
Efficiently and Precisely Locating Memory Leaks and Bloat

Gene Novark Emery D. Berger
Department of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

gnovark@cs.umass.edu, emery@cs.umass.edu

Benjamin G. Zorn
Microsoft Research
One Microsoft Way

Redmond, WA 98052
zorn@microsoft.com

Abstract
Inefficient use of memory, including leaks and bloat, remain a
significant challenge for C and C++ developers. Applications with
these problems become slower over time as their working set grows
and can become unresponsive. At the same time, memory leaks and
bloat remain notoriously difficult to debug, and comprise a large
number of reported bugs in mature applications. Previous tools for
diagnosing memory inefficiencies—based on garbage collection,
binary rewriting, or code sampling—impose high overheads (up to
100X) or generate many false alarms.

This paper presents Hound, a runtime system that helps track
down the sources of memory leaks and bloat in C and C++ applica-
tions. Hound employs data sampling, a staleness-tracking approach
based on a novel heap organization, to make it both precise and
efficient. Hound has no false positives, and its runtime and space
overhead are low enough that it can be used in deployed applica-
tions. We demonstrate Hound’s efficacy across a suite of synthetic
benchmarks and real applications.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Reliability; D.2.5 [Software Engineering]: Debugging aids;
D.3.3 [Programming Languages]: Dynamic storage management

General Terms Algorithms, Languages, Reliability

Keywords Hound, virtual compaction, dynamic memory alloca-
tion, memory leak detection, heap profiling

1. Introduction
Memory management is a notorious source of problems in C
and C++. Even when programmers manage memory correctly—
avoiding potentially catastrophic errors like double or invalid frees
and dangling pointer errors—it remains challenging for them to
use this memory efficiently. Memory inefficiency occurs whenever
a program consumes more memory than it actually needs. When
a program has unnecessary excess memory consumption, the pro-
gram exhibits bloat. If a program has unneeded memory—memory
that it will never use again—and never reclaims it, the program has
a leak.

Inefficient use of memory reduces both performance and avail-
ability. Bloated applications limit the number of applications a user

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00.

can run or degrade responsiveness by forcing other applications to
be paged out. Memory leaks cause an application’s memory image
to grow over time, eventually triggering paging. Leaky applications
thus become slower and slower, eventually becoming unresponsive
or exhausting available address or swap space.

Perhaps because of their impact on usability, memory inefficien-
cies continue to be one of the most common classes of reported
bugs. Both memory leaks and bloat are notoriously difficult to de-
tect and debug in long-running applications, such as servers or web
browsers. For example, in the first two months of 2008, over 150
memory leak bugs were reported in the Firefox browser [20].

Debugging memory inefficiencies is difficult for several rea-
sons. First, some existing tools do not provide enough information
or cannot be used in deployment. Existing tracing-based tools—
like Purify [7] and Valgrind [21]—cannot locate reachable leaks or
identify bloat. Worse, their high overheads (up to 100X) prevents
their use in deployed applications. Because leaks often manifest
over long periods of time and in response to exceptional events,
it can be extremely difficult for developers to reproduce them in-
house.

Second, while newer tools both can be used in deployment
and detect all forms of memory inefficiency, they can produce too
many false alarms. These staleness-based tools track the amount
of elapsed time since the last access to each object [3, 8], al-
lowing them to identify both bloat and leaks,whether reachable
or not. However, because exact staleness tracking would be pro-
hibitively expensive (requiring instrumentation of every memory
access), these tools use adaptive code-based sampling techniques:
the more frequently a code path is executed, the lower the chance it
will update access information. However, code sampling can over-
estimate object staleness and thus generate many false alarms. Be-
cause programmer intervention is required to separate real errors
from false positives, a high false alarm rate can make these tools
unusable.

Contributions
This paper presents Hound, a runtime system for C/C++ that lo-
cates both leaks and bloat without any false alarms. Hound uses
data sampling instead of code sampling to track object staleness
with high precision while maintaining sufficiently low runtime and
memory overhead for production use. To accomplish this, Hound
relies on a combination of virtual memory primitives and novel
memory management techniques: context-sensitive memory allo-
cation and age-segregated memory allocation, which enable track-
ing and isolation of stale objects, and virtual compaction, which
reduces Hound’s memory consumption by compacting objects in
physical but not virtual memory, making it suitable for C and C++.

We demonstrate Hound’s low overhead across a suite of stan-
dard benchmarks and applications with real memory leaks. For
non-allocation-intensive workloads, Hound imposes low runtime

overheads, averaging less than 5% across a suite of server applica-
tions, all of SPECint2000, and all but two of the benchmarks from
SPECint2006. We show that, despite this low overhead, Hound
generates precise leak reports (i.e., with no false positives) that can
point directly to the source of memory inefficiencies in both syn-
thetic and real applications.

Outline
The rest of this paper is organized as follows. Section 2 first pro-
vides an overview of Hound’s key algorithms. Section 3 contrasts
code sampling, used in previous tools, with Hound’s data sampling.
Section 4 describes Hound’s segregating allocator in detail, and
Section 5 describes how Hound tracks object staleness. Section 6
describes the virtual compaction mechanism Hound uses to reduce
memory overhead. Section 7 describes how Hound generates its
reports. Section 8 empirically evaluates Hound’s overhead and its
precision at locating memory inefficiencies. Section 9 presents an
overview of related work, and Section 10 concludes.

2. Overview
Hound relies on memory protection to detect object accesses and
estimate staleness. This mechanism works at a page granularity,
meaning Hound either enables or disables tracking for all objects
on a page as a group. In order to accurately estimate staleness with
low overhead, Hound collocates objects with similar predicted be-
havior on the same page. This segregation allows constant protec-
tion and monitoring of rarely-used objects, while hot objects are
grouped together on the same pages and can be left unprotected.

Hound’s allocator segregates objects along two different axes.
First, Hound uses a context-sensitive allocation strategy: it uses
the calling context of malloc calls—known to be an effective pre-
dictor of object lifetime [27]—to segregate objects from different
allocation sites onto different pages. This policy groups similarly
behaved objects onto a small number of pages and prevents dis-
similar objects from being allocated into those pages. While the ef-
fectiveness of this policy depends on program behavior, our results
show the approach is effective in real programs.

Hound combines this context-sensitive allocation with an age-
segregated memory allocator. Age segregation ensures that all ob-
jects on the same page are of similar age, as measured by allocation
time. Eventually, as the program frees non-leaked objects, leaked
objects and bloat will be isolated on their own pages.

Hound further refines these algorithms to reduce the risk of
excessive fragmentation. First, Hound performs per-allocation site
segregation only for sites that are the source of a large number
of objects. This approach prevents the worst case of having each
call site with only a single live object holding down an entire
page. Notice that this policy does not impair Hound’s precision:
by definition, sites that allocate few objects cannot be the source of
significant memory leaks.

Second, Hound performs virtual compaction, a novel tech-
nique that compacts memory without the need to move objects
(something C and C++ do not permit). Virtual compaction retains
segregation within the virtual address space, while significantly re-
ducing the physical fragmentation of the heap by merging sparsely-
populated virtual pages onto the same physical page frame. Thus,
virtual compaction can reclaim a substantial amount of physical
memory when live objects are sparsely spread across many pages.
This technique reduces the amount of physical memory required for
age-segregation without sacrificing the precision of Hound’s object
tracking.

3. Code vs. Data Sampling
In contrast to leak detection tools that use code-based sampling,
Hound uses a data-based sampling technique. Data sampling pre-
vents overestimating object staleness, a source of false positives in
tools based on code sampling. This section explains the problems
inherent in using code sampling for leak detection and presents
Hound’s solution.

State-of-the-art leak detection tools such as SWAT [8] and
Sleigh [3] use a code sampling technique called adaptive bursty
tracing (ABT). This technique samples code inversely proportional
to its execution frequency. Thus, infrequently-executed code is
traced nearly all the time, while frequently-executed code is rarely
sampled. This strategy allows thorough tracing of code where bugs
may lie, while avoiding the overhead of tracing well-tested hot code
paths.

Using ABT to sample object accesses for staleness estimation
relies on the assumption that hot code paths access hot objects, and
that cold code paths access cold objects. Accesses to objects during
hot code execution will be frequently missed due to sampling.
If a program accesses the same object frequently, then sampling
will detect some references to it, correctly estimating staleness.
However, if a hot code path accesses many different objects, most
of the objects will have greatly overestimated staleness values.

For example, consider a large hash table accessed only through
a single hot code path. If ABT uses a minimum 0.1% sampling rate
(as in the experiments in the SWAT paper), then it will miss all but
1 reference out of every 1,000. Assuming a random distribution of
accesses, each individual object in the hash table is accessed only
a small fraction of the total accesses to the table. As a result, most
objects in the table appear far staler (1,000X) than they actually are,
even though they are live and referenced relatively often.

Instead of code sampling, Hound uses a data sampling approach
which avoids overestimating staleness. Hound periodically protects
every page and updates the last access time of all objects on that
page to the current allocation time. When a protected page is ac-
cessed, Hound unprotects it and places it on an active list. Protected
pages cannot have been accessed since their most-recent protection
time, providing a strict lower bound on the staleness of all objects
on the page.

Hound’s sampling policy cannot result in false positives. How-
ever, it may result in false negatives when a hot object is collocated
on a page with stale objects. Hound uses an aggressive segrega-
tion policy to reduce the frequency of these situations, as the next
section describes.

4. Hound Heap Structure
Hound relies on object segregation to achieve low-overhead stale-
ness detection using memory protection. Without segregation, stale
objects would often be on the same page as frequently-accessed
objects. Thus, Hound could not protect stale objects without pro-
tecting hot objects, and would thus incur a high page-fault rate,
causing unacceptable performance degradation.

While garbage-collected languages like Java support moving
garbage collection [10] and can thus segregate objects at GC time,
C’s and C++’s direct access to memory addresses precludes object
relocation. Thus, the only way for Hound to segregate objects is to
separate them at allocation time.

To achieve this separation, Hound uses a novel memory man-
ager that segregates objects a priori. Figure 1 presents an overview
of Hound’s memory manager, which segregates objects along
two dimensions: allocation sites (the calling context that ends in
malloc or new) and age (in allocation time).

Default Heap (PHKmalloc)

malloc()
Age‐segregated heap (callsite 1)

Age‐segregated heap (callsite N)

. . .

Al
lo

ca
tio

n
Si

te
 M

ap

Figure 1. Hound’s context-sensitive heap structure, which segre-
gates allocation requests by allocation site once the number of live
objects exceeds a fixed threshold (see Section 4.1).

1 void * houndmalloc (size_t size) {
2 // compute hash of calling context.
3 int context = getContextHash();
4 Metadata * m = getMetadata(context);
5 // one more object allocated.
6 m->liveCount++;
7 // use the age-segregated heap to
8 // satisfy the request, if possible.
9 if (m->getAgeHeap() != NULL) {

10 return m->getAgeHeap()->malloc (size);
11 } else if (m->getLiveCount() >= 64) {
12 // make a new heap.
13 m->initAgeHeap();
14 return m->getAgeHeap()->malloc (size);
15 } else {
16 // still below threshold:
17 // get memory from standard allocator.
18 return phkmalloc_with_header (size,
19 context);
20 }
21 }

Figure 2. Pseudo-code for Hound’s allocation-site segregated
malloc.

1 void houndfree (void * ptr) {
2 // check pointer validity.
3 if (!isFromHoundHeap(ptr)) {
4 // return to standard allocator
5 // after updating metadata.
6 int context = getHeader(ptr);
7 Metadata * m = getMetadata(context);
8 m->liveCount--;
9 phkfree_with_header (ptr);

10 } else {
11 // locate the page via ptr masking
12 // and free the object.
13 void * page = ptr & ˜(PAGE_SIZE-1);
14 PageEntry * entry = pageMap(page);
15 entry->free (ptr);
16 }
17 }

Figure 3. Pseudo-code for Hound’s allocation-site segregated
free.

4.1 Allocation-Site Segregation
Previous research has shown that objects allocated from the same
call site tend to exhibit similar behavior and lifetime patterns [27].
To isolate leaks and bloat, Hound segregates objects by associating
a separate heap with each allocation site. Hound identifies these

sites with bounded context sensitivity (the last four return addresses
on the call stack).

Each heap then uses a distinct set of pages to satisfy allocation
requests from that site. This segregation helps prevent the intermin-
gling of objects from sites that produce hot objects with those that
produce cold or leaked objects.

The result is that pages tend to fall into two classes: those
that contain all cold objects, which can be constantly protected
without incurring page faults, or mostly hot objects, which are left
unprotected, and may increase the page-level spatial locality of the
heap. Contrast this separation with the behavior of conventional
memory allocators, which do not perform per-call site segregation
and thus can end up with a single hot object on a page filled with
cold or leaked objects.

Limiting Memory Overhead
Most applications have a large number of dynamic allocation sites.
For example, Firefox allocates from approximately 14,000 sites
during a typical interaction. However, most of those sites create
relatively few objects, especially those sites that correspond to its
initialization phase. Allocating an entire page to hold a few small
objects wastes memory.

To reduce this memory overhead, Hound instantiates a new heap
for a site only when the number of live objects from that site reaches
some threshold (currently 64). To track the count for each site,
Hound adds an extra header word to each object containing the
hash of the allocation site of each object. When an object is freed,
Hound decrements the live count for its allocation site.

At allocation time, Hound uses a hash table to map each allo-
cation site to a metadata entry (line 4 of Figure 2), which tracks
statistics including the total allocation count for the site. As long as
the total live count for that site remains below 64, Hound allocates
object requests directly from a conventional heap (line 18); Hound
currently uses PHKmalloc [12] as its allocation substrate. Other-
wise, it instantiates a separate heap for that site (line 13), using it
for all subsequent allocations from that site. This approach filters
out sites that only produce a small number of objects, since these
sites cannot be sources of substantial memory leaks or bloat.

To further reduce memory overhead, we modified PHKmal-
loc slightly. PHKmalloc normally uses sbrk to allocate mem-
ory, but this approach can prevent reclamation of freed objects if
subsequently-allocated objects remain live. We changed PHKmal-
loc to allocate large objects (at least 64K) directly from the system
via mmap, allowing their space to be returned to the system as soon
as they are freed. This hybrid allocation strategy is used by many
memory allocators, including DLmalloc and Hoard.

4.2 Age-Based Segregation
While call site segregation is a heuristic that can help separate ob-
jects with similar behavior, some sites may still be heterogeneous.
For example, a site may generate objects that eventually become
stale as well as short-lived objects. Allocating a short-lived object
onto a page with stale objects would cause Hound to underestimate
the staleness of the other objects on that page.

To avoid this scenario, Hound departs further from conventional
heap layouts by segregating objects by age, as measured in alloca-
tion time. The key insight is the following: objects that are leaks
or bloat by definition are not reclaimed for a long time, and thus
become older and older as program execution continues. Keeping
old objects separate from newer objects thus prevents stale objects
from intermingling with newer, potentially hot objects.

While age segregation can ensure accurate staleness informa-
tion in the case of some anomalous sites, other pathologies may
lead to incorrect staleness information. For example, if a site pro-
duces many stale objects and some long-lived hot objects, the hot

16

2048

32

. . .

. . .
Active page Full page Partially‐freed page

large

Figure 4. Hound’s age-segregated heap (see Section 4.2).

objects will cause Hound to incorrectly record that many of the
stale objects are active due to page-level false sharing. Note that
this inaccuracy only underestimates staleness, and thus cannot lead
to false alarms.

Hound separates young from old objects in an age-segregated
heap. Each age-segregated heap is itself a segregated-fits alloca-
tor [35] organized as a collection of pages. Each page is an array of
fixed-sized object slots (see Figure 4). Each heap contains a list of
pages for each size class (powers of two, ranging from 16 to 2048
bytes), plus a special bin for larger objects.

Hound satisfies allocation requests by bumping a pointer through
the currently active page for the appropriate size class (line 26
of Figure 5). When an active page is filled, Hound maps a fresh
(empty) page and uses it for subsequent allocations (lines 11–18).
Free operations decrement the population count for the appropriate
page (line 3 of Figure 6). Hound only reuses memory on a page
when the population count for a page drops to zero and the bump
pointer has reached the end of the page (lines 5–8). Hound adds
filled pages to the aging queue, where they will eventually be pro-
tected for staleness tracking, and also become candidates for virtual
compaction, described in Section 6 (lines 9–12).

Hound assigns one metadata structure for each allocated page.
This structure contains three elements: (1) the bump pointer, used
for allocation from non-full pages; (2) the total number of live
objects, which lets Hound free pages when their population drops
to zero; and (3) a bitmap that tracks which slots contain live objects,
used by Hound’s virtual compaction algorithm. Hound uses a two-
level page table structure to map page addresses to metadata.

5. Tracking Staleness
Hound keeps all filled pages (those that will not be used for subse-
quent allocations) on its aging queue. This aging queue is organized
in order of staleness, measured as the time since the application
last accessed some object on the page. Hound protects pages on the
queue from direct read and write access using the mprotect sys-
tem call. Objects on the page cannot have been accessed since the
last time the page was protected. Hound estimates staleness using
the formula currentTime− protectionTime, which provides a
strict lower bound on true staleness. When the application accesses
an object on the page, Hound handles the page fault (SIGSEGV)
and unprotects the pages. While unprotected, all objects on the page
are considered to have a staleness value of 0.

Protecting all pages on the aging queue would be prohibitively
expensive, since some pages will contain frequently-used objects.
Hound thus segregates the aging queue into active and inactive
lists. Pages on the inactive list are page-protected and managed
in LRU order, while pages on the active list are unprotected and
managed using a FIFO queue. When the program accesses a page
on the inactive list, a page fault occurs and Hound unprotects and

1 void * AgeHeap::malloc (size_t size) {
2 if(size > PAGE_SIZE/2)
3 return allocWithMmap(size);
4

5 int c = computeSizeClass (size);
6 Heap * h = getHeapFromClass (c);
7

8 if (!h->activePage ||
9 h->activePage->bump

10 == h->activePage->endOfPage) {
11 void * page = getNewPage();
12 PageEntry * e =
13 createPageEntry (page);
14 e->bump = page;
15 e->endOfPage = page + PAGE_SIZE;
16 e->inUse = 0;
17 e->heap = h;
18 h->activePage = e;
19 }
20

21 return h->activePage->malloc();
22 }
23

24 void * PageEntry::malloc(size_t size) {
25 void * ptr = bump;
26 bump += roundUp(size);
27 inUse++;
28 bitmap.set(indexOf(ptr));
29 return ptr;
30 }

Figure 5. Pseudo-code for Hound’s age-segregated malloc.

1 void PageEntry::free (void * ptr) {
2 // find originating page.
3 inUse--;
4 bitmap.clear(indexOf(ptr));
5 if ((inUse == 0) && (bump == endOfPage)) {
6 // free the page for re-use.
7 recyclePage (page);
8 clearPageEntry (page);
9 } else if ((inUse < NUM_ENTRIES/2)

10 && (bump == endOfPage)) {
11 // check virtual compaction queue
12 AgingQueue.addOrUpdate(this);
13 }
14 }

Figure 6. Pseudo-code for Hound’s age-segregated free.

moves the page to the head of the active list. Hound periodically
moves pages from the end of the active list onto the inactive list to
maintain the latter’s target size.

5.1 Adapting the Inactive List
The size of the inactive list is controlled adaptively to achieve both
acceptable runtime overhead and to maximize the useful informa-
tion acquired. Since each page on the inactive list is protected, a
larger inactive list gathers more useful data about page staleness,
but results in more runtime overhead due to page faults. Hound’s
heuristics for controlling the list sizes and moving objects from the
active to inactive list are based on those used in CRAMM [37] and
shown as pseudocode in Figure 7.

Each time a page is added to the aging queue, Hound checks
whether it should adjust the sizes of the queues. If 1/8 second of
CPU time has passed (or 10 page faults), Hound reevaluates the

1 void inactiveFault (PageEntry * e) {
2 faultCount++;
3 inactiveList.remove(e);
4 activeList.push(e);
5 }
6

7 void activeAdd (PageEntry * e) {
8 activeList.push(e);
9 if(inactiveList.size() < targetSize) {

10 for(i = 1 to 8) {
11 inactiveList.push(activeList.pop());
12 }
13 }
14 if(elapsedTime > 125 ms) {
15 updateTargetSize();
16 }
17 }
18

19 void updateTargetSize() {
20 overhead = faultCount * .5 / elapsedTime;
21 if(overhead < 0.5%) {
22 targetSize +=
23 max(min(inactiveList.size,
24 activeList.size)/32,8);
25 } else if(overhead > 1.5%) {
26 targetSize -=
27 max(min(inactiveList.size,
28 activeList.size)/8,8);
29 }
30 faultCount = 0;
31 elapsedTime = 0;
32 }

Figure 7. Pseudo-code for Hound’s segregated aging queue.

sizes. Hound estimates the runtime overhead caused by minor page
faults to the inactive list (using an estimate of 500 µs minor page
fault cost). If this cost is above 1.5% of total CPU time, Hound
decreases the target size of the inactive list. If it is less than 0.5%,
Hound increases its size.

Hound maintains a target inactive size, initially 0. When chang-
ing the size of the inactive list, Hound is actually changing the tar-
get. The actual inactive list size will gradually approach the target.
This policy prevents a sudden spike in minor page fault overhead
by immediately protecting a large number of pages.

Hound’s size adjustments are the same as in CRAMM. If the
active list currently holds PA pages and the inactive list PI , then
the new target inactive size will be:

• Increase: PI = PI + max(min(PA, PI)/32, 8)

• Decrease: PI = PI −max(min(PA, PI)/8, 8)

These adjustments reflect the need to make small adjustments
when the lists are small, and larger adjustments when the lists
are larger. They also ensure that some minimum adjustment is
always made. Hound decreases the target inactive list size more
aggressively than it increases it, as the goal of low runtime overhead
takes precedence over more accurate information. Choosing the
smaller of PI and PA ensures that small changes are made when
either list is small, preventing sudden, drastic changes in behavior.

The active list always holds all pages in the aging queue that
are not in the inactive list. Each time a new page is added to the
queue, Hound checks the current inactive list size against the target.
If the current list is too small, Hound moves up to 8 pages from the
active list to the inactive list. When the target size is smaller than
the current size, Hound lazily allows the inactive list to shrink as
pages move to the active list due to page faults. This policy ensures

Virtual page Virtual page

Physical frame

Figure 8. An example pair of pages that share no common live
indices. The virtual compactor can merge these pages in physical
memory while not actually relocating objects in virtual memory
(see Section 6).

that truly inactive pages never move from the inactive to the active
list, and thus have accurate staleness information.

6. Virtual Compaction
Hound recycles memory from age-segregated heaps only when
pages become completely empty. This strategy could potentially
lead to high fragmentation. In the worst case, a single live object
could prevent the reclamation of an entire page.

To mitigate this problem, Hound uses a novel scheme we call
virtual compaction that leverages Linux’s virtual memory remap-
ping capability to permit compaction of multiple virtual pages onto
the same physical page, without moving objects in virtual address
space. While we limit our discussion here to its use in Hound, we
believe that virtual compaction may enable a new class of compact-
ing memory managers for C and C++ applications.

Virtual compaction merges virtual pages with no overlapping
objects into a single physical page. This process is facilitated by
Hound’s age-segregated heaps, which use a segregated fits structure
in which each page is an array of identically-sized objects. For each
page, Hound maintains a bitmap indicating which positions within
the page are occupied by live objects. If a pair of pages contain live
objects only at different positions (i.e., there is no offset containing
a live object on both pages), then the pages can be overlaid on top of
each other with no collisions between live objects (see Figure 8).
Our current implementation only considers merging pages within
the same size class for simplicity. Merging pages with different-
sized objects would enable more virtual compaction, but require
tracking more metadata.

Using the Linux mremap call, Hound merges such pairs of
pages onto a single physical frame and maps that frame to the vir-
tual addresses of both original pages. Thus, while virtual memory
remains highly fragmented (because virtual memory is only recy-
cled at page-granularity), virtual compaction significantly increases
the occupancy of physical pages, reducing the footprint of the ap-
plication.

Virtual compaction can be implemented in many ways. This
section describes when and how Hound identifies pairs of pages
to compact, as well as the virtual memory-based mechanism for
merging pages.

6.1 Finding Candidate Pairs
At runtime, Hound’s heap can contain many low-occupancy pages.
Pages in the heap may be modeled as a graph, where each page
is a node. Edges exist between two pages when they share a com-
mon live object index, and thus cannot be merged via virtual com-
paction. In this model, finding an optimal compaction strategy
(fewest physical pages) is equivalent to graph coloring, and thus
NP-complete. Hound therefore makes no attempt to optimally com-
pact pages, and instead relies on heuristics that are effective in prac-
tice (see Section 8.3).

1 // called when a page is added
2 // to the frag manager or an object
3 // is freed on the page
4 void FragManager::checkMerge(PageEntry *p)
5 {
6 for each (PageEntry * q in pageList) {
7 if (!p.conflicts(q)) {
8 // virtually compact p with q.
9 p.mergeWith(q);

10 return;
11 }
12 }
13 }

Figure 9. Pseudo-code for Hound’s first-fit virtual compaction al-
gorithm (see Section 6).

In fact, Hound faces a more difficult problem than ordinary
graph coloring, because the graph constantly changes as objects
are deallocated. Our current system uses a simple first-fit strategy
to identify pairs of pages to compact.

Hound considers compaction only for pages which have less
than 50% occupancy. It tracks these pages using its fragmentation
manager which keeps a linked list of low-occupancy pages per size
class. Figure 9 shows pseudocode of the fragmentation manager’s
compaction algorithm. When a deallocation occurs on a page man-
aged by the fragmentation manager, it scans its list to find another
page which has no conflicts. If it finds a compatible target, then it
eagerly merges the two pages.

Pages can be tested for compatibility quickly by performing a
bitwise AND of their live object bitmaps. If any bit in the result is
set, then the pages conflict.

6.2 Merging Pages
When merging pages, Hound first iterates through the liveness
bitmap of one page, copying the live objects onto the target page.
It then remaps the target physical page to both virtual addresses.
This is done using the mremap system call and specifying a size
of 0 [32]. The virtual pages thus share a single physical frame,
reducing memory overhead.

Virtual compaction is not limited to pairs of pages. Any number
of virtual pages may be combined onto a single physical frame as
long as they do not conflict.1 Thus, merged pages are put back onto
the candidate list for further compaction. A merged page contains
a bitmap representing the combined live object information for the
corresponding virtual pages, enabling fast conflict checking.

7. Reporting
While Hound’s staleness tracking operates on the page level, it pro-
duces reports that summarize staleness information per allocation
site. These reports present each allocation site, ranked by the sever-
ity of their memory consumption, and provide information the pro-
grammer can use to diagnose leaks or other inefficient usage of
memory.

Figure 10 shows two allocation sites from Hound’s report for
the Squid web cache. The report produces 7 total sites, but the
remaining 5 have few live objects. The first reported site is a true
memory leak, while the second is caused by data structures which
are eagerly allocated at the start of the program and never used,
and may thus be unneeded bloat. Hound ranks allocation sites by
their total drag, the sum of object size (in bytes) times staleness (in

1 Kernel limitations restrict the maximum number to 128, which is not a
problem in practice.

Figure 10. Hound’s report for Squid

allocation time) for each unreclaimed object from that site [26].
It also reports the total number of objects and blocks and the
maximum staleness of any object from the site. It also shows the
calling context of the site as well as the last-reported touch sites
of the pages (the calling context of the instruction which caused a
protection fault on the page).

The graph presented with each allocation site presents a cumula-
tive distribution function (CDF) of the staleness of the pages from
the site. These graphs provide a visual representation of how the
staleness behavior of objects from the callsite. A point on the curve
at (x, y), considering the axes ranging from 0–100%, means that
y% of pages have staleness x% of the maximum for that site. Intu-
itively, a line close to diagonal, such as the first site in Figure 10 (a
real leak), represents a leak that increases steadily over time. The
second site shows a large fraction of objects (around a third) that
are not stale (the plateau in the lower left), and then that most of the
rest of the objects are quite stale (the sudden jump in the center).

Hound produces detailed information on every block in heap.
The reporting tool uses these raw dumps to generate the summary
information. However, the programmer may find the raw dumps
to be useful, as they present exact information on the number
of objects surviving on every page and the individual staleness
estimates. The raw information is produced as an XML file, making
it easy to use existing tools to mine the data. The tool that produces
our visual reports is written in the XQuery language and transforms
the raw XML into an XHTML/SVG report.

8. Experimental Results
Our evaluation answers the following questions:

1. What is Hound’s runtime overhead?

2. What is Hound’s memory space overhead, and how effectively
does virtual compaction reduce its physical memory consump-
tion?

2

2.5

Ti
m

e

Hound Runtime Overhead

GNU libc Hound

allocation‐intensive SPECint2006 SPECint2000 servers

9.78

0

0.5

1

1.5

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

Figure 11. Runtime overhead for Hound across a suite of benchmarks, normalized to the performance of the GNU libc (Linux) allocator
(see Section 8.1). Hound incurs minimal overhead for the SPECint2000 and SPECint2006 benchmark suites of CPU-intensive applications
and for a range of server applications, though its overhead is substantial for allocation-intensive benchmarks.

1

1.5

C
on

su
m

pt
io

n

Hound Memory Overhead

DLmalloc Hound

SPECint2006 SPECint2000

0

0.5

1

N
or

m
al

iz
ed

 H
ea

p
C

Figure 12. Memory overhead for Hound across the SPECint2000 and SPECint2006 suite of benchmarks, normalized to the consumption of
the DLmalloc allocator (see Section 8.2). Hound incurs minimal memory overhead for most of the benchmarks.

3. How precisely does Hound compute object staleness while
avoiding false positives?

4. How well does Hound identify callsites corresponding to leaks,
and what is its false positive rate?

8.1 Runtime Overhead
We evaluate Hound’s runtime performance on several benchmark
suites. The first is a range of highly allocation-intensive bench-
marks. These benchmarks allocate and deallocate objects at unusu-
ally high rates, and as such stress Hound’s allocation mechanisms.
While these applications are not generally representative of typical
workloads due to their high allocation rates, we include them here

because they have been widely used in previous memory manage-
ment studies.

The second set of benchmark suites is the SPECint2006 and
SPECint2000 suites of CPU-intensive benchmarks [30], which we
run using their reference workloads.2.

We also evaluate Hound’s performance with three different
server applications: the thttpd web server, the bftpd ftp server, and
the OpenSSH server. For the first two, we record total throughput

2 471.omnetpp from SPECint2006 times out, 252.eon from
SPECint2000 fails on both GNU libc and Hound, and the perl benchmarks
from both suites fail to run with our current implementation of Hound.

achieved with 50 simultaneous clients issuing 100 requests each.
For OpenSSH, we record the time it takes to perform authentica-
tion, spawn a shell, and disconnect.

Our experimental machine is a single-core, hyperthreaded Pen-
tium 4 with 1GB of physical memory. For each benchmark, we
report the average result of five runs; the observed variance was un-
der 1%. We compare runtime overhead against to the baseline GNU
libc allocator, which is based on DLmalloc [14] and is among the
fastest general-purpose allocators [2].

Figure 11 shows Hound’s overhead across the benchmark suites.
Hound’s overhead is substantial on the allocation-intensive bench-
marks (from 7.9% to 102%, with a geometric mean of 54%), be-
cause the cost of each allocation and deallocation is higher than in
GNU libc.

However, Hound’s runtime overhead is generally far lower for
the other benchmark suites. On SPECint2006, except for omnetpp
and xalancbmk, Hound’s overhead ranges from -9% to 15%,
with a geometric mean of 4%. The allocation patterns of omnetpp
and xalancbmk heavily stress Hound’s virtual compaction mech-
anism by having many sparsely-populated pages during most of the
benchmark run. The simple matching algorithm used in the current
implementation results in significant overhead while scanning the
list of pages. More robust algorithms for finding candidate pairs is
an area for future work. The omnetpp benchmark has a timeout
mechanism that causes premature termination due to the overhead
imposed by Hound.

On SPECint2000, Hound’s overhead ranges from 0% to 15%,
with a geometric mean of 3%. On the server benchmarks, the
overhead ranges from -1% to 8%, with a geometric mean overhead
of 4%. We believe that these ranges are likely to be typical of long-
running applications, which allocate memory at a far lower rate
than the allocation-intensive benchmarks.

8.2 Memory Overhead
We evaluate Hound’s memory overhead compared to DLmal-
loc [14], the basis for the GNU libc allocator. We measure total
virtual memory consumption of the heap using a tool that ob-
serves all calls to mmap and sbrk and accounts for Hound’s use
of mremap. It reports the maximum virtual memory consumption
(high water mark). We use the DLmalloc itself rather than GNU
libc in this experiment because libc appears to call internal ver-
sions of sbrk which cannot be shimmed by standard methods
(e.g. LD PRELOAD).

Figure 12 shows relative memory consumption for SPECint2006.
The other benchmark suites (allocation-intensive and server) con-
sist of applications with very small heap footprints, at most 2MB
under Hound. Hound requires several hundred kB of memory
for global metadata regardless of actual application memory us-
age, making relative comparison misleading for small programs.
The SPEC benchmarks require much more heap memory (mean:
250MB), though most have lower allocation rates in terms of
malloc calls per second.

Because some benchmarks consist of multiple executions on
different inputs, we measure the overhead required for the largest
input. For most benchmarks, Hound imposes minimal memory
overhead: 7 of 10 SPECint2006 benchmarks need less than 5%
more heap space when running under Hound than with DLmalloc.
Of the remainder, xalancbmk requires 34% more, libquantum
25%, and h264ref 13%. SPECint2000 shows similar overheads,
with most benchmarks requiring less than 15% more memory. The
sole exception is twolf, which has a small heap footprint of only
3.4 MB under DLmalloc. Under Hound, it requires 4.6 MB, an
increase of 36%.

8.3 Virtual Compaction
We evaluate Hound’s ability to limit fragmentation via its virtual
compaction mechanism on the Firefox browser as well as on the
small, allocation-intensive benchmark, cfrac.

Firefox Memory Overhead
To measure the effectiveness of virtual compaction on large pro-
grams, we compare the memory requirements of Firefox (version
2.0.0.9) running under DLmalloc to Hound, configured both with
and without virtual compaction enabled. We measure both the total
virtual memory consumption of the entire process, and the physical
memory required by the heap alone.

For each experiment, we loaded the same series of 25 pages dur-
ing a single browsing session. We then measured virtual memory
consumption using top and heap usage using the tool described in
Section 8.2.

Under DLmalloc, Firefox’s heap requires 239 MB of memory.
Under Hound, it rises to 267 MB, an increase of 11%. Virtual
compaction saves over 4,000 pages (16 MB), about 5% of total
physical memory. Of the 267 MB used by Hound, 73 MB (27%) is
used by age-ordered heaps.

Virtual Compaction in Small Programs
The bulk of the allocation-intensive benchmarks primarily allo-
cate short-lived objects, so few age-segregated heaps are created,
and the lifetimes of these objects tend to be short. However, vir-
tual compaction has a significant effect on the memory usage of
cfrac. While cfrac is short-running (around 5 seconds), vir-
tual compaction reduces the total number of physical heap pages
by 47% (from 2726 pages to 1425 pages).

8.4 Staleness Computation
We evaluate Hound’s data sampling technique for determining ob-
ject staleness and compare it to the state-of-the-art code sampling
technique used in SWAT. Hound and SWAT have opposing limi-
tations: while SWAT can overestimate object staleness due to its
sampling technique, it never underestimates staleness. Hound can
underestimate object staleness since it tracks staleness at a page
granularity, but it never overestimates staleness.

8.4.1 Accuracy Metrics
To quantitatively compare SWAT and Hound, we use several met-
rics. First, we use precision and recall, two metrics commonly used
to measure the quality of classifiers in the information retrieval
community. Precision is the ratio of true positives to all positives
(true and false), while recall is the ratio of true positives to the
sum of true positives and false negatives. Intuitively, classifiers with
high precision (near 1.0) produce few false positives, and similarly,
classifiers with high recall have low false negative rates. The re-
ported precision and recall metrics are on a per-object basis, show-
ing the accuracy of each approach at estimating individual object
staleness.

However, leak detection tools generally do not report individual
objects but rather aggregate them by their allocation callsite. In this
context, object-based metrics can be misleading. Consider a report
that identifies one allocation site as the source of stale data. If that
report failed to identify nine other sites that also had stale data, the
recall would be 0.1 (1/10). However, those nine unreported sites
could have been responsible for only a tiny number of stale objects.
For example, the reported site could be the source of 10,000,000
objects, and the nine unreported sites together might only comprise
100,000 objects.

To capture this effect, we introduce weighted metrics based
on callsites rather than individual objects. Weighted recall weighs

each callsite by its true drag, summed over all objects allocated
from that callsite. This weighting emphasizes the importance of
false negatives that miss a significant volume of leaks or bloat.
Similarly, weighted precision weighs callsites by their reported
drag, emphasizing false positives that report larger amounts of
(false) bloat.

8.4.2 Methodology
To compare Hound’s precision and recall to SWAT, we imple-
mented SWAT’s Adaptive Bursty Tracing framework in PIN, a
dynamic binary instrumentation system [15]. Our implementation
instruments every memory reference and checks a flag to deter-
mine whether sampling is enabled. This approach sacrifices per-
formance, but generates the same information as SWAT’s adaptive
sampling. We also use PIN to compute perfect staleness informa-
tion which we use as ground truth when computing the precision
and recall metrics for both Hound and SWAT.

For our results, we configure SWAT with a 0.1% sampling rate,
as used in the original paper. While our experiments show the qual-
itative difference between SWAT and Hound with respect to accu-
rate staleness information, computing precision and recall requires
a binary classifier. We use SWAT’s Greater50M predicate (stale
for more than 50 million sampled memory references) to classify
objects as leaks or non-leaks based on the staleness information
from Hound, SWAT, or the oracle. Note that for this experiment, an
object is considered leaked if it satisfies this predicate, regardless
of whether or not it would be subjectively considered to be a leak.

8.4.3 Accuracy Results
Tables 1 and 2 present precision, recall, and weighted recall results
for both Hound and SWAT across several benchmark programs.
Note that in every case, Hound has a precision of 1.0 (no false
positives), while SWAT has a recall of 1.0 (no false negatives).

HashTable is a microbenchmark that builds a hash table of two
million objects and then executes 4,000 random probes. The hash
table query code is hot, so it is rarely sampled. However, each
individual data item is cold, since the table is large. Two allocation
sites are hot: the one that produces objects stored in the table, and
a site producing internal nodes. Note that none of these objects
would be considered real leaks by a human, since each has an equal,
non-zero probability of being accessed on the next query. SWAT’s
precision here is 50%, meaning that half of the objects it classifies
as leaks are incorrect, because it overestimates staleness. Hound’s
recall is only 57% on this benchmark, meaning that it underreports
staleness for 43% of individual objects. These results highlight the
key difference between the two staleness tracking methods.

However, weighting reveals the qualitative difference between
SWAT and Hound. Hound’s weighted recall is 100%, meaning that
it reports only the allocation site producing truly stale objects. By
contrast, SWAT’s weighted precision is 50%, because it reports
both sites as stale.

Squid is a web cache application that acts as an HTTP proxy.
Client web browsers request pages from Squid, which it fetches
from its in-memory cache or its local disk cache, if available.
On every request, Squid consults the indices of these caches to
see whether it can satisfy the request locally, or must fetch the
data from the hosting server. Squid 2.4STABLE3 and earlier suffer
a memory leak when handling SNMP requests. We test Hound
against this leak by sending a sequence of 20,000 requests with
a mix of SNMP requests (leaks) and standard HTTP requests.
SWAT’s precision here is fairly high (88%), but that corresponds
to 33 false alarms out of 549 allocation sites. Its weighted precision
is 94%, in part because the heap has little false drag to report.

The GIMP is a graphic editor similar to Photoshop. We drive
it with a script that automatically generates several images and

Hound
HashTable Squid Gimp

Precision (objects) 1.0 1.0 1.0
Weighted Precision (sites) 1.0 1.0 1.0
Recall (objects) 0.59 0.57 0.53
Weighted Recall (sites) 1.0 0.81 0.73

Table 1. Precision and recall metrics for Hound.

SWAT
HashTable Squid Gimp

Precision (objects) 0.50 0.88 0.93
Weighted Precision (sites) 0.50 0.94 0.98
Recall (objects) 1.0 1.0 1.0
Weighted Recall (sites) 1.0 1.0 1.0

Table 2. Precision and recall metrics for SWAT.

then runs a series of effects and filters on them. SWAT’s precision
appears high (94%), but here, this value translates to 887 false
positives out of 6,887 call sites. For this benchmark, Hound has
a relatively low weighted recall (57%). We attribute this to the fact
that the GIMP has many allocation sites with only a small number
of objects per site, too few to cross Hound’s tracking threshold.

8.5 Leak Identification and Ranking
We evaluated Hound’s usefulness at isolating leaks and bloat
qualitiatively by running it on Squid with the leak scenario de-
scribed above. Figure 10 presents Hound’s report. The report
shows two callsites. The first is the true leaky allocation site in
the snmp parse function. Notice that its reported drag is an or-
der of magnitude larger than the second site. This latter site eagerly
creates data structures related to MIME type handling when the
program starts. These data structures are never used during our test
workload.

The information for the first site points the programmer directly
to the exact source of the leaked objects. The second site indicates a
possibly inefficient use of memory (i.e., bloat), which the program-
mer can use to determine the severity of the problem and make a
subjective decision of whether to change the program’s allocation
behavior (e.g., by allocating this memory only when needed).

9. Related Work
Memory leaks and memory bloat have been the target of much pre-
vious work. Leak detection tools generally focus on two classes
of errors: unreachable leaks that can be found by GC-based tech-
niques, and staleness leaks which are reachable from live objects in
the heap. Because Hound focuses on detecting staleness leaks, we
focus our discussion of prior work on this area.

Dynamic leak detection
The prior work most closely related to Hound is SWAT [8],
Sleigh [3], and SafeMem [24]. The relationship between SWAT
and Hound has already been discussed. Sleigh is a leak detector for
Java similar to SWAT. Sleigh also uses adaptive bursty tracing to
reduce the overhead of staleness detection, and the authors report
an increase in false positives as a result, although they still are able
to detect a true leak amid noisy data. SafeMem uses ECC memory
instead of program instrumentation to detect stale objects. It tracks
allocation sites that appear to be leaking objects and uses ECC to
reduce false positive rate for those sites. Unlike Hound, SafeMem
cannot run on systems without ECC memory.

Other prior work focuses more on the issue of reachability.
Conservative garbage collection techniques can be used to find

unreachable objects. Several tools use this approach, including
Purify [7], Valgrind [21], and RADAR [18]. While these tools are
useful for diagnosing a large class of leaks, they cannot find leaked
objects that are still reachable.

Several papers focus on providing more detailed information
about the causes of leaks to make debugging and correcting them
easier. LeakBot automatically identifies Java data structures that
are potential leaks by evaluating the evolving structure of the heap
graph [19]. Jump and McKinley describe a low-overhead approach
to inferring sources of leaks by examining dynamic characteris-
tics of the points-from graph in Java programs [11]. Maebe et
al. describe a high-overhead leak detector that identifies the spe-
cific program statement responsible for removing the last refer-
ence for reachability leaks [17]. Rayside and Mendel describe ob-
ject ownership profiling, a high-overhead, trace-based dynamic
technique that incorporates structural information when report-
ing leaks in object-oriented programs [25]. MemTracker provides
state-tracking hardware support for individual memory locations,
allowing low-overhead staleness detection [34].

Static leak detection
Static analysis can detect certain types of memory leaks, but suf-
fer from false positives due to analysis imprecision. Clouseau in-
fers ownership constraints and finds violations that may indicate
leaks [9]. Xie and Aiken use boolean constraints to find leaks based
on escape analysis [36]. Cherem et al. propose an analysis that con-
siders flows through the program graph from allocation points to
deallocation points to identify possible leaks [5]. Orlovich and Rug-
ina’s analysis proves the absence of leaks, but can be used to detect
leaks when the proof fails [23].

Leak tolerance
Several recent papers propose methods for leak tolerance, both
in C/C++ and in garbage collected languages. For C applications,
Cyclic Memory Allocation (CMA) [22] tolerates leaks by replacing
dynamically-allocated memory with fixed-size buffers based on
profiling runs. CMA can only eliminate leaks from sites which it
identifies as bounded and can erroneously overwrite live data when
profiling is incorrect. It has not escaped our attention that Hound’s
virtual compaction scheme could be used to provide leak tolerance.

Garbage collection tolerates unreachable leaks by automatically
reclaiming leaked objects, but does not address staleness leaks.
Both Melt [4] and LeakSurvivor [31] augment a relocating garbage
collector in Java with techniques to isolate and compress stale
objects. Melt identifies staleness with a lightweight read barrier,
while LeakSurvivor uses Sleigh’s sampling mechanism. Tsai et al.
combine statistical techniques with conservative garbage collec-
tion to detect and tolerate unreachable memory leaks in C appli-
cations [33].

Static analysis can also eliminate memory leaks by program
transformation. Shaham et al. present two analyses that can elimi-
nate memory leaks in Java: the first detects dead entries in arrays
that will never be read in the future [28], while the second uses
shape analysis to detect dead references [29]. Lattner and Adve pro-
pose pool allocation, a transformation that can statically eliminate
some leaks in C/C++ applications via points-to set liveness [13].

VM-techniques for memory management
Appel and Li describe a number of primitives and algorithms for
exploiting virtual memory in user-mode [1], including the prim-
itives used by Hound. Dhurjati and Adve introduce a technique
that uses virtual memory remapping to detect dangling pointer er-
rors [6]. Each object is allocated on a new virtual page, with mul-
tiple virtual pages mapped to the same physical page. Their sys-
tem detects dangling pointers by protecting the virtual pages hold-

ing freed objects. By contrast, virtual compaction starts with many
objects mapped to individual virtual pages, and combines virtual
pages (holding multiple objects) onto one physical page.

Recent cooperative systems exploit communication between the
OS virtual memory manager (VMM) and the garbage collector
to reduce paging due to garbage collection. CRAMM is a virtual
memory manager that provides detailed reference information, al-
lowing it to dynamically adapt GC heap sizes in order to maximize
performance [37]. Hound uses a derivative of CRAMM’s mecha-
nism to control the size of its aging queues. Hertz et al. present
the bookmarking collector, a cooperative system where the OS
informs the runtime system of impending page eviction, and the
garbage collector summarizes information on the pages (“book-
marks”) that allow it to avoid traversing paged-out memory dur-
ing garbage collection. Archipelago [16] uses an object-per-page
allocator to improve resilience against buffer overflow errors and
uses virtual memory protection to compact cold pages and reduce
physical memory overhead.

10. Conclusion
This paper presents Hound, a runtime system that precisely locates
both memory leaks and sources of bloat. Hound’s key contribution
is its hybrid memory management scheme, which both segregates
objects at allocation time with a context-sensitive allocator and sep-
arates leaked from non-leaked objects with an age-segregated al-
locator. A novel virtual compaction mechanism allows Hound to
compact memory without the need to move objects, reducing frag-
mentation due to segregation without degrading Hound’s ability to
locate leaks.

Hound operates on unaltered binaries, making deployment sim-
ple. Hound locates both reachable and unreachable leaks without
generating any false positives, and with extremely low overhead.
For a range of applications, including servers and applications with
low allocation-intensity, Hound incurs minimal runtime and mem-
ory overhead, making it practical for use even for large deployed
applications where performance is a key concern.

11. Acknowledgments
The authors would like to thank Ting Yang and Scott Kaplan for
valuable discussions about Hound and Linux virtual memory man-
agement, Ted Hart for his feedback during the development of
Hound, and Shan Lu, Martin Rinard, and Huu Hai Nguyen for pro-
viding us the leaky inputs for squid. This material is based upon
work supported by Intel, Microsoft Research, and the National Sci-
ence Foundation under CAREER Award CNS-0347339 and CNS-
0615211. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
[1] A. W. Appel and K. Li. Virtual memory primitives for user

programs. In Proceedings of the Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’91), pages 96–107, 1991.

[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering custom
memory allocation. In Proceedings of the 2002 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA ’02), pages 1–12, 2002.

[3] M. D. Bond and K. S. McKinley. Bell: bit-encoding online memory
leak detection. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’06), pages 61–72, San Jose, CA, Oct. 2006.

[4] M. D. Bond and K. S. McKinley. Tolerating memory leaks. In
Proceedings of the 23rd Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2008), pages 109–126, Nashville, TN, Oct. 2008.
ACM.

[5] S. Cherem, L. Princehouse, and R. Rugina. Practical memory leak
detection using guarded value-flow analysis. In Proceedings of the
2007 ACM SIGPLAN Conference on Programming language design
and implementation (PLDI ’07), pages 480–491, 2007.

[6] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer
uses in production servers. In Proceedings of the International
Conference on Dependable Systems and Networks (DSN ’06), pages
269–280, Washington, DC, USA, 2006. IEEE Computer Society.

[7] R. Hastings and B. Joyce. Fast detection of memory leaks and access
errors. In Proceedings of the Winter ’92 USENIX conference, pages
125–136. USENIX Association, 1992.

[8] M. Hauswirth and T. M. Chilimbi. Low-overhead memory leak
detection using adaptive statistical profiling. In ASPLOS, pages
156–164, Boston, MA, Apr. 2004. ACM.

[9] D. L. Heine and M. S. Lam. A practical flow-sensitive and context-
sensitive C and C++ memory leak detector. In Proceedings of the
ACM SIGPLAN 2003 conference on Programming Language Design
and Implementation (PLDI ’03), pages 168–181, 2003.

[10] R. E. Jones and R. Lins. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley, Chichester, July
1996.

[11] M. Jump and K. S. McKinley. Cork: Dynamic memory leak detection
for garbage-collected languages. In Proceedings of the 34th annual
ACM SIGPLAN-SIGACT symposium on Principles of Programming
Languages (POPL ’07), pages 31–38, 2007.

[12] P.-H. Kamp. Malloc(3) revisited. http://phk.freebsd.dk/pubs/malloc.
pdf.

[13] C. Lattner and V. Adve. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In
PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, pages 129–142,
2005.

[14] D. Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/
malloc.html, 1997.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: building customized
program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI ’05), pages 190–200, 2005.

[16] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn. Archipelago:
trading address space for reliability and security. In Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, (ASPLOS ’08),
pages 115–124, Mar. 2008.

[17] J. Maebe, M. Ronsse, and K. D. Bosschere. Precise detection of
memory leaks. In Workshop on Dynamic Analysis (WODA 04), pages
25–31, 2004.

[18] Microsoft TechNet, Microsoft Corporation. Memory Leak Diagnoser,
Dec. 2007.

[19] N. Mitchell and G. Sevitsky. LeakBot: An automated and lightweight
tool for diagnosing memory leaks in large Java applications. In
European Conference on Object-Oriented Programming (ECOOP),
2003.

[20] Mozilla.org. Bugzilla@mozilla, 2008. [Online; accessed 12-March-
2008].

[21] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI ’07), pages 89–100, June 2007.

[22] H. H. Nguyen and M. Rinard. Detecting and eliminating memory
leaks using cyclic memory allocation. In Proceedings of the 6th

International Symposium on Memory Management (ISMM ’07),
pages 15–30, 2007.

[23] M. Orlovich and R. Rugina. Memory leak analysis by contradiction.
In Proceedings of the 13th Annual Static Analysis Symposium (SAS
’06), pages 405–424, 2006.

[24] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-memory for
detecting memory leaks and memory corruption during production
runs. In Proceedings of the 11th International Symposium on High-
Performance Computer Architecture (HPCA ’05), volume 00, pages
291–302. IEEE Computer Society, 2005.

[25] D. Rayside and L. Mendel. Object ownership profiling: a technique
for finding and fixing memory leaks. In Proceedings of the
22nd IEEE/ACM international conference on Automated software
engineering (ASE ’07), pages 194–203, 2007.

[26] N. Röjemo and C. Runciman. Lag, drag, void, and use: Heap profiling
and space-efficient compilation revisited. In Proceedings of First
International Conference on Functional Programming, pages 34–41,
Philadelphia, PA, May 1996. ACM Press.

[27] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’98), pages 12–23, San Jose, CA,
Oct. 1998.

[28] R. Shaham, E. K. Kolodner, and S. Sagiv. Automatic removal of
array memory leaks in Java. In Proceedings of the 9th International
Conference on Compiler Construction (CC ’00), pages 50–66,
London, UK, 2000. Springer.

[29] R. Shaham, E. Yahav, E. Kolodner, and M. Sagiv. Establishing local
temporal heap safety properties with applications to compile-time
memory management. In SAS ’03: Proceedings of the 10th Annual
Static Analysis Symposium, 2003.

[30] Standard Performance Evaluation Corporation. SPEC2006.
http://www.spec.org.

[31] Y. Tang, Q. Gao, and F. Qin. LeakSurvivor: Towards safely tolerating
memory leaks for garbage-collected languages. In Proceedings of the
2008 USENIX Annual Technical Conference (USENIX ’08), pages
307–320, Boston, MA, June 2008.

[32] L. Torvalds. Linux kernel mailing list post. http://lkml.org/lkml/
2004/1/12/265, January 2004.

[33] T. Tsai, K. Vaidyanathan, and K. C. Gross. Low-overhead run-
time memory leak detection and recovery. In Proceedings of the
12th Pacfic Rim International Symposium on Dependable Computing
(PRDC ’06), pages 329–340. IEEE Computer Society, 2006.

[34] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic.
Memtracker: Efficient and programmable support for memory access
monitoring and debugging. In Proceedings of the 13th International
Symposium on High-Performance Computer Architecture (HPCA
’07), pages 273–284. IEEE Computer Society, 2007.

[35] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic
storage allocation: A survey and critical review. In Proceedings of the
International Workshop on Memory Management, volume 986, pages
1–116, Kinross, Scotland, Sept. 1995. Springer.

[36] Y. Xie and A. Aiken. Context- and path-sensitive memory leak
detection. In Proceedings of the 5th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESAC/FSE ’05), pages
115–125, 2005.

[37] T. Yang, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In 7th
Symposium on Operating Systems Design and Implementation (OSDI
’06), pages 103–116. USENIX Association, 2006.

http://phk.freebsd.dk/pubs/malloc.pdf
http://phk.freebsd.dk/pubs/malloc.pdf
http://gee.cs.oswego.edu/dl/html/malloc.html
http://gee.cs.oswego.edu/dl/html/malloc.html
http://lkml.org/lkml/2004/1/12/265
http://lkml.org/lkml/2004/1/12/265

	Introduction
	Overview
	Code vs. Data Sampling
	Hound Heap Structure
	Allocation-Site Segregation
	Age-Based Segregation

	Tracking Staleness
	Adapting the Inactive List

	Virtual Compaction
	Finding Candidate Pairs
	Merging Pages

	Reporting
	Experimental Results
	Runtime Overhead
	Memory Overhead
	Virtual Compaction
	Staleness Computation
	Accuracy Metrics
	Methodology
	Accuracy Results

	Leak Identification and Ranking

	Related Work
	Conclusion
	Acknowledgments

