replacement policies based
on the evict and fill metrics [22]. As expected, the
authors conclude that LRU replacement policy can be
statically analyzed more tightly than PLRU and random
replacement policies.

Bradford et al. compare twenty-one randomly chosen
layouts of the same program obtaining an execution
time variation of 22% [12]. More recently, Mezzetti
et al. identify the problem of execution time variation
caused by memory layouts in a real application: the
on-Board Mission Time-line (MTL) component of the
On-Board Software System used in the European Space
Agency [7]. They develop three different memory lay-
outs for the MTL and execute them on the AT697E
LEON3 processor, obtaining an 11% execution time
variation between a bad and a good memory layout,
and argue that these underestimate the variance between
the worst and the best memory layouts. The paper
presents a list of cache design recommendations in which
they recommend the use of LRU as a deterministic
replacement policy.

C. Layout Randomization

Randomized memory layouts were first used in the
context of memory management in DieHard, proposed
by Berger et al. [23]. DieHard places allocated heap
objects randomly in a larger-than-required heap, enabling
probabilistic memory safety, bounding the likelihood of
memory errors such as buffer overflow, dangling pointers
or invalid frees. As we observe here with randomized
replacement, DieHard’s use of randomized placement
generally does not significantly degrade application per-
formance.

VII. CONCLUSIONS AND FUTURE WORK

The features of modern microprocessors greatly com-
plicate the prediction and analysis of worst-case execu-
tion times. In particular, this paper focuses on the com-
plexities created by caches. Through execution-driven
simulation and in the context of instruction caches,
we show that standard cache replacement policies can
lead to catastrophic cache behavior that increases cache
misses to the point where it effectively disables the
cache. This paper explores an alternative: the use of ran-
domized replacement policies. We show that randomized
replacement effectively avoids the pathological behaviors
of deterministic replacement policies while achieving
reasonable performance.

This paper represents our first step towards exploring
the use of randomization as a way to prevent patholog-
ical cases and increase predictability in hard real-time
systems.

We intend to extend this work in a number of direc-
tions. First, we plan to broaden the scope of our study
to include larger benchmarks. Although this approach
will preclude the possibility of exhaustive state space
exploration, it will allow us to quantify the impact of
randomized caches on execution time of larger applica-
tions.

Second, this paper limits its scope to the study of
randomization in the replacement policy of a single level
of the instruction cache. We plan to study the effects
of randomization on worst-case performance for data
caches and multiple levels of caches. We also plan to
explore the possibility of randomized placement policies,
where the mapping of a particular address to a cache line
is not fixed.

Finally, we plan to develop the required analytical
mathematical models to explore the benefits of ran-
domization. These analytical models will primarily be
obtained using standard probabilistic and statistical ap-
proaches such as extreme value statistics [24] or cop-



ulas [13]. This approach will allow deriving timing
correctness from probabilistic guarantees. For example,
if the requirements placed on the reliability of a sub-
system indicate that the probability of a timing failure
must be less than 10−9 per hour of operation, then the
analysis techniques developed will translate this reliabil-
ity requirement into a probabilistic worst-case execution
time for the sub-system. Moreover, we eventually intend
to combine this work with an industrial-strength real-
time WCET tool such as RapiTime to allow us to develop
well-grounded probabilistic WCET estimates.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Sci-
ence and Technology of Spain under contract TIN-2007-
60625, the HiPEAC European Network of Excellence
and by the MERASA STREP-FP7 European Project un-
der the grant agreement number 216415. Emery Berger
conducted this work as a visiting professor at the
Barcelona Supercomputing Center, and is supported by
the Barcelona Supercomputing Center, Intel, Microsoft
Research, and the National Science Foundation under
CAREER Award CNS-0347339 and CNS-0615211. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation. Authors would also like to thank
Jörg Mische, Professor Theo Ungerer at University of
Augsburg for their help in the integration of CarCore
emulator into our simulation environment.

REFERENCES

[1] A. Burns and A. Welling, Real-Time Systems and Programming
Languages. Addison-Wesley, 1997.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström,
“The worst-case execution-time problem—overview of methods
and survey of tools,” Trans. on Embedded Computing Sys.,
vol. 7, no. 3, pp. 1–53, 2008.

[3] J. Hennessy and D. Patterson, Computer Architecture, a Quan-
titative Approach. Morgan Kaufmann, 2007, ch. 5. Memory
Hierarchy Design, pp. 288–354.

[4] G. Bernat, A. Colin, and J. Esteves, “Considerations on the
LEON cache effects on the timing analysis of on-board appli-
cations,” in DASIA 2007: Proceedings of theData Systems In
Aerospace Conference, 2008.

[5] F. Bodin and A. Seznec, “Skewed associativity improves pro-
gram performance and enhances predictability,” IEEE Trans.
Softw. Eng., vol. 23, no. 9, pp. 530–544, 1997.

[6] H. Al-Zoubi, A. Milenkovic, and M. Milenkovic, “Perfor-
mance evaluation of cache replacement policies for the SPEC
CPU2000 benchmark suite,” in ACM-SE 42: Proceedings of the
42nd annual Southeast regional conference. New York, NY,
USA: ACM, 2004, pp. 267–272.

[7] E. Mezzetti, N. Holsti, A. Colin, G. Bernat, and T. Vardanega,
“Attacking the sources of unpredictability in the instruction
cache behavior,” in RTNS 2008: Proceedings of the 16th Inter-
national Conference on Real-Time and Network Systems, 2008.

[8] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator,
and N. E. Young, “Competitive paging algorithms,” J. Algo-
rithms, vol. 12, no. 4, pp. 685–699, 1991.

[9] J. Reineke, D. Grund, C. Berg, and R. Wilhelm, “Timing
predictability of cache replacement policies,” Real-Time Syst.,
vol. 37, no. 2, pp. 99–122, 2007.

[10] Tricore 1. 32-bit Unified Processor Core v1.3, Infineon, October
2005.

[11] S. Uhrig, S. Maier, and T. Ungerer, “Toward a processor core
for real-time capable autonomic systems,” in Proc. Fifth IEEE
International Symposium on Signal Processing and Information
Technology, 2005, pp. 19–22.

[12] J. P. Bradford and R. W. Quong, “An empirical study on how
program layout affects cache miss rates,” ACM SIGMETRICS
Performance Evaluation Review, vol. 27, 1999.

[13] G. Bernat, A. Burns, and M. Newby, “Probabilistic timing
analysis: An approach using copulas,” J. Embedded Comput.,
vol. 1, no. 2, pp. 179–194, 2005.

[14] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of
probabilistic hard real-time systems,” in In Proceedings of the
23rd Real-Time Systems Symposium RTSS 2002, 2002, pp. 279–
288.

[15] R. Raghavan and J. P. Hayes, “On randomly interleaved
memories,” in Supercomputing ’90: Proceedings of the 1990
ACM/IEEE conference on Supercomputing. Washington, DC,
USA: IEEE Computer Society, 1990, pp. 49–58.

[16] B. R. Rau, “Pseudo-randomly interleaved memory,” in In
Proceedings of the 18th Annual International Symposium on
Computer Architecture, 1991, pp. 74–83.

[17] M. Schlansker, R. Shaw, and S. Sivaramakrishnan, “Random-
ization and associativity in the design of placement-insensitive
caches,” HP Report, HPL-93-41, 1993.

[18] N. Topham and A. González, “Randomized cache placement
for eliminating conflicts,” IEEE Trans. Comput., vol. 48, no. 2,
pp. 185–192, 1999.

[19] “http://ginkgo.informatik.uni-augsburg.de/merasa-web.”
[20] M. Paolieri, E. Quiones, F. Cazorla, G. Bernat, and M. Valero,

“Hardware support for wcet analysis of hard real-time multi-
core systems,” in ISCA ’09: Proceedings of the 36th annual
international symposium on Computer architecture, 2009.

[21] J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access opti-
mization for predictable implementation of real-time applica-
tions on multiprocessor systems-on-chip,” in Proc. 28th IEEE
International Real-Time Systems Symposium RTSS 2007, 2007,
pp. 49–60.

[22] A. Junier, D. Hardy, and I. Puaut, “mpact of instruction cache
replacement policy on the tightness of wcet estimation,” in
mpact of instruction cache replacement policy on the tightness
of WCET estimation, Oct. 2008.

[23] E. D. Berger and B. G. Zorn, “DieHard: Probabilistic memory
safety for unsafe languages,” in In Proceedings of the ACM
SIGPLAN 2006 Conference on Programming Language Design
and Implementation. ACM Press, 2006, pp. 158–168.

[24] K. Burry, Statistical Methods in Applied Science. John Wiley
& Sons, 1975.


