
Garbage Collection Without Paging

Matthew Hertz Yi Feng Emery D. Berger
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

{hertz, yifeng, emery}@cs.umass.edu

Abstract
Garbage collection offers numerous software engineering advan-
tages, but interacts poorly with virtual memory managers. Exist-
ing garbage collectors require far more pages than the application’s
working set and touch pages without regard to which ones are in
memory, especially during full-heap garbage collection. The re-
sulting paging can cause throughput to plummet and pause times to
spike up to seconds or even minutes. We present a garbage collector
that avoids paging. Thisbookmarking collectorcooperates with the
virtual memory manager to guide its eviction decisions. Using sum-
mary information (“bookmarks”) recorded from evicted pages, the
collector can perform in-memory full-heap collections. In the ab-
sence of memory pressure, the bookmarking collector matches the
throughput of the best collector we tested while running in smaller
heaps. In the face of memory pressure, it improves throughput by
up to a factor of five and reduces pause times by up to a factor of
45 over the next best collector. Compared to a collector that con-
sistently provides high throughput (generational mark-sweep), the
bookmarking collector reduces pause times by up to 218x and im-
proves throughput by up to 41x. Bookmarking collection thus pro-
vides greater utilization of available physical memory than other
collectors while matching or exceeding their throughput.

Categories and Subject DescriptorsD.3.4 [Processors]: Mem-
ory management (garbage collection); D.4.2 [Storage Manage-
ment]: Virtual memory

General Terms Algorithms, Languages, Performance

Keywords bookmarking collection, garbage collection, genera-
tional collection, memory pressure, paging, virtual memory

1. Introduction
Garbage collection is a primary reason for the popularity of lan-
guages like Java and C# [45, 52]. However, garbage collection
requires considerably more space than explicit memory manage-
ment [56, 31]. The result is that fewer garbage-collected applica-
tions fit in a given amount of RAM. If even one garbage-collected
application does not fit in available physical memory, the garbage

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’05, 12–15 June 2005, Chicago, Illinois, USA
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

collector will inducepaging, or traffic between main memory and
the disk. Because disk accesses are approximately six orders of
magnitude more expensive than main memory accesses, paging
significantly degrades performance. Paging can also lead to pause
times lasting for tens of seconds or minutes.

Even when an application’s working set fits in main memory,
collecting the heap may induce paging. During full-heap collec-
tions, most existing garbage collectors touch pages without regard
to which pages are resident in memory and visit many more pages
than those in the application’s working set. Garbage collection also
disrupts information about the reference history tracked by the vir-
tual memory manager.

While this phenomenon is widely known, previous work has at-
tacked it only indirectly. For example, generational garbage collec-
tors concentrate their collection efforts on short-lived objects [37,
49]. Because these objects have a low survival rate, generational
collection reduces the frequency of full-heap garbage collections.
However, when a generational collector eventually performs a full-
heap collection, it triggers paging.

This problem has led to a number of workarounds. One stan-
dard way to avoid paging is to size the heap so that it never ex-
ceeds the size of available physical memory. However, choosing
an appropriate size statically is impossible on a multiprogrammed
system, where the amount of available memory changes. Another
possible approach is overprovisioning systems with memory, but
high-speed, high-density RAM remains expensive. It is also gener-
ally impractical to require that users purchase more memory in or-
der to run garbage-collected applications. Furthermore, even in an
overprovisioned system, just one unanticipated workload exceed-
ing available memory can render a system unresponsive. These
problems have led some to recommend that garbage collection
only be used for small applications with minimal memory foot-
prints [46].

Contributions: This paper introducesbookmarking collection
(BC), a garbage collection algorithm that virtually eliminates gar-
bage collector-induced paging. Bookmarking collection records
summary information (“bookmarks”) about outgoing pointers from
pages that have been evicted to disk. Once a page is evicted from
memory, BC does not touch it unless the application itself makes
it resident. Instead of visiting evicted pages, BC uses bookmarks
to assist garbage collection. These bookmarks, together with BC’s
heap organization and cooperation with the virtual memory man-
ager, allow BC to perform full-heap, compacting garbage collection
without paging, even when large portions of the heap have been
evicted. Because bookmarking necessarily sacrifices some connec-
tivity information and could thus prevent garbage from being re-
claimed (see Section 3.5), BC includes a fail-safe mechanism that
preserves completeness by discarding bookmarks in the unlikely
event of heap exhaustion.

� �

� �

�

�

�

�����

������	
���

�

Figure 1. An example of bookmarking collection.

We have implemented BC in Jikes RVM [7, 8] using the MMTk
toolkit [19]. The bookmarking collector relies on some additional
operating system support, which consists of a modest extension
to the Linux virtual memory manager (approximately six hun-
dred lines of code). Without memory pressure, BC’s performance
matches that of generational mark-sweep (GenMS), a collector that
consistently provides high throughput [18]. Under memory pres-
sure, bookmarking collection outperforms the next best garbage
collector we tested by a factor of five, and reduces pause times by a
factor of 45. Compared to GenMS, bookmarking collection yields
up to a 218-fold reduction in pause times and improves throughput
by up to 41x. Bookmarking collection thus provides greater utiliza-
tion of available physical memory than other collectors.

The paper is organized as follows: Section 2 provides an
overview of bookmarking collection, and Section 3 describes the
bookmarking garbage collector in detail. Section 4 presents some
key implementation details, including our extensions to the Linux
virtual memory manager. Section 5 presents empirical results com-
paring the performance of bookmarking collection to a range of
existing garbage collectors, both with and without memory pres-
sure. Section 6 discusses related work, Section 7 presents directions
for future work, and Section 8 concludes.

2. Overview
The bookmarking collector was designed to achieve three goals:
low space consumption, high throughput, and the elimination of
GC-induced page faults. While BC normally uses mark-sweep col-
lection, it minimizes space consumption by performing compaction
when under memory pressure. BC provides high throughput by us-
ing a nursery generation to manage short-lived objects. Finally, and
most importantly, it organizes the heap into groups of pages and
reacts to signals from the virtual memory manager whenever pages
are scheduled for eviction to disk or made resident in main memory.

Unlike existing garbage collectors, BC avoids paging caused by
processing objects on evicted pages. BC scans pages prior to evic-
tion and remembers outgoing pointers by “bookmarking” targeted
objects. When BC is notified of an impending eviction and cannot
shrink the heap or discard an empty page, BC ensures that only
appropriate pages are evicted. BC scans each object on the vic-
tim page, bookmarks the targets of any references, and increments
counters in the target superpages’ headers. After processing all of
the objects, BC informs the virtual memory manager that the page
can be evicted. Because BC uses these bookmarks to recreate the
evicted references, it can continue to collect the heap without pag-
ing.

Figure 1 presents a snapshot of the heap after a collection
with bookmarks. Objects are the small rectangles inside larger
rectangles, which are pages. Live objects are shown in white, and
unreachable objects (garbage) are shown in black. The middle page
(in light gray) has been evicted to disk. The lines represent pointers.
The dotted lines are pointers into non-resident pages; BC ignores
these during collection. The dashed lines denote outgoing pointers
from a non-resident page: these induce bookmarks, represented
by the letter “B”. BC also conservatively bookmarks all objects
on a page before it is evicted (see Section 3.4). The number “1”
in the upper-left hand corner of the last page indicates that the
bookmarks on this page are induced by exactly one evicted page.
During collection, BC considers every bookmarked object to be
live, even if it is not reachable from the roots.

3. Bookmarking Collection
The bookmarking collector is a generational collector with a bump-
pointer nursery, a compacting mature space, and a page-based large
object space. BC divides the mature space intosuperpages, page-
aligned groups of four contiguous pages (16K). BC manages ma-
ture objects usingsegregated size classes[12, 13, 16, 36, 38, 42,
53]: objects of different sizes are allocated onto different super-
pages. Completely empty superpages can be reassigned to any size
class [16, 38].

BC uses size classes designed to minimize both internal and
external fragmentation (which we bound at 25%). Each allocation
size up to 64 bytes has its own size class. Larger object sizes fall
into a range of 37 size classes; for all but the largest five, these have
a worst-case internal fragmentation of 15%. The five largest classes
have between 16% and 33% worst-case internal fragmentation; BC
could only do better by violating the bound on page-internal or
external fragmentation. BC allocates objects larger than 8180 bytes
(half the size of a superpage minus metadata) into the large object
space.

When the heap fills, BC typically performs mark-sweep garbage
collection. We use mark-sweep for two reasons. First, it provides
good program throughput and short GC pauses. More importantly,
mark-sweep does not increase memory pressure by needing a copy
reserve of pages.1

3.1 Managing Remembered Sets

Like all generational collectors, BC must remember pointers from
the older to the younger generation. It normally stores these point-
ers in page-sized write buffers that provide fast storage and process-
ing but may demand unbounded amounts of space. To limit space
overhead, BC processes buffers when they fill. During this process-
ing, it removes entries for pointers from the mature space and in-
stead marks the card for the source object in the card table used
during the marking phase of garbage collection. BC begins each
nursery collection by reviewing these cards and scanning only those
objects whose cards are marked. After pruning all possible pointers
and compacting the entries remaining in the buffer, the filtered slots
are available for future storage. This filtering allows the bookmark-
ing collector to use the fast processing of write buffers, but often
consumes just a single page.

3.2 Compacting Collection

Because mark-sweep collection does not compact the heap, frag-
mentation can cause it to increase memory pressure. Using mark-
sweep, the bookmarking collector cannot reclaim a superpage if
it contains just one reachable object. BC avoids increased memory
pressure by performing a two-pass compacting collection whenever

1 Usually this copy reserve is half the heap size, but Sachindran et al. present
copying collectors that allow the use of much smaller copy reserves [43, 44].

a full garbage collection does not free enough pages to satisfy the
current allocation request.

BC begins this compacting collection with a marking phase.
Each time it marks an object, it also increments a counter for
the object’s size class. After marking, BC computes the minimum
number of superpages needed to hold the marked objects for each
size class. It then selects the minimum set of “target” superpages
that contain enough space to hold all of the marked objects. A
second pass uses a Cheney scan to compact the reachable objects.
Upon visiting an object in this second pass, BC checks if the object
is on a target superpage. BC forwards those objects not on target
superpages, while preserving objects already on a target. When this
pass completes, reachable objects are only on target superpages and
the remaining garbage (non-target) superpages are freed.

3.3 Cooperation with the Virtual Memory Manager

The approach described so far allows BC to avoid increasing mem-
ory pressure during garbage collection. In the face of paging, BC
cooperates with the virtual memory manager to shrink the heap
and reduce memory pressure. The bookmarking collector uses its
knowledge of the heap to make good paging decisions. For this
cooperation, we use an extended virtual memory manager; we de-
scribe these extensions in Section 4.1.

3.3.1 Reducing System Call Overhead

To limit overhead due to communication with the virtual memory
manager, BC tracks page residency internally. Whenever BC allo-
cates a new superpage, it checks in a bit array if the pages are al-
ready memory resident. When they are not, it increases the estimate
of the current footprint and marks the pages as resident. During gar-
bage collection, the collector uses this bit array to avoid following
pointers into pages that are not resident.

3.3.2 Discarding Empty Pages

The virtual memory manager initiates communication by sending
a signal whenever a page is scheduled for eviction or loaded back
into memory. Upon receiving this signal, BC scans the bit array for
an empty, memory-resident page and directs the virtual memory
manager to reclaim thisdiscardablepage. When a discardable page
cannot be found, BC triggers a collection and then directs the
virtual memory manager to discard a newly-emptied page (if one
exists). Most operating systems (e.g., Linux and Solaris) already
include this functionality by using themadvise system call with
theMADVDONTNEEDflag.

3.3.3 Keeping the Heap Memory-Resident

The notification of a pending eviction also alerts BC that the current
heap footprint is slightly larger than the memory available to the
application. Unlike previous collectors, BC tries not to grow at
the expense of paging, but instead limits the heap to the current
footprint. If memory pressure continues to increase, BC continues
discarding empty pages and uses the new estimate as the target
footprint. BC shrinks the heap to keep it entirely in memory and
thus avoid incurring the cost of a page fault. While BC expands
the heap and causes pages to be evicted when this is necessary for
program completion, it ordinarily limits the heap to what can fit
into available memory.

3.4 Bookmarking

When a non-discardable page must be evicted, BC selects a victim
page. The page scheduled for eviction is usually an appropriate
choice, since the virtual memory manager approximates LRU order
and will therefore evict pages that are unlikely to be used again
soon. However, BC will not select pages that it knows will soon
be used, such as nursery pages or superpage headers (which we

discuss below). In this case, upon processing the signal, BC touches
the page that has been scheduled in order to prevent its eviction.
This touching causes a different victim page to be scheduled for
eviction.

If collecting the heap does not yield any discardable pages, BC
scans the victim page for outgoing pointers andbookmarksthe tar-
get objects of these outgoing references. These bookmarks (a single
bit stored in the status word in the object header) act as a secondary
set of root references, allowing full memory-resident collections
without accessing evicted pages and thus without causing any page
faults.

In addition to setting the bookmark bit of all of the target
objects, BC increments theincoming bookmark counterfor the
target objects’ superpages. BC uses this counter (the number of
evicted pages pointing to objects on a given superpage) to release
bookmarks when incoming pages become resident (we discuss
clearing bookmarks in Section 3.4.2).

BC stores superpage metadata in each superpage header. This
placement permits constant-time access by bit-masking, which is
important because the metadata is used both for allocation and
collection. While this metadata could instead be stored off to the
side, that would create a large pool of unevictable pages, including
information for superpages that do not exist. While storing the
metadata in the superpage header prevents BC from evicting one-
fourth of the pages, it reduces memory overhead and simplifies the
memory layout, along with corresponding eviction/reloading code.

Since superpage headers are always resident, BC can increment
the incoming bookmark counters without triggering a page fault.
BC cannot bookmark every target, however, since these may reside
on evicted pages. To prevent this from causing errors, BC conserv-
atively bookmarks all objects on a page before it is evicted.

Once bookmarking completes, the victim page can be evicted.
Having just been touched, however, it would not now be sched-
uled for eviction. BC thus communicates with the virtual mem-
ory manager one more time, informing it that the page should be
evicted. While the stock Linux virtual memory manager does not
provide support for this operation, BC uses a new system call pro-
vided by our extended kernel,vm relinquish . This call allows
user processes to voluntarily surrender a list of pages. The virtual
memory manager places these relinquished pages at the end of the
inactive queue from which they are quickly swapped out.

A race condition could arise if the relinquished pages are
touched before the virtual memory manager can evict them. While
BC would still have processed these pages for bookmarks, they
would never be evicted and BC would never be informed that they
are memory-resident. To eliminate this possibility, BC prevents
pages from being accessed immediately after scanning it by dis-
abling access to them (via themprotect system call). When a
protected page is next touched, the virtual memory manager no-
tifies BC. In addition to re-enabling page access, BC can clear
bookmarks (see Section 3.4.2).

3.4.1 Collection After Bookmarking

When the heap is not entirely resident in memory, BC starts the
marking phase of each full-heap collection by scanning the heap
for memory-resident bookmarked objects. While this scan is ex-
pensive, scanning every object is often much smaller than the cost
of even a single page fault. BC further reduces this cost by scanning
only those superpages with a nonzero incoming bookmark count.
During this scan, BC marks and processes bookmarked objects as if
they were root-referenced. Once BC completes this scan, it has re-
constructed all the references in evicted objects and does not need
to touch evicted pages. BC now follows its usual marking phase,
but ignores references to evicted objects. After marking completes,

all reachable objects are either marked or evicted. A sweep of the
memory-resident pages completes the collection.

When BC must compact the heap, slightly more processing is
required. During marking, BC updates the object counts for each
size class to reserve space for every possible object on the evicted
pages. BC first selects all superpages containing bookmarked ob-
jects or evicted pages as compaction targets, selecting other super-
pages as needed.

BC scans the heap to process bookmarked objects once more at
the start of compaction. Because these bookmarked objects reside
on target superpages, BC does not move them. BC thus does not
need to update (evicted) pointers to bookmarked objects.

3.4.2 Clearing Bookmarks

BC largely eliminates page faults caused by the garbage collector,
but cannot prevent mutator page faults. As described in Section 3.4,
BC is notified whenever the mutator accesses an evicted page
because this triggers a protection fault. BC then tries to clear the
bookmarks it set when the page was evicted.

BC scans the reloaded page’s objects and decrements the incom-
ing bookmark counter of any referenced objects’ superpages. When
a superpage’s counter drops to zero, its objects are only referenced
by objects in main memory. BC then clears the now-unnecessary
bookmarks from that superpage. If the reloaded page’s superpage
also has an incoming bookmark count of zero, then BC clears the
bookmarks that it set conservatively when the page was evicted.

3.4.3 Complications

So far, we have described page eviction as if the kernel schedules
evictions on a page-by-page basis and maintains a constant number
of pages in memory. In fact, the virtual memory manager schedules
page evictions in large batches to hide disk latency. As a result, the
size of available memory can fluctuate wildly. The virtual memory
manager also operates asynchronously from the collector, meaning
that it can run ahead of the collector and evict a page before BC can
even be scheduled to run and process the page.

BC uses two techniques to avoid this problem. First, it maintains
a store of empty pages and begins a collection when these are
the only discardable pages remaining. If pages are scheduled for
eviction during a collection, BC discards the pages held in reserve.
When a collection does not free enough pages to replenish its
empty page cache, BC examines the pages that had been scheduled
for eviction and, processes and evicts any non-empty pages. This
preventive bookmarking ensures BC always maintains some pages
in memory in which it can allocate objects and ensures BC can
process pages before their eviction.

BC employs a second technique to ensure it can process pages
before they are evicted. Rather than discarding pages individually,
BC discards all contiguous empty pages recorded on the same word
in its bit array as the first discardable page it finds. By tracking the
number of extra pages it returns to the virtual memory manager,
BC prevents this aggressive discarding from decreasing its target
memory footprint. This aggressiveness has other benefits. Provid-
ing more empty pages for reuse limits the number of pages the
virtual memory manager must schedule for eviction and provides
better program throughput by reducing the time BC spends han-
dling these notifications.

3.5 Preserving Completeness

The key principle behind bookmarking collection is that the gar-
bage collector must avoid touching evicted pages. A natural ques-
tion is whethercompletegarbage collection (reclaiming all garbage
objects) is possible without touchinganyevicted pages.

In general, it is impossible to perform complete garbage col-
lection without traversing non-resident objects. Consider the case

when we must evict a page full of one-word objects that all point
to objects on other pages. A lossless summary of reachability in-
formation for this page requires as much memory as the objects
themselves, for which we no longer have room.

This limitation means that, in the absence of other informa-
tion about reachability, we must rely on conservative summaries
of connectivity information. Possible summaries include summa-
rizing pointers on a page-by-page basis, compressing pointers in
memory, and maintaining reference counts. To minimize the space
and processing required for summaries, we use the smallest sum-
marization heuristic: a single bookmark bit already available in the
object’s header. When this bit is set, BC treats the object as the
target of at least one pointer from an evicted page.

While this summary information is “free”, bookmarking has a
potential space cost. Because BC must select all superpages con-
taining bookmarked objects and evicted pages as targets, compact-
ing collection cannot always minimize the size of the heap. By
treating all bookmarked objects as reachable (even ones which may
be garbage), BC is further limited in how far it can shrink the heap.

Despite these apparent costs, bookmarking does not substan-
tially increase the minimum heap size that BC requires. Section 5.3
shows that even in the face of megabytes of evicted pages, BC con-
tinues to run in very tight heap sizes. Such tight heaps mean that
BC will perform more frequent garbage collections, but the time
needed for these collections is still far less than the cost of the page
faults that would otherwise occur.

In the event that the heap is exhausted, BC preserves complete-
ness by performing a full heap garbage collection (touching evicted
pages). Note that this worst-case situation for bookmarking collec-
tion (which we have yet to observe) is the common case for existing
garbage collectors. We show in Section 5 that BC’s approach effec-
tively eliminates collector-induced paging.

4. Implementation Details
We implemented the bookmarking collector using MMTk [19]
and Jikes RVM version 2.3.2 [7, 8]. When implementing the BC
algorithm within MMTk and Jikes, we needed to make two minor
modifications. In Jikes, object headers for scalars are found at the
end of the object while object headers for arrays are placed at the
start of an object.2 This placement is useful for optimizing NULL
checks [7], but makes it difficult for BC to find object headers when
scanning pages. We solve this problem by further segmenting our
allocation to allow superpages to hold either only scalars or only
arrays. BC stores the type of objects contained in the superpage in
each superpage header. Using this type and size class information
in the superpage header (accessed by bit-masking) allows BC to
locate all objects on a page.

BC does not employ two of the object layout optimizations in-
cluded in Jikes RVM. Jikes normally aligns objects along word (4-
byte) boundaries, but allocates objects or arrays containing longs
or doubles on an 8-byte boundary. Aligning data this way improves
performance, but makes it impossible for BC to locate object head-
ers. BC would need to know an object’s type to find its header,
but the type is itself stored in the header. Another optimization al-
lows Jikes RVM to compute an object’s hash code based upon its
address. While this provides many benefits, address-based hashing
also requires that copied objects grow by one word, disrupting the
size-class object counts that BC maintains.

While we needed to remove these optimizations from BC
builds, we did not want to bias our results by removing them from
builds that would benefit from their presence. Therefore, all builds
except BC include these optimizations.

2 In a recently-released version of Jikes RVM, all headers start at the begin-
ning of the object.

4.1 Kernel Support

The bookmarking collector improves garbage collection paging
performance primarily by cooperating with the virtual memory
manager. We extended the Linux kernel to enable this cooperative
garbage collection. This extension consists of changes or additions
to approximately six hundred lines of code (excluding comments),
as measured by SLOCcount [51].

The modifications are on top of the 2.4.20 Linux kernel. This
kernel uses an approximate global LRU replacement algorithm.
User pages are either kept in the active list (managed by the clock
algorithm) or the inactive list (a FIFO queue).

When the application begins, it registers itself with the operating
system so that it will receive notification of paging events. The
kernel then notifies the runtime system just before any page is
scheduled for eviction from the inactive list (specifically, whenever
its corresponding page table entry is unmapped). The signal from
the kernel includes the address of the relevant page.

To maintain information about process ownership of pages, we
applied Scott Kaplan’s lightweight version of Rik van Riel’s reverse
mapping patch [34, 50]. This patch allows the kernel to determine
the owning process of pages currently in physical memory.

BC needs timely memory residency information from the vir-
tual memory manager. To ensure the timeliness of this communi-
cation, our notifications use Linux real-time signals. Real-time sig-
nals in the Linux kernel are queueable. Unlike other notification
methods, these signals cannot be lost due to other process activity.

5. Results
We evaluated the performance of BC by comparing it to five
garbage collectors included with Jikes RVM: MarkSweep, Semi-
Space, GenCopy, GenMS (Appel-style generational collectors us-
ing bump-pointer and mark-sweep mature spaces, respectively),
and CopyMS (a variant of GenMS which performs only whole
heap garbage collections).

Table 1 describes our benchmarks, which include the SPECjvm98
benchmark suite [27],pseudoJBB (a fixed-workload variant of
SPECjbb [26]), and two applications from the DaCapo benchmark
suite, ipsixql and jython. We compare execution and pause times
of thepseudoJBB benchmark on our extended Linux kernel. This
benchmark is widely considered to be the most representative of
a server workload and is the only one of our benchmarks with a
significant memory footprint.

5.1 Methodology

We performed all measurements on a 1.6GHz Pentium M Linux
machine with 1GB of RAM and 2GB of local swap space. This

Benchmark statistics
Benchmark Total Bytes Alloc Min. Heap

SPECjvm98
201 compress 109,190,172 16,777,216
202 jess 267,602,628 12,582,912
205 raytrace 92,381,448 14,680,064
209 db 61,216,580 19,922,944
213 javac 181,468,984 19,922,944
228 jack 250,486,124 11,534,336

DaCapo
ipsixql 350,889,840 11,534,336
jython 770,632,824 11,534,336

SPECjbb2000
pseudoJBB 233,172,290 35,651,584

Table 1. Memory usage statistics for our benchmark suite.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 1.5 2 2.5 3 3.5 4

G
eo

m
et

ric
 M

ea
n

ov
er

 a
ll

B
en

ch
m

ar
ks

Relative Heap Size

Geometric Mean of Performance Relative to BC

BC
BC w/o Compaction

GenMS
GenCopy
CopyMS

MarkSweep
SemiSpace

Figure 2. Geometric mean of execution time relative to BC absent
memory pressure and across all benchmarks. At the smaller sizes,
heap compaction allows BC to require less space while providing
the best performance. Compaction is not needed at larger heap
sizes, but BC typically continues to provide high performance.

processor includes a 32KB L1 data cache and a 1MB L2 cache. We
report the mean of five runs with the system in single-user mode
and the network disabled.

To duplicate the environment found in live servers, all code is
compiled by the optimizing compiler. We did not want compilation
to affect our end results, however, as servers rarely spend time com-
piling code. Following Bacon et al. [13], we run two iterations of
each benchmark, but report results only from the second iteration.
The first iteration optimizes all of the code. Because compilation
allocates onto the heap, the heap size is allowed to change during
this iteration. After the first iteration is complete, Jikes performs a
full heap collection to remove compilation objects and data remain-
ing from the first run. We then measure the second iteration of the
benchmark. Using this “compile-and-reset” methodology, we can
compare the performance of collectors in an environment similar
to that found in a large server.

To examine the effects of memory pressure on garbage col-
lection paging behavior, we simulate increasing memory pressure
caused by another application starting up or increasing its work-
ing set size. We begin these experiments by making available only
enough memory for Jikes to complete the compilation phase with-
out any memory pressure. We then use an external process we call
signalmem. The Jikes RVM notifiessignalmem when it com-
pletes the first iteration of a benchmark. Once alerted,signalmem
usesmmapto allocate a large array, touches these pages, and then
pins them in memory withmlock . The initial amount of memory,
total amount of memory, and rate at which this memory is pinned
are specified via command-line parameters. Usingsignalmem, we
perform repeatable measurements under memory pressure while re-
ducing disruption due to CPU load. This approach also allows us
to compare the effects of different levels of memory pressure and a
variety of page evictions rates.

5.2 Performance Without Memory Pressure

While the key goal of bookmarking collection is to avoid paging, it
would not be practical if it did not provide competitive throughput
in the absence of memory pressure. Figure 2 summarizes the results
for the case when there is sufficient memory to run the benchmarks
without any paging. We present the geometric mean increase in
execution time relative to BC at each relative heap size for each
collector.

As expected, BC is closest in performance to GenMS, although
BC will occasionally run in a smaller heap size. Both collectors
perform nursery collection and have a segregated-fit mark-sweep
mature space, and behave similarly at large heap sizes and without
memory pressure. At the largest heap size (where heap compaction
is not needed), the two collectors are virtually tied (BC runs 0.3%
faster). However, at smaller sizes, BC’s compaction allows it to run
in smaller heaps. For example, BC runs 4% faster at the 1.25x heap
size.

The next best collector is GenCopy, which runs as fast as BC
at the largest heap sizes but averages 7% slower at heaps as large
as twice the minimum. The fact that GenCopy generally does
not exceed BC’s performance suggests that BC’s segregated size
classes do not significantly impact locality. Unsurprisingly, BC’s
performance is much greater than the single-generation collectors.
At the largest heap size, MarkSweep averages a 20% and CopyMS
a 29% slowdown. No collector at any heap size performs better
on average than BC, demonstrating that the BC provides high
performance when memory pressure is low.

5.3 Performance Under Memory Pressure

We evaluate the impact of memory pressure using three sets of ex-
periments. We first measure the effect ofsteady memory pressure.
Next, we measure the effect ofdynamically growing memory pres-
sure, as would be caused by the creation of another process or a
rapid increase in demand (e.g., the “Slashdot effect”). Finally, we
runmultiple JVMs simultaneously. We use thepseudoJBB bench-
mark for all these experiments.

5.3.1 Steady Memory Pressure

To examine the effects of running under steady memory pressure,
we measure the available memory needed so every collector can
run without evicting a page. Starting with that amount of available
memory, we begin the second iteration by havingsignalmem re-
move memory equal to 60% of the heap size. Results of these ex-
periments are shown in Figure 3. Note that we do not show results
for MarkSweep in these graphs, because runs with this collector
can take hours to complete.

Figure 3 shows that under steady memory pressure, BC out-
performs most of the other collectors (and all of the generational
collectors). Although SemiSpace outperforms BC at the 80-95MB
heap sizes, its execution time goes off the chart soon after. CopyMS
also outperforms BC in the same range of heap sizes but runs nearly
twice as slow as BC at the 130MB heap size. At this size, GenMS’s
average pause time is around 3 seconds, 30 times greater than BC’s
average pause time. To test CopyMS’s behavior under greater mem-
ory pressure, we measured the effect of removing memory equal
to 70% of the heap size. Under these conditions, CopyMS takes
over an hour to executepseudoJBB, while BC’s execution time
remains largely unchanged.

5.3.2 Dynamic Memory Pressure

To simulate a spike in memory pressure, we invokesignalmem
so that it initially allocates 30MB and then allocates additional
memory at a rate of 1MB every 100ms until it reaches the desired
level of available memory. Figure 4 shows the average pause times
and Figure 5 shows the average execution time forpseudoJBB as
memory pressure increases (i.e., as available memory shrinks).

Figures 4 and 5 show that under memory pressure, BC signifi-
cantly outperforms all of the other collectors both in total execution
time and pause times. Note that, as with the previous paging exper-
iments, we do not present MarkSweep here because of the dramatic
performance degradation it suffers.

Because the mark-sweep based collectors do not perform com-
paction, objects become spread out over a range of pages. Once

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 80 100 120 140 160 180 200 220

A
ve

ra
ge

 P
au

se
 T

im
e

(m
s)

Available Memory

Average Pause Time for Pseudojbb w/ 77MB Heap While Paging

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace

Figure 4. Dynamic memory pressure (increasing from left to
right): average GC pause time runningpseudoJBB. BC’s average
pause times remain unaffected by increasing memory pressure.

heap pages are evicted, visiting these pages during a collection trig-
gers a cascade of page faults and orders-of-magnitude increases in
execution time. For instance, at the largest heap size, GenMS’s av-
erage garbage collection pause takes nearly 10 seconds — longer
than it needed to executepseudoJBB without memory pressure.
Even when collections are relatively rare, spreading objects across
a large number of pages can degrade performance by increasing
mutator faults.

Compacting objects onto fewer pages can reduce faults, but the
compacting collectors also suffer from paging effects. For example,
the execution times for GenCopy shown in Figure 5(a) are an order
of magnitude larger than its times when not paging. Paging also
increases the average GenCopy pause to several seconds, while
BC’s pause times remain largely unchanged.

The collectors that come closest in execution time to BC in Fig-
ure 5 are SemiSpace and CopyMS. While these collectors perform
well at low to moderate memory pressure, they perform far worse
both under no memory pressure and under severe memory pressure.
This effect is due topseudoJBB’s allocation behavior.pseudo-
JBB initially allocates a few immortal objects and then allocates
only short-lived objects. While these collectors reserve heap space
to copy the survivors of a collection, little of this space is used. LRU
ordering causes nursery pages filled with dead objects to be evicted.
While SemiSpace ultimately reuses these pages in subsequent col-
lections, CopyMS’s mark-sweep mature object space allows better
heap utilization and fewer collections. This heap organization de-
lays paging, but does not prevent it.

We next presentmutator utilizationcurves [23]. Mutator utiliza-
tion is the fraction of time that the mutator runs during a given time
window. In other words, it is the amount of time spent by the appli-
cation rather than by the garbage collector. We adopt the method-
ology of Sachindran et al. and presentbounded mutator utilization,
or BMU [44]. The BMU for a given window size is the minimum
mutator utilization for all windows of that size or greater.

Figure 6 shows the BMU curves for the dynamic memory pres-
sure experiments. With moderate memory pressure (143MB avail-
able RAM), both variants of BC and MarkSweep do very well,
but all of the other collectors exhibit poorer utilization. In particu-
lar, GenMS requires window sizes orders of magnitude larger than
BC’s running time before the mutator makes any progress.

Under severe memory pressure (93MB available RAM), the full
bookmarking collector outperforms the other collectors, achieving
almost 0.9 utilization over a 10-second window. At this window

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 60 70 80 90 100 110 120 130

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Heap Size

Total Execution Time for Pseudojbb While Paging

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace

(a) Execution time runningpseudoJBB.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 60 70 80 90 100 110 120 130

A
ve

ra
ge

 P
au

se
 T

im
e

(m
s)

Heap Size

Average Pause Time for Pseudojbb While Paging

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace

(b) Average GC pause time runningpseudoJBB.

Figure 3. Steady memory pressure (increasing from left to right), where available memory is sufficient to hold only 40% of the heap. As the
heap becomes larger, BC runs 7 to 8 times faster than GenMS and in less than half the time needed by CopyMS. Bookmarking is faster and
yields shorter pause times than just resizing the heap.

 0

 50000

 100000

 150000

 200000

 80 100 120 140 160 180 200 220

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Available Memory

Total Execution Time for Pseudojbb w/ 77MB Heap While Paging

BC
BC w/ Resizing only

GenCopy
GenMS

CopyMS
SemiSpace

(a) Execution time runningpseudoJBB

 0

 50000

 100000

 150000

 200000

 80 100 120 140 160 180 200 220

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
s)

Available Memory

Total Execution Time for Pseudojbb w/ 77MB Heap While Paging

BC
BC w/ Fixed Nursery

BC w/ Resizing Only w/ Fixed Nursery
GenCopy w/ Fixed Nursery

GenMS w/ Fixed Nursery

(b) Execution time runningpseudoJBB, fixed-size nurserycollectors

Figure 5. Dynamic memory pressure (increasing from left to right). BC runs up to 4x faster than the next best collector and up to 41x faster
than GenMS. While shrinking the heap can help, BC runs up to 10x faster when also using bookmarks.

size, all of the other collectors have zero utilization. The non-
bookmarking variant of BC (shown as “BC w/Resizing only”) and
CopyMS are the next best collectors, but peak at around 0.5 mutator
utilization over a 40-second window. Interestingly, MarkSweep has
the worst utilization here, requiring a window size of almost 10
minutes before achieving 0.25 mutator utilization.

We also compared different variants of the bookmarking col-
lector and the generational collectors to tease apart the impact of
various strategies on paging.

Fixed-size nurseries:Fixed-size nurseries can achieve the same
throughput as variable-sized nurseries but are generally believed
to incur lower paging costs. Figure 5(b) presents execution times
for variants of the generational collectors with fixed-size nurseries
(4MB). The graph shows that the fixed-nursery variants of the other
collectors do reduce paging, but perform as poorly as the variable-
sized generational collectors once their footprint exceeds available
memory.

Bookmarking vs. resizing the heap:When memory pressure is
relatively low, BC’s strategy of discarding empty pages is sufficient
to avoid paging. As memory pressure increases, however, a variant

of BC that only discards pages (shown as “BC w/Resizing only”)
requires up to 10 times as long to execute as the full bookmarking
collector. The results shown in Figures 3 and 4 demonstrate that
bookmarking is vital to achieve high throughput and low pause
times under moderate or severe memory pressure.

5.3.3 Multiple JVMs

Finally, we examine a scenario with two JVMs executing simul-
taneously. For this experiment, we start two instances of Jikes
running thepseudoJBB benchmark and measure total elapsed
time and garbage collection pause times. We cannot employ the
“compile-and-reset” experimental methodology here because com-
piling the entire application generates too much paging traffic and
we cannot “reset” the virtual memory manager’s history. Instead,
we employ thepseudoadaptivemethodology [32, 44], which opti-
mizes only the “hottest” methods (as determined from the mean of
5 runs). This methodology minimizes the impact of the compiler as
much as possible, and does so deterministically rather than relying
on the standard sampling-based approach. Eeckhout et al. report
that all of the virtual machines they examined exhibit similar be-

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

Window Size (in ms)

BMU for pseudoJBB w/ 77 MB Heap and 143 MB Available

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace
MarkSweep

(a) 143MB available: BC is largely unaffected by moderate levels of
memory pressure.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000 1e+06

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

Window Size (in ms)

BMU for pseudoJBB w/ 77 MB Heap and 93 MB Available

BC
BC w/ Resizing Only

GenCopy
GenMS

CopyMS
SemiSpace
MarkSweep

(b) 93MB available: under heavy memory pressure, bookmarks become
increasingly important.

Figure 6. Dynamically increasing memory pressure: bounded mutator utilization curves (curves to the left and higher are better). BC
consistently provides high mutator utilization over time. As memory pressure increases (available memory shrinks), the importance of
bookmarks to limit garbage collection pauses becomes more apparent.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 150 200 250 300 350 400 450 500

T
ot

al
 E

xe
cu

tio
n

T
im

e
fo

r
T

w
o

S
im

ul
ta

ne
ou

s
R

un
s

(m
s)

Available Memory

Total Execution Time for Two Simultaneous Runs of Pseudojbb w/ 77MB Heap While Paging

BC
GenCopy

GenMS
CopyMS

SemiSpace

(a) Execution time running two instances ofpseudoJBB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 150 200 250 300 350 400 450 500

A
ve

ra
ge

 G
C

 P
au

se
 (

m
s)

Available Memory

Average GC Pause with Two Simultaneous Runs of Pseudojbb w/ 77MB Heap While Paging

BC
GenCopy

GenMS
CopyMS

SemiSpace

(b) Average GC pause time running two instances ofpseudoJBB

Figure 7. Execution time and pause times when runningtwo instances ofpseudoJBB simultaneously. Note that the execution times are
somewhat misleading, because for the other collectors, paging effectively deactivates one of the instances. Under heavy memory pressure,
BC exhibits pause times around 7.5x lower than the next best collector.

havior for this benchmark, suggesting that the performance impact
of the pseudoadaptive compiler here should be minimal [29].

Figure 7 shows the results of executing two instances of
pseudoJBB, each with a 77MB heap. While BC performs the
best, total elapsed time can be misleading: for all of the other col-
lectors, paging effectively serializes the benchmark runs. This se-
rialization means that first one instance ofpseudoJBB runs to
completion, and then the next. The average pause time numbers
are thus more revealing. As available memory shrinks, bookmark-
ing shows a gradual increase in average pause times. At the lowest
amount of available memory, BC exhibits pause times averaging
around 380ms, while average pause times for CopyMS (the next
best collector) reach 3 seconds, nearly an eightfold increase.

6. Related Work
Most previous garbage collectors ignore virtual memory altogether,
making themVM-oblivious . The literature on such collectors is ex-

tensive; Wilson’s survey and Jones and Lins’ text provide excellent
overviews [33, 53].

VM-sensitive garbage collectors are designed to limit paging
in virtual memory environments. Such collectors either compact
memory to reduce the number of pages needed to hold an appli-
cation’s working set [14, 15, 20, 21, 22, 30], or divide the heap
into generations to reduce the need for full-heap collections [9,
17, 37, 39, 41, 49]. Bookmarking collection builds on both: it
employs compaction to reduce working set size and uses a nurs-
ery generation to improve throughput, but uses bookmarking to
avoid collector-induced paging. Bookmarking collection may be
thought of as a generalization of generational collection, where
the evicted pages comprise a distinct (and dynamically changing)
mature-space generation, and bookmarks act as remembered sets.

VM-cooperative garbage collectors receive information from
or send information to the virtual memory manager (or both).
Moon’sephemeral collectorreceives signals from the virtual mem-
ory manager whenever it evicts a page from main memory [39]. The

collector then scans the page and records which generations it con-
tains references to. During GC, Moon’s collector then scans only
those evicted pages containing pointers to the generation being col-
lected. Unlike Moon’s collector, bookmarking collection does not
revisit any evicted pages during nursery or full-heap collections.

Cooper et al.’s collector informs the VM of empty memory
pages that can be removed from main memory without being writ-
ten back to disk [25]. BC also identifies and discards empty pages,
but as we show in Section 5.3, BC’s ability to evict non-empty
pages gives it a significant advantage under memory pressure.

Another class of VM-cooperative collectors respond to memory
pressure by adjusting their heap size. Alonso and Appel present
a collector that consults with the virtual memory manager indi-
rectly (through an “advisor”) to shrink the heap after each garbage
collection based upon the current level of available memory [6].
MMTk [19] and BEA JRockit [3] can, in response to the live data
ratio or pause time, change their heap size using a set of pre-defined
ratios. HotSpot [1] can adjust heap size with respect to pause time,
throughput, and footprint limits specified as command line argu-
ments. Novell Netware Server 6 [2] polls the virtual memory man-
ager every 10 seconds, and shortens its GC invocation interval to
collect more frequently when memory pressure is high. None of
these approaches eliminate paging. Yang et al. report on an auto-
matic heap sizing algorithm that uses information from a simulated
virtual memory manager and a model of GC behavior to choose a
good heap size [55]. Like these systems, BC can shrink its heap (by
giving up discardable pages), but it does not need to wait until a full
heap garbage collection to do so. BC also eliminates paging even
when the size of live data exceeds available physical memory.

Researchers have leveraged virtual memory hardware to sup-
port garbage collection in other ways. Appel, Ellis and Li use vir-
tual memory protection to improve the speed and concurrency of
Baker’s algorithm [10]. Appel and Li present a variety of ways to
use virtual memory to assist garbage collection, including provid-
ing an inexpensive means of synchronization, remembering inter-
esting pointers, or saving long-lived data to disk [11]. These uses
of virtual memory are orthogonal to this work and to the VM-
cooperative collectors described above, which use virtual memory
cooperation primarily to reduce paging.

Like bookmarking collection, distributed garbage collection al-
gorithms also treat certain references (those from remote systems)
assecondary roots.3 Distributed GC algorithms typically employ
either reference counting or listing. Unlike bookmarking, both of
these require substantial additional memory and updates on every
pointer store, while BC only updates bookmarks when pages are
evicted or made resident (relatively rare events).

A number of researchers have focused on the problem of im-
provingapplication-levellocality of reference by using the garbage
collector to modify object layouts [5, 24, 28, 32, 35, 47, 48, 54].
These studies do not address the problem of paging caused by gar-
bage collection itself, which we identify as the primary culprit.
These approaches are orthogonal and complementary to the work
presented here.

Finally, bookmarking collection’s use of segregated size classes
for compaction is similar to the organization used by Bacon et al.’s
Metronome collector [12, 13]. Unlike the Metronome, BC uses seg-
regated size classes for mature objects only. BC’s copying pass is
also quite different. The Metronome sorts pages by occupancy, for-
wards objects by marching linearly through the pages and continues
until reaching a pre-determined size, forwarding pointers later. BC
instead copies objects by first marking target pages and then for-
warding objects as they are discovered in a Cheney scan. This ap-

3 See Abdullahi and Ringwood [4] and Plainfossé and Shapiro [40] for
excellent recent surveys of this area.

proach obviates the need for further passes and immediately brings
memory consumption to the minimum level.

7. Future Work
While our results show that BC already yields significant perfor-
mance improvements and robustness under memory pressure, there
are several directions in which we would like to advance this work.
First, because our modifications to the operating system kernel are
straightforward, we would like to incorporate these in other operat-
ing systems to verify its generality and expand our range of bench-
mark applications.

Because memory pressure can be transient, BC may discard
empty pages only to have memory again become available later.
It is important that a brief spike in memory pressure not limit
throughput by restricting the size of the heap. We are evaluating
strategies to allow BC to grow its heap when additional physical
memory becomes available.

We are also considering alternate strategies for selecting victim
pages. First, we can prefer to evict pages with no pointers, because
these pages cannot create false garbage. For some types of objects,
e.g., arrays of doubles, we do not even need to scan the pages to
determine that they are free of pointers. We could also prefer to
evict pages with as few non-NULL pointers as possible. We have
not yet explored these possibilities because we cannot predict the
effect on the application of evicting a page that is not the last on the
LRU queue (i.e., the one chosen by the virtual memory manager).
Choosing to evict such a victim page may lead to more page faults
in the application. We are currently developing a more advanced
virtual memory manager that will enable us to predict the effect of
selecting different victim pages and thus explore the tradeoffs of
using more sophisticated eviction strategies.

Finally, the bookmarking collector presented here is a “stop-
the-world” garbage collector, where all mutator work stops for
garbage collection. However, server-based JVMs typically collect
the heap concurrently while running the application. The current
BC algorithm is not suitable for concurrent garbage collection:
for example, a race could arise from the application modifying a
page that the collector is scanning. We are developing a concurrent
variant of the bookmarking collection algorithm.

8. Conclusion
The increasing latency gap between disk and main memory means
that paging is now intolerable. Garbage collection’s reference be-
havior can cause catastrophic paging. We present bookmarking col-
lection, an algorithm that leverages cooperation between the gar-
bage collector and virtual memory manager to eliminate nearly all
paging caused by the garbage collector. When memory pressure
is low, the bookmarking collector provides performance that gen-
erally matches or slightly exceeds that of the highest throughput
collector we tested (GenMS). In the face of memory pressure, BC
improves program performance by up to 5x over the next best gar-
bage collector and reduces pause times by 45x, improving even
more dramatically over GenMS. BC thus provides greater mem-
ory utilization and more robust performance than previous garbage
collectors.

Acknowledgements
Thanks to Sam Guyer, Kathryn McKinley, Eliot Moss, Pritesh
Sharma, Yannis Smaragdakis, and Ben Zorn for their comments
on drafts of this paper. We are grateful to Scott Kaplan for his
assistance in the implementation of our modified Linux memory
manager. We are also grateful to IBM Research for making the
Jikes RVM system available under open source terms. The MMTk
memory management toolkit was particularly helpful.

This material is based upon work supported by the National
Science Foundation under Award CNS-0347339. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

References
[1] J2SE 1.5.0 Documentation - Garbage Collector Ergonomics. Available

at http://java.sun.com/j2se/1.5.0/docs/guide/
vm/gc-ergonomics.html .

[2] Novell Documentation: NetWare 6 - Optimizing Garbage Collection.
Available athttp://www.novell.com/documentation/
index.html .

[3] Technical white paper - BEA Weblogic JRockit: Java for the
enterprise. Available athttp://www.bea.com/content/
news events/white papers/BEA JRockit wp.pdf .

[4] S. E. Abdullahi and G. A. Ringwood. Garbage collecting the Internet:
a survey of distributed garbage collection.ACM Computing Surveys,
30(3):330–373, Sept. 1998.

[5] A.-R. Adl-Tabatabai, R. L. Hudson, M. J. Serrano, and S. Subra-
money. Prefetch injection based on hardware monitoring and object
metadata. InProceedings of the 2004 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM,
June 2004.

[6] R. Alonso and A. W. Appel. Advisor for flexible working sets. In
Proceedings of the 1990 ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, pages 153–162, Boulder, CO,
May 1990.

[7] B. Alpern, C. R. Attanasio, A. Cocchi, D. Lieber, S. Smith, T. Ngo, J. J.
Barton, S. F. Hummel, J. C. Shepherd, and M. Mergen. Implementing
Jalapẽno in Java. InProceedings of the ACM Conference on Object-
Oriented Systems, Languages and Applications, volume 34(10), pages
314–324, Denver, CO, Oct. 1999.

[8] B. Alpern, D. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-
D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine.IBM Systems Journal,
39(1), Feb. 2000.

[9] A. W. Appel. Simple generational garbage collection and fast
allocation.Software Practice and Experience, 19(2):171–183, 1989.

[10] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors.ACM SIGPLAN Notices, 23(7):11–20, 1988.

[11] A. W. Appel and K. Li. Virtual memory primitives for user programs.
ACM SIGPLAN Notices, 26(4):96–107, 1991.

[12] D. F. Bacon, P. Cheng, and V. Rajan. Controlling fragmentation and
space consumption in the Metronome, a real-time garbage collector for
Java. InACM SIGPLAN 2003 Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’2003), pages 81–92, San
Diego, CA, June 2003. ACM Press.

[13] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collecor
with low overhead and consistent utilization. InConference Record of
the Thirtieth Annual ACM Symposium on Principles of Programming
Languages, ACM SIGPLAN Notices, New Orleans, LA, Jan. 2003.
ACM Press.

[14] H. D. Baecker. Garbage collection for virtual memory computer
systems.Communications of the ACM, 15(11):981–986, Nov. 1972.

[15] H. G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280–94, 1978.

[16] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson.
Hoard: A scalable memory allocator for multithreaded applications.
In ASPLOS-IX: Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
117–128, Cambridge, MA, Nov. 2000.

[17] P. B. Bishop. Computer Systems with a Very Large Address Space
and Garbage Collection. PhD thesis, MIT Laboratory for Computer
Science, May 1977.

[18] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and reality:
The performance impact of garbage collection. InSigmetrics -
Performance 2004, Joint International Conference on Measurement
and Modeling of Computer Systems, New York, NY, June 2004.

[19] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. InICSE 2004,
26th International Conference on Software Engineering, Edinburgh,
May 2004.

[20] D. G. Bobrow and D. L. Murphy. Structure of a LISP system using
two-level storage.Communications of the ACM, 10(3):155–159, Mar.
1967.

[21] D. G. Bobrow and D. L. Murphy. A note on the efficiency of a
LISP computation in a paged machine.Communications of the ACM,
11(8):558–560, Aug. 1968.

[22] C. J. Cheney. A non-recursive list compacting algorithm.Communi-
cations of the ACM, 13(11):677–8, Nov. 1970.

[23] P. Cheng and G. Belloch. A parallel, real-time garbage collector.
In Proceedings of SIGPLAN 2001 Conference on Programming
Languages Design and Implementation, ACM SIGPLAN Notices,
pages 125–136, Snowbird, Utah, June 2001. ACM Press.

[24] T. M. Chilimbi and J. R. Larus. Using generational garbage collection
to implement cache-conscious data placement. InProceedings of
the First International Symposium on Memory Management, volume
34(3), pages 37–48, Vancouver, BC, Canada, Oct. 1998.

[25] E. Cooper, S. Nettles, and I. Subramanian. Improving the performance
of SML garbage collection using application-specific virtual memory
management. InConference Record of the 1992 ACM Symposium on
Lisp and Functional Programming, pages 43–52, San Francisco, CA,
June 1992. ACM Press.

[26] S. P. E. Corporation. Specjbb2000. Available athttp://www.
spec.org/jbb2000/docs/userguide.html .

[27] S. P. E. Corporation. Specjvm98 documentation, Mar. 1999.
[28] R. Courts. Improving locality of reference in a garbage-collecting

memory management-system.Communications of the ACM,
31(9):1128–1138, 1988.

[29] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java programs
interact with virtual machines at the microarchitectural level. pages
169–186.

[30] R. R. Fenichel and J. C. Yochelson. A Lisp garbage collector for
virtual memory computer systems.Communications of the ACM,
12(11):611–612, Nov. 1969.

[31] M. Hertz and E. D. Berger. Automatic vs. explicit memory
management: Settling the performance debate. Technical report,
University of Massachusetts, Mar. 2004.

[32] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss, Z. Wang,
and P. Cheng. The garbage collection advantage: Improving program
locality. In Proceeding of the ACM Conference on Object-Oriented
Systems, Languages and Applications, Vancouver, BC, Canada, Oct.
2004.

[33] R. E. Jones and R. Lins.Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, Chichester, July
1996.

[34] S. F. Kaplan. In-kernel RIG: Downloads. Available athttp:
//www.cs.amherst.edu/ ∼sfkaplan/research/rig/
download .

[35] M. S. Lam, P. R. Wilson, and T. G. Moher. Object type directed
garbage collection to improve locality. InProceedings of International
Workshop on Memory Management, volume 637 ofLecture Notes in
Computer Science, St Malo, France, 16–18 Sept. 1992. Springer-
Verlag.

[36] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,
1997. Available athttp://gee.cs.oswego.edu/dl/html/
malloc.html .

[37] H. Lieberman and C. E. Hewitt. A real-time garbage collector based
on the lifetimes of objects.Communications of the ACM, 26(6):419–
429, 1983.

[38] T. F. Lim, P. Pardyak, and B. N. Bershad. A memory-efficient real-
time non-copying garbage collector. InProceedings of the First

International Symposium on Memory Management, volume 34(3),
pages 118–129, Vancouver, BC, Canada, Oct. 1998.

[39] D. A. Moon. Garbage collection in a large LISP system. In
G. L. Steele, editor,Conference Record of the 1984 ACM Symposium
on Lisp and Functional Programming, pages 235–245, Austin, TX,
Aug. 1984. ACM Press.

[40] D. Plainfosśe and M. Shapiro. A survey of distributed garbage
collection techniques. InProceedings of the International Workshop
on Memory Management, volume 986 ofLecture Notes in Computer
Science, Kinross, Scotland, Sept. 1995. Springer-Verlag.

[41] J. H. Reppy. A high-performance garbage collector for Standard ML.
Technical memorandum, AT&T Bell Laboratories, Murray Hill, NJ,
Dec. 1993.

[42] D. T. Ross. The AED free storage package.Communications of the
ACM, 10(8):481–492, Aug. 1967.

[43] N. Sachindran and J. E. B. Moss. MarkCopy: Fast copying GC
with less space overhead. InProceedings of the ACM Conference
on Object-Oriented Systems, Languages and Applications, Anaheim,
CA, Nov. 2003.

[44] N. Sachindran, J. E. B. Moss, and E. D. Berger. MC2: High-
performance garbage collection for memory-constrained environ-
ments. InProceedings of the ACM Conference on Object-Oriented
Systems, Languages and Applications, Vancouver, BC, Canada, Oct.
2004.

[45] P. Savola. LBNL traceroute heap corruption vulnerability.http:
//www.securityfocus.com/bid/1739 .

[46] Software Verification, Ltd. Memory Validator - Garbage Col-
lectors. Available athttp://softwareverify.com/
memoryValidator/garbageCollectors.html .

[47] D. Stefanovíc, K. S. McKinley, and J. E. B. Moss. Age-based garbage
collection. InProceedings of the ACM Conference on Object-Oriented
Systems, Languages and Applications, volume 34(10), pages 370–381,
Denver, CO, Oct. 1999.

[48] G. Tong and M. J. O’Donnell. Leveled garbage collection.Journal of
Functional and Logic Programming, 2001(5):1–22, May 2001.

[49] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. InProceedings of
the ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, volume 19(5), pages
157–167, Apr. 1984.

[50] R. van Riel. rmap VM patch for the Linux kernel. Available at
http://www.surriel.com/patches/ .

[51] D. A. Wheeler. SLOCcount. Available athttp://www.
dwheeler.com/sloccount .

[52] P. R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Management,
volume 637 ofLecture Notes in Computer Science, St Malo, France,
16–18 Sept. 1992. Springer-Verlag.

[53] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. InProceedings of
the International Workshop on Memory Management, volume 986 of
Lecture Notes in Computer Science, pages 1–116, Kinross, Scotland,
Sept. 1995. Springer-Verlag.

[54] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective static-graph
reorganization to improve locality in garbage collected systems.ACM
SIGPLAN Notices, 26(6):177–191, 1991.

[55] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B. Moss.
Automatic heap sizing: Taking real memory into account. In
Proceedings of the 2004 ACM SIGPLAN International Symposium
on Memory Management, Nov. 2004.

[56] B. Zorn. The measured cost of conservative garbage collection.
Software Practice and Experience, 23:733–756, 1993.

