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Programming high-performance server applications is challenging: it is both complicated and

error-prone to write the concurrent code required to deliver high performance and scalability.
Server performance bottlenecks are difficult to identify and correct. Finally, it is difficult to

predict server performance prior to deployment.
This paper presents Flux, a language that dramatically simplifies the construction of scalable

high-performance server applications. Flux lets programmers compose off-the-shelf, sequential C,

C++, or Java functions into concurrent servers. The Flux compiler type-checks programs and
guarantees that they are deadlock-free. We have built a number of servers in Flux, including a

web server with PHP support, an image-rendering server, a BitTorrent peer, and a game server.

These Flux servers perform comparably to their counterparts written entirely in C. By tracking
hot paths through a running server, Flux simplifies the identification of performance bottlenecks.

The Flux compiler also automatically generates discrete event simulators that accurately predict

actual server performance under load and with different hardware resources.

Categories and Subject Descriptors: D.3.0 [Programming Languages]: General—Language
Design

General Terms: Languages, Design, Performance

Additional Key Words and Phrases: flow-based, runtime, threads, events, coordination, language

1. INTRODUCTION

Server applications need to provide high performance while handling large numbers
of simultaneous requests. Concurrency is required for high performance but intro-
duces errors like race conditions and deadlock that are difficult to debug. The min-
gling of server logic with low-level systems programming complicates development
and makes it difficult to understand and debug server applications. Consequently,
the resulting implementations are often either lacking in performance, buggy or
both. At the same time, the interleaving of multiple threads of server logic makes
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source Listen ⇒ Image;
Image = ReadRequest → CheckCache

→ Handler
→ Write → Complete;

Handler [_, _, hit] = ;
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ReadInFromDisk
→ Compress
→ StoreInCache;
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Fig. 1. An example Flux program and a dynamic view of its execution.

it difficult to identify performance bottlenecks or predict server performance prior
to deployment. Programming servers is a daunting task.

This paper presents Flux, a domain-specific language that addresses these prob-
lems in a declarative, flow-oriented language (Flux stems from the Latin word for
“flow”). A Flux program describes two things: (1) the flow of data from client
requests through nodes, typically off-the-shelf C, C++, or Java functions, and (2)
mutual exclusion requirements for these nodes, expressed as high-level atomicity
constraints. Flux requires no other typical programming language constructs like
variables or loops – a Flux program executes inside an implicit infinite loop. The
Flux compiler combines C, C++, or Java components into a high performance
server using just the flow connectivity and atomicity constraints.

Flux captures a programming pattern common to server applications: concur-
rent executions, each based on a client request from the network and a subsequent
response. This focus enables numerous advantages over conventional server pro-
gramming:

—Ease of use. Flux is a declarative, implicitly-parallel coordination language
that eliminates the error-prone management of concurrency via threads or locks.
A typical Flux server requires just tens of lines of code to combine off-the-shelf
components written in sequential C or C++ into a server application.

—Reuse. By design, Flux directly supports the incorporation of unmodified ex-
isting code. There is no “Flux API” that a component must adhere to; as long
as components follow the standard UNIX conventions, they can be incorporated
unchanged.

—Runtime independence. Because Flux is not tied to any particular runtime
model, it is possible to deploy Flux programs on a wide variety of runtime sys-
tems. Section 3 describes multiple runtimes we have implemented: thread-based,
thread pool, event-driven, and a hybrid system. We have made numerous im-
provements to these runtime systems over time with no modifications to the
programs themselves.

—Correctness. Flux programs are type-checked to ensure their compositions
make sense. The atomicity constraints eliminate deadlock by enforcing a canon-
ical ordering for lock acquisitions.

—Performance prediction. The Flux compiler can automatically generate a dis-
crete event simulator for Flux programs. As we show in Section 5, this simulator
accurately predicts actual server performance.
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—Bottleneck analysis. Flux servers include lightweight instrumentation that
identifies the most-frequently executed or most expensive paths in a running
Flux application.

Our experience with Flux has been positive. We have implemented a wide range
of server applications in Flux: a web server with PHP support, a BitTorrent peer,
an image server, and a “heartbeat” client-server game server. The longest of these
consists of approximately 100 lines of Flux code and all perform comparably to
their hand-written counterparts.

The remainder of this paper is organized as follows. Section 2 presents the se-
mantics and syntax of the Flux language. Section 3 describes the Flux compiler
and runtime systems. Section 4 presents our experimental methodology and com-
pares the performance of Flux servers to their hand-written counterparts. Section 5
demonstrates the use of path profiling and the accuracy of the discrete-event simu-
lator. Section 6 reports our experience using Flux to build several servers. Section 7
presents related work.

2. LANGUAGE DESCRIPTION

To introduce Flux, we use an example application that exercises most of Flux’s
features. This application is an image server that receives HTTP requests for
images that are stored in the PPM format and compresses them into JPEGs, using
calls to an off-the-shelf JPEG library. Recently-compressed images are stored in a
cache managed with a least-frequently used (LFU) replacement policy.

Figure 1 shows a schematic view of the server execution’s flow through the image
server, separated into distinct nodes. Each data flow begins with Listen, accepting
client connections. Every new connection is a new data flow. The flow proceeds to
ReadRequest, where the client’s request is parsed and subsequently checked against
a cache. If there is a cache hit, the flow can proceed through writing the result to
the client and completing the connection. If there is a cache miss the image must
be loaded from disk, compressed, and stored in the cache. After this, the result can
be written and the connection closed.

Figure 2 shows the Flux code for the image server, which will be referenced in
describing the Flux language.

The Listen node, declared as a “source node” on Line 2, serves as the start of
a flow through the Flux program. Source nodes are executed in an infinite loop,
providing the server with an unbounded number of separate concurrent flows.

Flux programs are acyclic. The only loops exposed in Flux are the loops in which
source nodes execute. The lack of cycles in Flux allows it to enforce deadlock-free
concurrency control. While theoretically limiting expressiveness, we have found
cycles to be unnecessary for the Flux implementation of the wide range of servers
described in Section 4.

The Flux language consists of a minimal set of features, including concrete
nodes that correspond to the C or C++ code implementing the server logic, ab-
stract nodes that represent a flow through multiple nodes, predicate types that
implement conditional data flow, error handlers that deal with exceptional con-
ditions, and atomicity constraints that control simultaneous access to shared
state.
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1 // source node

2 source Listen => Image;

3

4 // concrete node signatures

5 Listen () => (int id);

6

7 ReadRequest (int id) => (int id , image_tag *request );

8

9 CheckCache (int id, image_tag *request)

10 => (int id, image_tag *request );

11

12 Complete (int id , image_tag *request) => ();

13

14 Write (int id, image_tag *request)

15 => (int id, image_tag *request );

16

17 // omitted for space: Compress , StoreInCache , ReadInFromDisk

18

19 // abstract node

20 Image = ReadRequest -> CheckCache -> Handler

21 -> Write -> Complete;

22

23 // predicate type and node

24 predicate inCache TestInCache;

25

26 Handler :[_, inCache ]=;

27 Handler :[_, _]= ReadInFromDisk -> Compress -> StoreInCache;

28

29 // atomicity constraints

30 atomic CheckCache :{ cache };

31 atomic StoreInCache :{ cache };

32 atomic Complete :{ cache };

33

34 // error handler

35 handle error ReadInFromDisk => FourOhFour;

Fig. 2. An image compression server, written in Flux.

2.1 Concrete Nodes

The first step in designing a Flux program is describing the concrete nodes that
correspond to C and C++ functions. Flux requires type signatures for each node.
A signature is made up of the concrete node’s name, its inputs, and its outputs. If a
node takes no inputs or outputs, they may be left blank. For example, ReadRequest,
on Line 7, takes an integer input and outputs an integer and an image tag. Flux
uses this information to create the input and output structures used to pass data
between nodes at runtime.

While most nodes receive input and produce output, there are two types of nodes
that do not follow this convention. Source nodes are a special type of node, serving
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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to initiate data flows. As Listen is a source node, it is declared on Line 5 to take
no input, yet produce output. Similarly, Complete, on Line 12, is a sink node. It
exists at the end of the program flow, accepting inputs without producing outputs.

2.2 Abstract Nodes

A programmer can compose a series of concrete nodes into an abstract nodes. These
abstract nodes represent a flow of data from concrete nodes to concrete nodes, from
concrete to abstract nodes, or abstract nodes to abstract nodes. For instance, Image
is declared as an abstract node on Line 21 to be a data flow starting at ReadRequest,
moving to CheckCache, then Handler, Write, and ending with Complete. The exe-
cution path shows that the output of ReadRequest will be the input of CheckCache,
allowing Flux to confirm that the argument signatures of each node composing an
abstract node are correct. Similarly, the inputs and outputs of abstract nodes are
dictated by the flow path, giving Flux the ability to implicitly determine an abstract
node’s type signature if it is not explicitly declared.

2.3 Predicate Types

A client request for an image may result in either a cache hit or a cache miss.
Flux incorporates functionality for handling these two cases differently. Instead of
exposing control flow directly, Flux lets programmers use the predicate type of a
node’s output to direct the flow of data to the appropriate subsequent node. A
predicate type is an arbitrary Boolean function supplied by the Flux programmer
that is applied to the node’s output.

Using predicate types, a Flux programmer can express multiple possible paths
for data through the server. The predicate statement on Line 24 binds the type
inCache to the Boolean function TestInCache.

A predicate node is a special abstract node. Its data flow is only used if a series of
tests against its outputs are passed. If any of the tests fail, the next case appearing
in the program is attempted. Declaring a predicate node takes a name, a test
against each of the node’s outputs, and a resulting flow path. Underscores are
used where no tests are needed. The node Handler, on Line 26, checks its second
output parameter with the inCache predicate type. inCache, in turn, uses the
TestInCache Boolean function. The TestInCache function will be applied to the
node’s second output parameter. If TestInCache returns true, then all tests have
passed, and Handler corresponds to an empty data flow path. Alternatively, if
TestInCache returns false, then the next case for Handler is checked. The second
case on Line 27 has no checks at all, serving as a default case that will always be
followed if reached. Thus, if TestInCache is false, the data flow through Handler
will be diverted through ReadInFromDisk, Compress, and finally to StoreInCache
before resuming its previous flow.

2.4 Error Handling

The dataflow described is appropriate for handling normal web requests. In the
event of an invalid page request, however, an error condition outside of the normal
flow must be handled. Flux incorporates functionality for handling these errors
using error handlers.

Flux expects nodes to follow the standard UNIX convention of returning error
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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codes. Whenever a node returns a non-zero value, Flux checks if an error handler
has been declared for the node. If none exists, the current data flow is terminated.

An error handler is specified on Line 35. This declaration states that in the
event of an error within the ReadInFromDisk node, the FourOhFour error handler
node should be called. In such an event, the FourOhFour handler will be passed
input from ReadInFromDisk, along with the error code. Upon the completion of
FourOhFour, the data flow terminates.

2.5 Atomicity Constraints

All flows through the image server access a single shared image cache. Access to
this shared resource must be controlled to ensure that two different data flows do
not interfere with one another.

The Flux programmer specifies such atomicity constraints in Flux rather than
inside the component implementation. The programmer specifies atomicity con-
straints by using arbitrary symbolic names. These constraints can be thought of
as locks, although this is not necessarily how they are implemented. A node only
runs when it has “acquired” all of the constraints. This acquisition follows a two-
phase locking protocol: the node acquires (“locks”) all of the constraints in order,
executes the node, and then releases them in reverse order.

Atomicity constraints can be specified as either readers or writers. Using these
constraints allows multiple readers to execute a node at the same time, supporting
greater efficiency when most nodes read shared data rather than update it. Reader
constraints have a question mark appended to them (“?”). Although constraints
are considered writers by default, a programmer can append an exclamation point
(“!”) for added documentation.

In the image server, the image compression cache can be updated by three nodes:
CheckCache, which increments a reference count to the cached item, StoreInCache,
which writes a new item into the cache, evicting the least-frequently used item
with a zero reference count, and Complete, which decrements the cached image’s
reference count. Only one instance of each node may safely execute at a time;
since all of them modify the cache, we label them with the same writer constraint
(cache), on Line 30.

Note that programmers can apply atomicity constraints not only to concrete
nodes but also to abstract nodes. In this way, programmers can specify that mul-
tiple nodes must be executed atomically. For example, the node Handler could
also be annotated with an atomicity constraint, which would span the execution of
the path ReadInFromDisk → Compress → StoreInCache. This freedom to apply
atomicity constraints presents some complications for deadlock-free lock assign-
ment, which are discussed in Section 3.1.1.

2.5.1 Scoped Constraints. While flows generally represent independent clients,
in some server applications, multiple flows may constitute a single session. For
example, a file transfer to one client may take the form of multiple simultaneous
flows. In this case, the state of the session (such as the status of transferred chunks)
only needs to be protected from concurrent access in that session.

In addition to program-wide constraints that apply across the entire server (the
default), Flux supports per-session constraints. Using session-scoped atomicity con-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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straints increases concurrency by eliminating contention across sessions. Sessions
are implemented as hash functions on the output of each source node. The Flux
programmer implements a session id function that takes the source node’s output
as its parameter and returns a unique session identifier, and then adds (session)
to a constraint name to indicate that it applies only per-session.

2.5.2 Discussion. Specifying atomicity constraints in Flux rather than placing
locking operations inside implementation code has a number of advantages, beyond
the fact that it allows the use of libraries whose source code is unavailable.

Safety. The Flux compiler imposes a canonical ordering on atomicity constraints
(see Section 3.1.1). Combined with the fact that Flux flows are acyclic, this order-
ing prevents cycles from appearing in its lock graph. Programs that use Flux-level
atomicity constraints exclusively (i.e., that do not themselves contain locking op-
erations) are thus guaranteed to be deadlock-free.

Efficiency. Exposing atomicity constraints also enables the Flux compiler to
generate more efficient code for particular environments. For example, while a
multithreaded runtime requires the use of locks, a single-threaded event-driven
runtime does not. The Flux compiler generates locks or other mutual exclusion
operations only when needed.

Simulation. Expressing atomicity constraints in the Flux language, along with
predicate types and error handlers, provides the Flux compiler with complete knowl-
edge of the possible execution paths through a program. Using this information,
the Flux compiler automatically generates an accurate discrete event simulator, as
discussed in Section 5.1.

Granularity selection. Atomicity constraints let programmers easily choose
the appropriate granularity of locking — they can apply fine-grained constraints
to individual concrete nodes or coarse-grained constraints to abstract nodes that
comprise many concrete nodes—the smallest granularity is at the concrete node
level. However, even when deadlock-freedom is guaranteed, grain selection can be
difficult: too coarse a grain results in contention, while too fine a grain can impose
excessive locking overhead. The simulator provides a valuable tool for the program-
mer to experiment with lock granularity and find concurrency related performance
bottlenecks.

3. COMPILER AND RUNTIME SYSTEMS

A Flux program is transformed into a working server by a multi-stage process.
The compiler first reads in the Flux source and constructs a representation of the
program graph. It then processes the internal representation to type-check the
program. Once the code has been verified, the runtime code generator processes
the graph and outputs C code that implements the server’s data flow for a specific
runtime. Finally, this code is linked with the implementation of the server logic
into an operational server. We first describe the compilation process in detail. We
then describe the runtime systems that Flux currently supports.

3.1 The Flux Compiler

The Flux compiler is a three-pass compiler implemented in Java, and uses the
JLex lexer [Berk and Ananian 2007] in conjunction with the CUP LALR parser
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generator [Appel et al. 2005].
The first pass parses the Flux program text and builds a graph-based internal rep-

resentation. During this pass, the compiler links nodes referenced in the program’s
data flows. All of the conditional flows are merged, with an edge corresponding to
each conditional flow.

The second pass decorates edges with types, connects error handlers to their re-
spective nodes, and verifies that the program is correct. First, each node mentioned
in a data flow is labelled with its input and output types. Each predicate type used
by a conditional node is associated with its user-supplied predicate function. Fi-
nally, the error handlers and atomicity constraints are attached to each node. If
any of the referenced nodes or predicate types are undefined, the compiler signals
an error and exits. Otherwise, the program graph is completely instantiated. The
final step of program graph construction checks that the output types of each node
match the inputs of the nodes that they are connected to. If all type tests pass,
then the compiler has a valid program graph.

The third pass generates the intermediate code that implements the data flow
of the server. Flux supports generating code for arbitrary runtime systems. The
compiler defines an object-oriented interface for code generation. New runtimes
can easily be plugged into the Flux compiler by implementing this code generator
interface.

The current Flux compiler supports several different runtimes, described below.
In addition to the runtime-specific intermediate code, the Flux compiler generates a
Makefile and stubs for all of the functions that provide the server logic. These stubs
ensure that the programmer uses the appropriate signatures for these methods.
When appropriate, the code generator outputs locks corresponding to the atomicity
constraints.

3.1.1 Avoiding Deadlock. The Flux compiler generates locks in a canonical or-
der. Our current implementation sorts them alphabetically by name. In other
words, a node that has y,x as its atomicity constraints actually first acquires x,
then y.

When applied only to concrete nodes, this approach combines with Flux’s acyclic
graphs to eliminate deadlock. However, when abstract nodes also require con-
straints, the constraints may become nested and preventing deadlock becomes more
complicated. Nesting could itself cause deadlock by acquiring constraints in non-
canonical order. Consider the following Flux program fragment:

A = B;

C = D;

atomic A: {x};

atomic B: {y};

atomic C: {y};

atomic D: {x};

In this example, a flow passing through A acquires lock x and then invokes node
B which in turn acquires lock y. However, a flow through C acquires lock y and then
invokes D which acquires lock x, resulting in a cycle in the locking graph.

To prevent deadlock, the Flux compiler detects such situations and moves up
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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the atomicity constraints in the program, forcing earlier lock acquisition. For each
abstract node with atomicity constraints, the Flux compiler computes a constraint
list comprising the atomicity constraints the node transitively requires, in execution
order. This list can easily be computed via a depth-first traversal of the relevant part
of the program graph. If a constraint list is out of order, then the first constraint
acquired in a non-canonical order is added to the parent of the node that requires
the constraint. This process repeats until no out-of-order constraint lists remain.

For the above example, Flux will discover that node C has an out-of-order se-
quence (y, x). It then adds constraint x to node C. The algorithm then terminates
with the following set of constraints:

atomic A: {x};

atomic B: {y};

atomic C: {x,y};

atomic D: {x};

Flux locks are reentrant, so multiple lock acquisitions do not present any prob-
lems. However, reader and writer locks require special treatment. After computing
all constraint lists, the compiler performs a second pass to find any instances when
a lock is acquired at least once as a reader and a writer. If it finds such a case, Flux
changes the first acquisition of the lock to a writer if it is not one already. Reac-
quiring a constraint as a reader while possessing it as a writer is allowed because it
does not cause the flow to give up the writer lock.

Because early lock acquisition can reduce concurrency, whenever the Flux com-
piler discovers and resolves potential deadlocks as described above, it generates a
warning message.

3.2 Runtime Systems

The current Flux compiler supports several different runtime systems including
the following: one thread per connection, a thread-pool system, an event-driven
runtime, and a hybrid of the threadpool and event-driven runtimes. We provide a
performance comparison of these in Section 4.

3.2.1 Thread-based Runtimes. In the thread-based runtimes, each request han-
dled by the server is dispatched to a thread function that handles all possible paths
through the server’s data flows. In the one-to-one thread server, a thread is created
for every different data flow. In the thread-pool runtime, a fixed number of threads
are allocated to service data flows. If all threads are occupied when a new data
flow is created, the data flow is queued and handled in FIFO order.

3.2.2 Event-driven Runtime. Event-driven systems can provide robust perfor-
mance with lower space overhead than thread-based systems [Welsh et al. 2001].
An event-driven system allows fine-grain control over event interleaving without
any overhead due to context switching. In the event-driven runtime, every input
to a functional node is treated as an event. Each event is placed into a queue and
handled in turn by a single thread. Additionally, each source node (a node with
no input) is repeatedly added to the queue to originate each new data flow. The
transformation of input to output by a node generates a new event corresponding
to the output data propagated to the subsequent node.
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The implementation of the event-based runtime is complicated by the fact that
node implementations may perform blocking function calls. If blocking function
calls like read and write were allowed to run unmodified, the operation of the
entire server would block until the function returned.

Instead, the event-based runtime intercepts all calls to blocking functions using a
handler that is pre-loaded via the LD PRELOAD environment variable. This handler
captures the state of the node at the blocking call and moves to the next event in
the queue. The formerly-blocking call is then executed asynchronously. When the
event-based runtime receives a signal that the call has completed, the event is re-
activated and re-queued for completion. Normally, this approach would necessitate
the use of a Linux kernel supporting full callback-driven asynchronous I/O. Due to
the lack of availability of a complete kernel solution, and in order to avoid being
tied to a specific kernel variant, the current Flux event-based runtime instead uses
a separate thread to simulate callbacks for asynchronous I/O using the select
function. A programmer is thus free to use synchronous I/O primitives without
interfering with the operation of the event-based runtime.

3.3 Hybrid Runtime

Dispatching a thread to handle each request, even from a thread pool, can introduce
overhead. As the number of requests increase, the contention for processor time
increases. Alternatively, handling requests with an event-based system can result
in new requests being queued up behind pending events, increasing overall latency.

In an effort to address these issues, we developed a hybrid runtime. This multi-
threaded event-driven (MTED) runtime uses an event pool and a small number
of event-processing threads. As in the event-based runtime, each node is treated
as a discrete event. Source nodes can be handled with dedicated threads, as in
the threaded runtimes, or with repeated event-generation, as in the event-based
runtime.

The hybrid runtime allows Flux the benefit of handling requests simultaneously
with threads in addition to the performance improvement inherent in an event-
driven runtime.

3.3.1 Other Languages and Runtimes. We implemented each of these runtimes
in C using POSIX threads and locks. Flux can also generate code for different
programming languages. We have implemented a prototype that targets Java,
using both SEDA [Welsh et al. 2001] and a custom runtime implementation. The
performance and evaluation of a webserver based on the latter can be seen in
Section 4.2.

In addition to these runtime systems, we have implemented a code generator
that transforms a Flux program graph into code for the discrete event simulator
CSIM [Mesquite Software 2007]. This simulator can predict the performance of the
server under varying conditions, even prior to the implementation of the core server
logic. Section 5.1 describes this process in greater detail.

4. EXPERIMENTAL EVALUATION

To demonstrate Flux’s effectiveness for building high-performance server applica-
tions, we implemented a number of servers. We summarize these in Table I. Most
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.
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Server Style Description Flux C/C++
Lines Lines

Web request-response a basic HTTP/1.1 server 36 386
with PHP

Image request-response image compression server 23 551
BitTorrent peer-to-peer a file-sharing server 84 878
Game heartbeat multiplayer “Tag” game 54 257

client-server

Table I. Lines of code to implement servers using Flux versus C/C++, described
in Section 4. C/C++ line counts do not include associated libraries.

server applications can be broadly classified into one of the following categories,
based on how they interact with clients: request-response client/server, “heart-
beat” client/server, and peer-to-peer. We chose these servers specifically to span
the space of possible server applications.

We implemented a server in Flux for each of these categories and compared its
performance under load with existing hand-tuned server applications written in
conventional programming languages. The Flux servers rely on single-threaded C
and C++ code that we either borrowed from existing implementations or wrote
ourselves. The most significant inclusions of existing code were in the web server,
which uses the PHP interpreter, and in the image server, which relies on calls to
the libjpeg library to compress JPEG images.

4.1 Methodology

We evaluate all server applications by measuring their throughput and latency in
response to realistic workloads under various conditions.

All testing was performed with identical server and client machines, both running
Linux version 2.6.15 with Pentium 4 processors (3.0 GHz) and 1GB of RAM each.
The machines were connected via a dedicated gigabit Ethernet switch and the
client/server distinction was fixed but arbitrary. All server and client applications
were compiled using g++ 4.0.3. During testing, both machines were running in
multi-user mode with only standard services running.

4.2 Request-Response: Web Server

Request-response based client/server applications are among the most common
examples of network servers. This style of server includes most major Internet
protocols including FTP, SMTP, POP, IMAP and HTTP. As an example of this
application class, we implemented a web server in Flux. The Flux web server
implements the HTTP/1.1 protocol and can serve both static and dynamic PHP
web pages.

Because webserver performance can be directly affected by user request patterns,
we designed and implemented two tests for our webserver. Both tests simulate a
varying number of clients requesting files from the server using HTTP/1.1 TCP
connections. The tests differ primarily in the sequence of requests and the files
requests. The first test pattern is similar to SPECWeb99 [Standard Performance
Evaluation Corporation 2007] and requests for files follows the Zipf distribution.
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Fig. 3. Comparison of web servers at 1 request per connection (see Section 4.2).
Most of the servers achieve the same level of throughput, except the event, SEDA,
and Java-based runtime systems, which have substantially lower throughput. The
delay of most servers is comparable, with the Java-threaded and event-based Flux
servers performing slightly better. The SEDA server has the worst delay charac-
teristics.

The files follow the static portion of the SPECweb benchmark, and their total size
is about 32 MB. Because the entire working set of files fits easily into physical
memory, this test stresses the host’s CPU and RAM.

The second test pattern simulates a webserver with a large enough set of files to
prevent effective caching. The files are organized into the same directory structure
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Fig. 4. Comparison of web servers at 5 requests per connection (see Section 4.2).
The throughput characteristics are similar to the one-request-per-connection exper-
iment, with most performing equally, except the event, SEDA, and Java-runtime
systems. However in the case of delay, the event-based Flux server, performs sub-
stantially better than other servers.

as before, but each file is exactly 45 kilobytes in size to reduce performance variance.
This brings the total working-set size to approximately 1.1 GB (which will not fit
in our test machine’s physical memory). To further impair caching, a particular
file request is never repeated until each other file has been requested. Because this
test severely inhibits the caching of the files, this benchmark primarily stresses disk
performance.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.



14 · Brendan Burns et al

60

80

100

120
pe

r s
ec
on

d

Disk‐bound Webserver Throughput

0

20

40

0 200 400 600 800 1000

M
eg
ab

it
s 

Simultaneous Clients
Threaded (Flux) Threadpool (Flux) Event (Flux)

Multi‐threaded Event‐driven (Flux) Java‐threaded (Flux) Java‐threadpool (Flux)

Knot (Capriccio) Haboob (SEDA) Flash

50

60

70

80

90

100

te
d 
in
 le
ss
 th

an
 ti
m
e 
x

Disk‐Bound Webserver Latency

0

10

20

30

40

50

1 10 100 1000 10000 100000

Pe
rc
en

ta
ge
 o
f r
eq

ue
st
s 
co
m
pl
et

Milliseconds
Threaded (Flux) Threadpool (Flux) Event (Flux)

Multi‐threaded Event‐driven (Flux) Java‐threaded (Flux) Java‐threadpool (Flux)

Knot (Capriccio) Haboob (SEDA) Flash

Fig. 5. Comparison of disk-bound web servers (see Section 4.2). In this case, the
thread-based runtimes generally show slightly poorer throughput than the event-
based runtime, but improved latency.

We compare the performance of the Flux webserver, using varying runtime sys-
tems, against the latest versions of the knot webserver distributed with Capric-
cio [von Behren et al. 2003], the Haboob webserver distributed with the SEDA
runtime system [Welsh et al. 2001], and the Flash webserver [Pai et al. 1999]. Be-
cause Flash does not support HTTP/1.1 style keep-alives, we perform the tests
both with and without them.

In the first test using the SPECWeb99 pattern, the simulated clients each connect
to the server, issue a single request, disconnect, and then pause for 20 milliseconds
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Fig. 6. Comparison of Flux BitTorrent servers with CTorrent (see Section 4.3). This
shows that most of the servers perform similarly, although the hybrid thread-event
Flux system provides some gains in low-latency, although with a slightly heavier
tail.

before repeating these steps. Figure 3 presents the throughput and latency of each
server for a range of simultaneous clients. In the second SPECWeb99-like test, the
clients each make 5 requests before disconnecting from the server. These results,
shown in Figure 4 do not include the Flash webserver, as explained above. The final
webserver test uses the disk-bound pattern and a single request per connection.
Figure 5 shows this test’s results. Each of the above graphs was constructed from
the average of five different runs of each experiment. All latency graphs represent
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the runs using 1000 simultaneous clients.
The results show that the Flux webservers using threaded runtimes are com-

parable to both Knot and Flash with respect to throughput, with the threadpool
runtime often outperforming both with respect to latency. Both threaded runtimes
routinely outperform Haboob, except for a small percentage of requests which are
completed in less time. Previous Flux experiments using LinuxThreads showed a
significant performance penalty for using the threaded runtime over the threadpool
approach, as the threaded model allocated and freed threads on a per-request ba-
sis. With the use of NPTL, this penalty is no longer as pronounced. This was
expected, as NPTL reduced thread startup costs was one of NPTL’s core design
goals [Drepper and Molnar 2005].

The event-based runtime does not match the throughput of the thread-based
runtimes in the SPECWeb99-like tests, but performs better than them in the disk-
bound scenario. Because the disk-bound scenario makes fewer blocking IO calls,
the overhead due to non-native asynchronous IO support is minimized. Similarly,
in the disk-bound case, where there are larger requests, the event-based system can
dedicate more time to writing rather than dealing with contention among various
writers. This results in slightly poorer overall latency, however, as requests are not
handled in parallel.

In the disk-bound scenario, the thread-based runtimes generally show slightly
poorer throughput than the event-based runtime, but improved latency. This is
because Flux does not attempt to schedule threads to prioritize the completion of
blocking IO. Rather, all threads are treated equally, allowing each thread to service
its request for a brief period of time. As a result, requests see an improvement in
latency at the cost of throughput. Attempting to prioritize individual threads would
require the runtimes to have detailed knowledge of node implementations. Not only
is this contrary to the language-independence goal of Flux, but it is unnecessary,
as the included runtimes provide for a level of adaptability that covers various
levels of tradeoff between throughput and latency. With the goal of adaptability
over specialization we made no effort to counter this inherent tradeoff between
throughput and latency.

The hybrid MTED runtime’s performance is similar to that of the threadpool
runtime. The throughput is slightly higher in the SPECWeb-99 tests, but slightly
lower in the disk-bound test. The latency is higher in all cases.

The Java runtimes both suffer from poor throughput, but as they were not opti-
mized and served primarily to demonstrate Flux’s adaptability to other base lan-
guages, this is to be expected. However, the latency for these servers is often far
better than the others, which we attribute to the JVM’s thread scheduling policies.

4.3 Peer-to-Peer: BitTorrent

Peer-to-peer applications act as both a server and a client. Unlike a request-response
server, they both receive and initiate requests.

We implemented a BitTorrent server in Flux as a representative peer-to-peer
application. BitTorrent uses a scatter-gather protocol for file sharing. BitTorrent
peers exchange pieces of a shared file until all participants have a complete copy.
Network load is balanced by randomly requesting different pieces of the file from
different peers.
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To facilitate benchmarking, we changed the behavior of both of the BitTorrent
peers we test here (the Flux version and CTorrent). First, all client peers are un-
choked by default. Choking is an internal BitTorrent state that blocks certain clients
from downloading data. This protocol restriction prevents real-world servers from
being overwhelmed by too many client requests. We also allow an unlimited num-
ber of unchoked client peers to operate simultaneously, while the real BitTorrent
server only unchokes clients who upload content.

We are unaware of any existing BitTorrent benchmarks, so we developed our own.
Our BitTorrent benchmark mimics the traffic encountered by a busy BitTorrent
peer and stresses server performance. It simulates a series of clients continuously
sending requests for randomly distributed pieces of a 54MB test file to a BitTorrent
peer with a complete copy of the file. When a peer finishes downloading a piece
of the file, it immediately requests another random piece of the file from those still
missing. Once a client has obtained the entire file, it disconnects. This benchmark
does not simulate the “scatter-gather” nature of the BitTorrent protocol; instead,
all requests go to a single peer. Using single peers has the effect of maximizing
load, since obtaining data from a different source would lessen the load on the peer
being tested.

Figure 6 compares the latency and network throughput to CTorrent, an imple-
mentation of the BitTorrent protocol written in C. Slight modifications had to be
made to the CTorrent source code in order to simulate multiple clients from a sin-
gle machine. The changes had no impact on CTorrent’s performance. The goal of
any BitTorrent system is to maximize network saturation, and both the CTorrent
and Flux implementations achieve this goal. However, the performance of the Flux
servers falls off as the number of clients increases, especially the event and MTED
runtimes. This performance degradation is likely due to these runtime’s reliance
on our asynchronous I/O workaround. However, because most real-world BitTor-
rent peers limit the number of connections below this drop-off point, this has no
practical impact.

4.4 Heartbeat Client-Server: Game Server

Unlike request-response client/server applications and most peer-to-peer applica-
tions, certain server applications are subject to deadlines. An example of such a
server is an online multi-player game. In these applications, the server maintains
the shared state of the game and distributes this state to all of the players at
“heartbeat” intervals. There are two important conditions that must be met by
this communication: the state possessed by all clients must be the same at each
instant in time, and the inter-arrival time between states can not be too great. If
either of these conditions is violated, the game will be unplayable or susceptible to
cheating. These requirements place an important delay-sensitive constraint on the
server’s performance.

We have implemented an online multi-player game of Tag in Flux. The Flux
game server enforces the rules of Tag. Players can not move beyond the boundaries
of the game world. When a player is tagged by the player who is “it”, that player
becomes the new “it” and is teleported to a new random location on the board.
All communication between clients and server occurs over UDP at 10Hz, a rate
comparable to other real-world online games. While simple, this game has all of
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the important characteristics of servers for first person shooter or real-time strategy
games.

Benchmarking the gameserver is significantly different than load-testing either
the webserver or BitTorrent peer. Throughput is not a consideration since only
small pieces of data are transmitted. The primary concern is the latency of the
server as the number of clients increases. The server must receive every player’s
move, compute the new game state, and broadcast it within a fixed window of time.

To load-test the game server, we measured the effect of increasing the number of
players. The performance of the gameserver is largely based upon the length of time
it takes the server to update the game state given the moves received from all of the
players, and this computation time is identical across the servers. The latency of
the gameserver is largely a product of the rate of game turns, which stays constant
at 10Hz. We found no appreciable differences between a traditional implementation
of the gameserver and the various Flux versions. These results show that Flux is
capable of producing a server with sufficient performance for multi-player online
gaming.

5. SIMULATOR AND PROFILING

In addition to its programming language support for writing server applications,
Flux provides support for predicting and measuring the performance of server ap-
plications. The Flux system generates discrete-event simulators that predict
server performance for synthetic workloads and on different hardware. It also per-
forms path profiling to identify server performance bottlenecks on a deployed
system.

5.1 Performance Prediction

Predicting the performance of a server prior to deployment is important but often
difficult. For example, performance bottlenecks due to contention may not appear
during testing because the load placed on the system is insufficient. System testing
on a small-scale system may not reveal problems that arise when the system is
deployed on an enterprise-scale multiprocessor.

In addition to generating executable server code, the Flux code generator trans-
forms a Flux program directly into a discrete-event simulator that models the
performance of the server. The implementation language for the simulator is
CSim [Mesquite Software 2007], a C-based, process-oriented simulator.

In the simulator, CPUs are modeled as resources that each Flux node acquires
for a given amount of time. The simulator can either use observed parameters from
a running system (per-node execution times, source node inter-arrival times, and
observed branching probabilities), or the Flux programmer can supply estimates for
these parameters. The simulator can model an arbitrary number of processors by
increasing the number of nodes that may simultaneously acquire the CPU resource.
When a node uses a given atomicity constraint, it treats it as a lock and acquires
it for the duration of the node’s execution.

The code in Figure 7 is a simplified version of the CSim code that Flux generates
for the CheckCache node from Section 2. The function begins by reserving the
cache lock, per the Flux program. The CPU is reserved next. After acquiring
both resources, the CPU time is modeled on Line 4 by holding both resources
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1 void CheckCache (){

2 cache_program_lock ->reserve ();

3 processor ->reserve ();

4 hold(( CMP_TIME_CPU_CHECKCACHE ));

5 processor ->release ();

6 hold(( CMP_TIME_CLOCK_CHECKCACHE - CMP_TIME_CPU_CHECKCACHE ));

7 cache_program_lock ->release ();

8 Handler ();

9 }

Fig. 7. Sample discrete-event simulation code generated for a Flux node.

for a specified length of time. In this case, the resources are held for the average
CPU time spent in CheckCache, as observed while profiling execution of the image
server. The CPU resource can then be released. On Line 6, the node simulates the
time spent with the cache lock without using the CPU. This time is calculated by
subtracting the time spent on the CPU from the average time spent in the node,
per profiling. Finally, the node releases the cache lock, and moves on to execute
the next node in the data flow.

It is important to note that this simulation does not model disk or network
resources. While this is a realistic assumption for CPU-bound servers (such as
dynamic web-servers), other servers will require more complete modeling. We leave
this as a question for future research.

To demonstrate that the generated simulations accurately predict actual perfor-
mance, we tested the image server described in Section 2. To simulate load on the
machine, we made requests at increasingly small inter-arrival times. The image
server had eight images, with each request selecting varying sizes (between 1/8th
scale and full-size) of a randomly-chosen image for compression. When configured
to run with n “clients”, the load tester issued requests at a rate of one every 1/n
seconds. The image server is CPU and lock-bound, with each image taking on
average 80 milliseconds to process.

We first measured the performance of this server on a computer with two Intel
Xeon 5140 processors, for a total of four cores. Using CPU hotplugging support in
the Linux 2.6 kernel, three of the cores were disabled. The observed node runtimes
and branching probabilities were then used to parametrize the generated CSIM
simulator. We compare the predicted and actual performance of the server by
making more processors available to the system. As Figure 8 shows, the predicted
results (dotted lines) and actual results (solid lines) match closely, demonstrating
the effectiveness of the simulator at predicting performance.

5.2 Path Profiling

The Flux compiler instruments generated servers to simplify the identification of
performance bottlenecks. This profiling information takes the form of “hot paths”,
the most frequent or most time-consuming paths in the server. Flux identifies
these hot paths using the Ball-Larus path profiling algorithm [Ball and Larus 1994].
Because Flux graphs are acyclic, the Ball-Larus algorithm identifies each unique
path through the server’s data-flow graph.
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Fig. 8. Predicted performance of the image server (derived from a single-processor run) versus
observed performance for varying numbers of processors and load.

Hot paths not only aid understanding of server performance characteristics but
also identify places where optimization would be most effective. Because profiling
information can be obtained from an operating server and is linked directly to paths
in the program graph, a performance analyst can easily understand the performance
characteristics of deployed servers.

The overhead of path profiling is low enough that hot path information can be
maintained even in a production server. Profiling adds just one arithmetic operation
and two high-resolution timer calls to each node. A performance analyst can obtain
path profiles from a running Flux server by connecting to a dedicated socket.

To demonstrate the use of path profiling, we compiled a version of the BitTorrent
peer with profiling enabled. For the experiments, we used a patched version of Linux
that supports per-thread time gathering. The BitTorrent peer was load-tested with
the same tester as in the performance experiments. For profiling, we used loads of
25, 50, and 100 clients. All profiling information was automatically generated from
a running Flux server.

In BitTorrent, the most time-consuming path identified by Flux was, unsur-
prisingly, the file transfer path (Listen → GetClients → SelectSockets →
CheckSockets → Message → ReadMessage → HandleMessage → Request →
MessageDone, 0.295 ms). However, the second most expensive path was the path
that finds no outstanding chunk requests (Listen→ GetClients→ SelectSockets→
CheckSockets → ERROR, 0.016ms). While this path is relatively cheap compared
to the file transfer path, it also turns out to be the most frequently executed path
(780,510 times, compared to 313,994 for the file transfer path). Since this path
accounts for 13% of BitTorrent’s execution time, it is a reasonable candidate for
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optimization efforts.

6. DEVELOPER EXPERIENCE

In this section, we examine the experience of programmers implementing Flux
applications. In particular, we focus on the implementation of the Flux BitTorrent
peer.

The Flux BitTorrent peer was implemented by two undergraduate students in
less than one week. The students began with no knowledge of the technical details
of the BitTorrent protocol or the Flux language. The design of the Flux program
for the BitTorrent peer was entirely their original work. The implementation of the
functional nodes in BitTorrent is loosely derived from the CTorrent source code.
The program graph for the BitTorrent server is shown in Figure 9 at the end of
this document.

The students had a generally positive reaction to programming in Flux. Primar-
ily, they felt that organizing the application into a Flux program graph prior to
implementation helped modularize their application design and debug server data
flow prior to programming. They also found that the exposure of atomicity con-
straints at the Flux language level allowed for easy identification of the appropriate
locations for mutual exclusion. Flux’s immunity to deadlock and the simplicity
of the atomicity constraints increased their confidence in the correctness of the
resulting server.

Though this is only anecdotal evidence, this experience suggests that program-
mers can quickly gain enough expertise in Flux to build reasonably complex server
applications.

A user study conducted with Eon [Sorber et al. 2007], a language and runtime
system built on Flux, showed that users found the Flux syntax to be intuitive
and easy to grasp. Further, inexperienced Eon users were able to write uniformly
correct adaptive systems faster than their experienced C user counterparts. Though
Eon’s features differ from Flux’s, our experiences with writing servers using Flux
are analogous to those of that study’s participants.

7. RELATED WORK

This section discusses related work to Flux in the areas of coordination and data
flow languages, programming language constructs, domain-specific languages, and
runtime systems.

Coordination and data flow languages. Flux is an example of a coordination
language [Gelernter and Carriero 1992] that combines existing code into a larger
program in a data flow setting. There have been numerous data flow languages
proposed in the literature, see Johnston et al. for a recent survey [Johnston et al.
2004]. Data flow languages generally operate at the level of fundamental operations
rather than at a functional granularity. One exception is CODE 2, which permits
incorporation of sequential code into a dynamic flow graph, but restricts shared
state to a special node type [Browne et al. 1989; Browne et al. 2000]. Data flow
languages also typically prohibit global state. For example, languages that support
streaming applications like StreamIt [Thies et al. 2002] express all data dependencies
in the data flow graph. Flux departs from these languages by supporting safe access
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to global state via atomicity constraints. Most importantly, these languages focus
on extracting parallelism from individual programs, while Flux describes parallelism
across multiple clients or event streams.

Programming language constructs. Flux shares certain linguistic concepts
with previous and current work in other programming languages. Flux’s predicate
matching syntax is deliberately based on the pattern-matching syntax used by
functional languages like ML, Miranda, and Haskell [Hudak 1989; Milner 1984;
Turner 1985]. The PADS data description language also allows programmers to
specify predicate types, although these must be written in PADS itself rather than in
an external language like C [Fisher and Gruber 2005]. Flanagan and Freund present
a type inference system that computes “atomicity constraints” for Java programs
that correspond to Lipton’s theory of reduction [Flanagan et al. 2005; Lipton 1975];
Flux’s atomicity constraints operate at a higher level of abstraction. The Autolocker
tool [McCloskey et al. 2006], developed independently and concurrently with this
work, automatically assigns locks in a deadlock-free manner to manually-annotated
C programs. It shares Flux’s enforcement of an acyclic locking order and its use of
two-phase lock acquisition and release.

Related domain-specific languages. Several previous domain-specific lan-
guages allow the integration of off-the-shelf code into data flow graphs, though
for different domains. The Click modular router is a domain-specific language for
building network routers out of existing C components [Kohler et al. 2000]. Knit
is a domain-specific language for building operating systems, with rich support for
integrating code implementing COM interfaces [Reid et al. 2000]. In addition to
its linguistic and tool support for programming server applications, Flux ensures
deadlock-freedom by enforcing a canonical lock ordering; this is not possible in
Click and Knit because they permit cyclic program graphs. Flux’s syntax, flow
oriented design, and runtime independence have also been adopted by Eon [Sorber
et al. 2007] an energy-aware declarative coordination language for programming
perpetual systems.

Runtime systems. Researchers have proposed a wide variety of runtime sys-
tems for high-concurrency applications and servers, including SEDA [Welsh et al.
2001], Hood [Acar et al. 2000; Blumofe and Papadopoulos 1998], Capriccio [von
Behren et al. 2003], Fibers [Adya et al. 2002], cohort scheduling [Larus and Parkes
2002], and libasync/mp [Zeldovich et al. 2003], whose per-callback colors could be
used to implement Flux’s atomicity constraints. Users of these runtimes are forced
to implement a server using a particular API. Once implemented, the server logic is
generally inextricably linked to the runtime. By contrast, Flux programs are inde-
pendent of any particular choice of runtime system, so advanced runtime systems
can be integrated directly into Flux’s code generation pass.
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Fig. 9. The Flux program graph for the example BitTorrent server.
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