
Automatic Empirical Failure Avoidance for Concurrent Software

Brandon Lucia Luis Ceze
University of Washington, Department of Computer Science and Engineering

{blucia0a,luisceze}@cs.washington.edu
http://sampa.cs.washington.edu

Abstract
We propose Aviso, a system for avoiding failures due to concurrency
errors. Aviso monitors program events during multithreaded execu-
tion. When a failure occurs, Aviso represents sequences of events
from the failing execution as state-machines that we call SHIELDs.
Aviso can use SHIELDs to avoid event sequences that lead to failures.
After a failure, Aviso creates many candidate SHIELDs representing
possible causes. Aviso then empirically vets them to determine which
best avoid failures. We implemented Aviso and showed it increases
reliability, and imposes low performance overhead (0-30%).

1. Introduction
Bugs in concurrent programs are hard to find and fix. They arise due
to thread interactions via synchronization and shared data that were
unforeseen during development. Among common concurrency errors
are atomicity violations, in which one thread’s access to shared state
is incorrectly permitted to interleave between a pair of accesses in
another thread. Ordering violations are another type of error, where
different threads’ operations occur in an order leading to a failure.
Most prior work has focused on detecting concurrency errors, which
typically involves identifying suspect patterns of operations specific
to certain bug types. Unfortunately, even with debugging tools, con-
currency bugs end up in deployed code, leading to costly failures.

Recent research has explored avoidance of concurrency-related
failures. The premise of most such work is to determine sequences
of operations in different threads that are likely to lead to failures
and prevent those sequences. This general idea has seen several in-
carnations, some of which avoid bad sequences with special hard-
ware [8, 9, 17, 18], some using memory protections [14, 15], and
others with programmer annotations that explicitly prohibit behav-
ior [16]. Fixing concurrency errors is hard, often takes a long time [7],
and bugs are often “fixed” incorrectly. Avoidance systems prevent
failures in deployed code, decreasing the cost in reliability while a
fix can ultimately be written and applied.

In this paper we propose Aviso, a novel fully automated system
for bug avoidance. The core idea behind Aviso is to monitor program
execution and automatically learn which sequences of events lead to
failures. Aviso can then avoid these sequences in future executions
to avoid failures. Aviso monitors synchronization operations and data
accesses and watches for failures. Based on a history of events preced-
ing a failure, Aviso generates a set of interleaving constraints that may
prevent the failure, and uses an empirical process to determine which
most effectively avoids the failure. In summary, this paper makes the
following contributions: (1)A fully automatic technique for concur-
rency error avoidance. (2) Several static and dynamic techniques to ef-
ficiently find and collect interesting events from executions. (3) A new
state machine abstraction for concurrency error behavior. (4) Aviso: a
framework and runtime that generates state machines and uses them
to prevent failures in a single software instance or cooperatively in a
replicated system. (5) An evaluation of Aviso using several real-world
applications, demonstrating its efficacy and efficiency.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview of Aviso. Section 3 discusses Aviso’s approach to
event monitoring. Section 4 discusses how Aviso generates candidate
SHIELDs after a failure. Section 5 describes how Aviso determines
which candidate SHIELDs prevent failures, and how SHIELDs can
be shared between systems. Section 6 provides implementation de-
tails and evaluation. Section 7 contrasts Aviso with prior work, and
Section 8 concludes.

2. Aviso
There are several key aspects to Aviso: efficiently monitoring program
events; automatically determining sequences of events responsible for
a failure; generating schedule constraints likely to avoid failures, and
determining which are most effective; and using schedule constraints
to prevent failures. This section provides an overview of Aviso and its
design requirements.

2.1 Overview
Aviso monitors program events during execution and keeps a short
history of events. Aviso also monitors for failures. When a failure
occurs, Aviso determines which event sequence in the history was
most likely the cause, and tries to prevent that sequence in the future.
Aviso abstracts event sequences as finite state machines. After a fail-
ure, Aviso examines the event history and generates a state machine
for each interesting event sequence it contains. In subsequent execu-
tions, Aviso runs each state machine to determine when the program
is about to execute the sequence of events it represents. When such a
situation arises, Aviso delays some events in the sequence, perturbing
the execution. If the state machine corresponds to the sequence that
caused the failure, the delay avoids the sequence, avoiding the failure.

Aviso generates a large set of state machines from its history after
a failing run. Each state machine is a hypothesis about how to prevent
the failure. Aviso empirically evaluates each hypothesis, to determine
which ones actually prevent the failure. We call effective hypotheses
State machines for Hiding Interactions Ending in Likely Defects, or
SHIELDs. To leverage large collections of computers running the
same program, a SHIELD that consistently prevents a failure on one
machine is distributed to other machines running the same program,
to share its avoidance capability.

2.2 Building the SHIELD for a Failure
The key concept in Aviso is the mapping between program errors and
SHIELDs. As with usual state machines, a SHIELD is made up of
states and transitions. A SHIELD abstractly represents a sequence of
events. Each state in a SHIELD represents a point in the progression
through the sequence. Transitions between states are triggered when
events in the sequence execute. Events can be arbitrary program
operations but we focus on events that are likely to be related to
concurrency errors, such as synchronization operations, asynchronous
signal handlers and memory accesses to shared data. We define events
in more detail in Section 3. Failure states are states in a SHIELD

1 2012/1/28

corresponding to points in the interleaving sequence where buggy
behavior manifests.

Example: AGet Atomicity Violation Bug Figure 1 illustrates the
mapping between concurrency errors and SHIELDs using an example
from AGet-0.4, a multithreaded download tool. Figure 1(a) shows
a buggy execution. The error is an atomicity violation: Thread 1
writes to a file (line 116), then adds the number of bytes written to
bwritten (line 121). AGet fails when Thread 2 reads the stale value
of bwritten at line 41, between thread 1’s file write and counter
update. Note that if Thread 2 is delayed, and Thread 1 finishes both
operations, the failure is avoided.

S ✓

X

Download.c:116
Download.c:121

Resume.c:41

116:dw =
 pwrite(...);

41: h.bwritten =
 bwritten;

(a)
Multi-threaded Execution

(b)
SHIELD

Thread 2

Resume.cDownload.c

Thread 1
BUG:The value of bwritten

is stale at this point

121:bwritten +=
 dw;

Figure 1. Atomicity bug in AGet-0.4. (a) shows the code involved in the bug.
(b) shows an SHIELD representing the interleaving.

Figure 1(b) shows a SHIELD for the bug in 1(a). The start state is
labeled “S”. The failure state is labeled “×”. The “X” state is the only
non-failure state reachable from the center state. When the SHIELD
reaches × or X, it terminates. From the start state, the SHIELD
transitions to the center state after the pwrite(...) executes. From
this state there are two possibilities: if Thread 2 executes its read,
the SHIELD transitions to the × state, indicating failure. If Thread
1 executes its increment instead, the SHIELD transitions to the X
state and terminates. We now explain how Aviso manipulates program
execution to avoid failure states.

2.3 Bug Avoidance with SHIELDs
Aviso maintains a set of SHIELDs, each corresponding to an inter-
leaving of events that leads to a failure. It monitor events as a program
executes, and updates the current state of the SHIELDs when neces-
sary. When a SHIELD enters a state with an outgoing transition to a
failure state (like the center state in Figure 1), Aviso prevents the exe-
cution of events that lead to that failure state by delaying their execu-
tion. While these failure triggering events are prohibited from execut-
ing, other threads can execute other operations, leading the SHIELD
(and equivalently, the execution) back to a safe state (like the X state).
The delayed event is eventually allowed to proceed, but because the
sequence of events executed has changed, it will not cause the transi-
tion to a failure state. By preventing SHIELDs from transitioning to
failure states, sequences that lead to error behavior are prohibited.

2.4 System Design
Figure 2 shows a block-diagram of Aviso’s components, and lists the
responsibilities of each component. There are four important compo-
nents: (1) The programmer, (2) The compiler and profiler, (3) The
runtime system, and (4) The framework. The programmer’s respon-
sibilities are mostly unchanged. At development time, Aviso’s pro-
filer and compiler component determines what program events should
be monitored, and adds events to the program’s binary. The Aviso
runtime is linked to the event-aware binary. It monitors events, and
watches for failures. The Aviso runtime also takes avoidance actions
on some events to prevent failures from occurring. Aviso-enabled pro-
grams run in the Aviso framework. The framework uses information
collected from a failing run by the runtime to identify a SHIELD that
can avoid the failure. The framework then distributes failure-avoiding
SHIELDs to other systems to share the failure avoidance capability.

Programmer

Aviso
Compiler
& Profiler

Aviso
Runtime

Aviso
Frame
work

Write Program Identify, Prune &
Instrument Events

Monitor Events
Monitor & Avoid Failures Generate SHIELDs

Distribute SHIELDs

Figure 2. An overview of the responsibilities of each of Aviso’s components.
The programmer’s responsibilities are unchanged.

3. Monitoring Events and Failures
Collecting events relevant to errors efficiently is crucial. Aviso uses
several analyses to identify which events in a program to monitor.

3.1 Identifying Relevant Program Events
Our goal is to be general enough to prevent a broad class of errors
in deployment. This goal presents conflicting design constraints: For
generality, we should monitor many types of events to capture a large
variety of failures. However, monitoring imposes overhead, and use
in deployment necessitates high performance.

Aviso focuses on concurrency errors, so we monitor synchroniza-
tion events, signal events, and sharing events. Synchronization events
are all lock and unlock operations, as well as thread spawn and join
operations. These events can be identified by matching synchroniza-
tion library (e.g., pthread) calls. Aviso can be set up to handle cus-
tom synchronization (e.g., CAS) at configuration time.

Signal events are functions that handle signals. They are of interest
because signals may be delivered and handled asynchronously. Signal
events can be identified by instrumenting signal handler registration
functions (e.g., signal()), and functions that explicitly wait for sig-
nal delivery (e.g., sigwait()). Sharing Events are more difficult
to identify because in general sharing events cannot be identified by
looking only at syntactic properties of a program. Instead, Aviso iden-
tifies sharing events using a sharing profiler before the deployment of
the application – i.e., during testing. The sharing profiler monitors
threads’ accesses to shared data. When a thread accesses data, if the
data has been accessed by another thread during the execution, the
operation the thread is executing is a sharing event. Sharing events
are reported by the profiler and compiled into the deployment binary
by Aviso’s instrumenting compiler. Aviso identifies events with the
instruction address and call stack at the point when the event occurs.

3.2 Pruning and Instrumenting Events
Performance is essential to Aviso. If the runtime has to handle events
too frequently, performance overheads will be unacceptably high. To
mitigate the overhead, we use three techniques to reduce the number
of events. First, our instrumenting compiler does dominance pruning
to eliminate redundant events. Second, using profiled information we
perform co-occurrence pruning to coalesce redundant events. Finally,
we use dynamic analysis to do online pruning.

Dominance Pruning Analysis Aviso’s compiler computes each in-
struction’s dominators, to use them to prune redundant events. For a
pair of events (p, q) if p dominates q, then for every execution of q,
there is a prior execution of p. Hence, tracking both p and q is redun-
dant. In this situation, we remove q from the set of candidate events.
Note, if p and q are far apart, pruning may discard useful events. How-
ever, our analysis does not pose problems for two reasons. First, it op-
erates at function scope, bounding the distance between p and q to the
length of a function. Second, if events are far apart, dominance still
conveys information about the interleaving of events on involved con-
trol flow paths – less precise, but still useful for preventing failures.
Co-Occurrence Pruning Aviso prunes events by finding pairs of
events that occur within a short interval (100µs) of one another dur-
ing profiling, and coalescing the pair into a single event. Pairs are
coalesced if the expected result of doing so is a significant reduction
in dynamic events in future executions. We omit a full formal descrip-
tion of co-occurrence pruning due to space constraints.

2 2012/1/28

Online Pruning Aviso uses online pruning to adaptively reduce the
number of events handled. During execution, Aviso tracks the interval
between consecutive events and uses an adaptive analysis to change
how an event is handled based on the interval between events. The in-
tuition behind the analysis is that if two events occur in a short inter-
val, they are likely redundant. There are three cases: If the interval is
longer than 200µs, Aviso processes the event normally. If the interval
is between 10µs and 200µs Aviso only records a truncated backtrace,
containing only one return address. Finally, if the interval is less than
10µs, Aviso discards the event. Discarding events is, in effect, dynam-
ically coalescing sequences of events into a single event.

3.3 Tracing Important Program Events
To generate SHIELDs, Aviso uses events from a single failing execu-
tion. Aviso focuses on program events in a failing run that occurred
just before the failure. These events are likely to be related to the
failure, because some code point must trigger the failure (e.g., cause
a crash, emit buggy output, etc.); this event occurs shortly before the
buggy behavior manifests. Hence, a backward scan over an event trace
from failure is likely to encounter events involved in the cause.

Aviso maintains a history of recently executed events, called the
Recent Past Buffer, or RPB. The RPB is a fixed-size queue storing
on the order of hundreds of events (we used 1000 events). When an
event executes, the oldest event in the RPB is dequeued and discarded,
and the newest event is enqueued. When a failure occurs, the RPB
contains a history of the execution’s final moments, likely including
the events that led to the failure.

3.4 Monitoring Program Failures
Aviso examines the RPB on failure. For fail-stop errors, (e.g., crashes,
assertion failures), Aviso preserves the RPB before the program ter-
minates. Non-fail-stop errors require Aviso to monitor for failure con-
ditions, and save the RPB when they occur. The way to detect non-
fail-stop errors depends on the symptom. Identifying arbitrary failures
in general is outside the scope of the work, but simple solutions often
work well; e.g., validating output often works – in our tests with the
Apache web server Aviso watched for log corruption.

4. Generating SHIELDs
There are two steps to generating SHIELDs: (1) Identifying all inter-
esting event sequences from the final moments of a failing run; and
(2) Assembling all possible SHIELDs compatible with those event se-
quences. After a failure, Aviso enumerates all event sequences in the
RPB that could potentially have led to the failure. For every event se-
quence, Aviso assembles a candidate SHIELD. As described in Sec-
tion 2.3, a SHIELD can be used by Aviso to prohibit the event se-
quence that it was based on. If a candidate event sequence represents
the cause of a failure, the corresponding SHIELD prevents the failure.

4.1 Enumerating Event Sequences
Aviso extracts two types of event sequences from the RPB: event
triples and event pairs. The goal is to represent a failure that has
occurred as a triple or pair. Triples represent interleavings of events
that can lead to atomicity violations. Pairs represent ordering errors,
and also some atomicity errors.
Event Triples Aviso enumerates event triples, (A1, B, A2), such that
A1 and A2 were executed by the same thread, and B by a different
thread. We consider triples in which A1 preceded B, and B preceded
A2, but were not necessarily consecutive. The motivation behind
considering triples is that they represent situations in which event B
interleaves events A1 and A2. Such an interleaving is an atomicity
violation if the programmer expected A1 and A2 to be atomic. Aviso
looks at the RPB from a failing run, so if the atomicity violation
occurred, and the program failed when event A2 executed, the events
making up the atomicity violation will appear as a triple in the RPB.

To limit the number of triples, we only include triples for which A1
and the A2 are within 10 events of one another in the RPB.

Figure 3(a) shows an event triple in the RPB that represents an
atomicity violation bug. In the example, <E 1> and <E 3> should
be atomic. However, the sequence shown in the RPB shows that <E
2> interleaved them. In the (A1, B, A2) triple that is produced is, A1
is <E 1>, A2 is <E 3>, and B is <E 2>.

T1:<E 1>

T2:<E 2>

Recent
Past

Buffer
T1:<E 3>

Note:<E 1> and <E 3> should not be interleaved
by <E 2>, or <E 3> will cause a failure

Event
Triple

S ✓

X

<E 1> <E 3>

<E 2>

(a)
An Event Triple in the RPB

(b)
Event Triple SHIELD

c

Figure 3. Mapping event triples in the RPB to a SHIELD. (a) shows a triple
in the RPB and (b) shows the SHIELD it yields.

Event Pairs Aviso considers pairs of events in the RPB, (B, A), that
were executed by different threads. Event pairs can represent ordering
violations and some atomicity violations. We select pairs of events
under the constraint that between B and A no event was executed by
the thread that executed B. Note that between events in a pair, other
uninvolved threads may execute other unrelated events. Also, we only
consider event pairs separated by fewer than 10 events in the RPB.
Ordering Violations as Event Pairs An ordering violation bug involv-
ing two events, A and B, that should execute in A-B order causes a
failure when B precedes A. Recognizing the failure with an event
pair is a challenge because the execution may fail at B, and event A
may never execute. To deal with such situations, Aviso relies on the
presence of a third event, C, executed by the same thread as A. The
key is that C executes just before A would, and is added to the RPB.
When B executes and the failure occurs, C is in the RPB, followed by
B. If A had executed, it would have immediately followed C. Hence,
when C is followed by B in a failing run, it is an indication that the
incorrect ordering of B and A is likely to have occurred.

Figure 4(a) illustrates how an event pair represents an ordering
violation. The figure shows a snippet of the RPB from a failing
execution. <E 3> should precede <E 2>, but did not, causing a
failure when <E 2> executes. <E 1> is an event executed by the
thread that would have executed <E 3>. Aviso identifies (<E 1>,
<E 2>) as an event pair when it analyzes the RPB.

T1:<E 1>

T2:<E 2>

Recent
Past

Buffer

Aviso delays
here to prevent

<E 2> from
executing

T1:<E 3>

Event
Pair

(a)
Event Pair Representing an Atomicity

Violation or an Ordering Violation

(b)
Event Pair SHIELD

<E 1> <E 2>

c

Atomicity Violation
If <E 1> and <E 3>
should be atomic,
<E 2> causes a
crash, and <E 3>
never executes.

Ordering Violation
If <E 2> should follow
<E 3>, failure occurs
on <E 2>. Note that
<E 1> precedes <E 3>
in T1.

s X

Figure 4. A SHIELD built from an event pair. (a) shows a snippet of the
RPB after a failure, and describes how an event pair maps to different types of
errors. Note that is not in the RPB, because the failure occurred at <E 2>. (b)
shows the SHIELD based on the event pair indicated.

Atomicity Violations as Event Pairs Event pairs can also represent
atomicity violations. Consider a region of code that the programmer
assumed would be atomic that begins with event B, and ends with
some other event, C. Recall that if A violates the atomicity of B
and C, and the program fails at C, Aviso will capture the bug as
a triple, (B, A, C). However, if A violates the atomicity of B and

3 2012/1/28

C, and the program instead fails at A, C never executes. If C never
executes, it will not appear in the RPB, making it impossible for Aviso
to represent the failure as a triple. However, note that the failure is
likely to occur whenever B is followed closely by A. Aviso represents
the execution of B and A in succession as a pair, (B,A), and uses that
pair to represent the atomicity violation.

Figure 4(a) illustrates how Aviso represents atomicity violations
as event pairs. A snippet of the RPB is shown that contains <E 1>
and <E 2>. Beneath the RPB <E 3> is shown. The execution failed
when it executed <E 2>, preventing <E 3> from being added to the
RPB. <E 1> and <E 3> should have executed atomically, but <E
2> interleaved between them. The indicated event pair represents the
case where <E 2> follows immediately after <E 1> and before <E
3>, manifesting the atomicity violation.

4.2 Assembling SHIELDs
Aviso builds SHIELDs from every event pair and triple it observes
in the RPB after a failure. The process for constructing SHIELDs
involves mapping events from the pairs and triples to transitions in
a SHIELD. We developed a formal description of SHIELDs, but omit
them in this paper due to space constraints.
Event Triple SHIELDs The mapping from a triple (<E 1>, <E 2>
<E 3>) to a SHIELD is illustrated in Figure 3(b). The first step is
to create a start state, marked S. A transition triggered by <E 1>
connects S to c, the “center node”. c has two outgoing transitions.
One of these transitions is triggered by <E 2> and leads to a failure
state, marked ×. The other is triggered by <E 3> and leads to a non-
failing accept state marked X. If a triple represents the cause of the
failure, and during the execution its SHIELD is in the c state, attempts
to execute the event leading to the × state will be delayed, to prevent
the execution from failing.
Event Pair SHIELDs Figure 4(b) shows the mapping from the pair
(<E 1>, <E 2>) to a SHIELD. Recall from Figure 4(a) that such
a pair can correspond to an atomicity violation or an ordering viola-
tion involving a third event <E 3>. In an atomicity violation, <E 2>
should be prevented from following immediately after <E 1>, pre-
venting an interleaving of <E 1> and <E 3>. In the ordering viola-
tion, <E 2> should follow <E 3> and <E 1> precedes <E 3> and
is executed by the same thread. Preventing <E 2> from executing
immediately after <E 1> gives <E 3> a chance to execute before
<E 2>, preventing the error. For both ordering and atomicity bugs,
the key is that <E 2> must be delayed after <E 1> executes, giving
<E 3> the opportunity to execute.

The start state is marked S. There is a transition triggered by <E
1> from S to the center state, c. c has a transition to the failure
state ×, triggered by <E 2>. After <E 1> executes, executions of
<E 2> are delayed to avoid the × failure state. The delay lets <E
3> execute, avoiding the failure. Delaying <E 1> indefinitely may
pose forward progress issues, so Aviso allows <E 1> to proceed
after a fixed interval elapses. After the interval elapses, the SHIELD
is terminated as though it has reached an accept state.

4.3 SHIELD Generation Example: Transmission
Figure 5 shows a bug in Transmission-1.42. Figure 5(a) shows a
failing execution. Thread 2’s assert(h->bandwidth) fails if it
executes before Thread 1 assigns h->bandwidth.

Figure 5(b) shows part of the RPB at the end of the execution.
Arcs indicate event pairs. The dashed arc is a pair that, when it occurs,
leads to failure. Events’ call stacks have been omitted from the RPB
for illustrative purposes.

Figure 5(c) shows the SHIELD constructed from the dashed
arc pair in Figure 5(b). In the example, session.cpp:278 is
<E 1> and platform.c:222 is <E 2>. session.cpp:282
should precede bandwidth:251 and platform.c:222, so
session.cpp:282 is <E 3>. Aviso prevents platform.c:222
from preceding session.cpp:282, preventing the failure.

5. Vetting Candidate SHIELDs
After a failure Aviso generates a set of candidate SHIELDs in order to
vet candidate SHIELDs and isolate ones that prevent failures. Aviso
treats each one as a possible fix and empirically determines which are
most effective by running them and tracking the failure rate. Aviso
monitors executions with different SHIELDs, and discards those that
do not significantly decrease the failure rate from the program’s base-
line rate. Over time, the set of SHIELDs converges to those that pre-
vent failure. From this set, Aviso selects the one that most decreases
the failure rate. Before vetting, Aviso reduces the number of SHIELDs
by pruning SHIELDs that excessively degrade performance. Aviso
runs each SHIELD on a test input, and eliminates any with greater
than 200% overhead.

Correct Run SHIELD Pruning We developed a technique reduce
SHIELD vetting time. Aviso can use non-failing runs to eliminate
SHIELDs that are unlikely to be useful. If an event sequence occurs
in a correct run, it is less likely to be the cause of the failure. After
a failure and before vetting, Aviso collects snapshots of non-failing
executions’ RPBs at the point where the failure occurred in the failing
run. Aviso generates SHIELDs from the failing and non-failing runs’
RPBs. Aviso discards SHIELDs from the failing run that were also
produced from a non-failing run. We used a set of 100 non-failing
executions, as it was adequate to prune most candidate SHIELDs.
Snapshots are easy to collect, and so the number of snapshots used
can be as large as is necessary for pruning.
Deployment Vetting Vetting is embarrassingly parallel, and can be
expedited by leveraging the scale of deployed software. We envi-
sion two deployment vetting scenarios. The first scenario is a data-
center, where many software instances run simultaneously. Different
instances vet different SHIELDs in parallel. The second scenario is
widely deployed user or system software, in which many different
users run instances of software simultaneously (i.e., hundreds of thou-
sands of times per day [2]). Different users can vet different SHIELDs
in parallel. In this scenario, the framework can be provided by the
software vendor, like a crash reporting service.
Shared Failure Avoidance After vetting, the Aviso framework can
share effective SHIELDs with all instances of a program. Aviso is
able to share SHIELDs because instrumentation is done at the source
level, so events are the same across program instances.

6. Evaluation
We evaluate Aviso on several dimensions. First, we show Aviso’s
failure avoidance efficacy. Second, we show that Aviso’s overheads
are reasonably low. Third, we characterize Aviso’s dynamic behavior.
Finally, we characterize Aviso’s SHIELD vetting process.

6.1 Experimental Setup
System Implementation We built a full implementation of Aviso,
including the profiler, instrumenting compiler, runtime system, and
the vetting and avoidance-sharing framework. The profiler was built
using Pin [10] and the compiler pass was built using LLVM [6]. The
rest of the system was implemented from scratch as a shared library.
Benchmarks We evaluated Aviso using several buggy programs.
Transmission-1.42 (Figure 5) is a bittorrent client with a use-before-
initialize bug. We used a setup similar to prior work [17], including
their patch to make the bug manifest more frequently. PBZip2-0.9.1
is a compression tool with a use-after-free bug. We tested PBZip2 by
compressing a 250MB file. Like Transmission, we patched PBZip2 to
increase its baseline failure rate. AGet-0.4 (Figure 1) is a download
tool with an atomicity violation that leads to output corruption. To
test AGet we downloaded a 50MB file from the local network, and
interrupted the download with a signal to trigger the error. Aviso diag-
nosed failures by checking for output corruption. Apache-2.0.48 is a
web server with atomicity violations that cause log corruption. To test

4 2012/1/28

Thread 1

(a)
Multi-threaded Execution

(b)
Constructing Pairs from the RPB

session.cpp:278
h->shared = Init(...);

session.cpp:282
h->bandwidth = new(...);

platform.c:222 pthread_mutex_lock(l);
bandwidth.c:251 assert(h->bandwidth);

Thread 2

event.c:388

platform.c:222Ti
m

e

Recent Past Buffer

event.c:388 event_callback(...);
session.cpp:278

BugAvoiding Pair!

start X
session.c:278

platform.c:222

(c)
Resulting SHIELD

peer-mgr.c:2311
trevent.c:306

C
al

l S
ta

ck

This assertion fails!

Figure 5. A use-before-initialization bug in Transmission. (a) is a buggy execution. (b) is the RPB just after the failure. Arcs indicate event pairs and the dashed
arc is the pair that avoids the failure. (c) shows the failure-avoiding SHIELD Aviso derived from the dashed-arc pair in (b).

Failure Rate Performance Overhead
Reduction Coll. Only Coll. & Avoid

Transmission >1000x 0% 0%
AGet 11.4x 0% 0%
PBZip2 36.0x 0.8% 4.2%
Apache1 3.2x 3.8% 21.3%
Apache2 10.5x 3.8% 39.5%

Table 1. A table summarizing Aviso’s failure avoidance capability and per-
formance overheads both with and without active avoidance state machines,
relative to baseline execution.

Apache, we used ApacheBench to issue bursts of 10000 requests
from 8 threads for a local html page. Aviso diagnosed failures by
watching for log corruption.

6.2 Bug Avoidance Efficacy
The main result of our evaluation is that Aviso significantly improved
reliability of the applications we experimented with. Column 2 of
Table 1 shows the decrease in the failure rate from the baseline
for each test program. Notably, the failure in Transmission, which
occurs during every baseline execution, never occurred in thousands
of executions with Aviso. PBZip2 also improved, failing 36 times less
frequently with Aviso than without.
SHIELD Composability Table 1 also shows that SHIELDs are com-
posable. We performed two experiments with Apache. In the first ex-
periment, Apache1, we ran Apache with no SHIELDs. On seeing
a failure, Aviso isolated a SHIELD that reduced the manifestation
rate for that failure by 3.2X. In the Apache2 experiment, we allowed
Apache to run under Aviso with the Apache1 SHIELD. When a sec-
ond failure occurred, Aviso isolated another SHIELD. Together, the
SHIELDs reduced the failure rate by more than 10x.
Remaining Failures The data show that Aviso reduces failure rates,
eliminating the effects of the bug in Transmission. However, in other
cases failures still occur. There are several reasons failures persist.
First, there are often many ways a program can manifest a failure –
programs often have more than one bug. Second, Aviso prunes some
events online. Under some schedules, important events may be dis-
carded. Third, Aviso is a best-effort approach: Aviso allows delayed
events to proceed eventually to preserve progress and performance.

6.3 Performance
Table 1 shows that Aviso’s runtime overhead is low. Column 3 is the
overhead of event monitoring only. The overhead ranges from neg-
ligible in AGet and Transmission to 3.8% for Apache. These results
show that non-failing programs will incur little, if any, performance
overhead. Column 4 shows the overhead of monitoring and avoidance.

When using SHIELDs to avoid failures, Aviso imposes no mea-
surable overhead on AGet or Transmission because they are net-
work bound. In addition, Transmission’s overheads are low because
SHIELD instantiation checks occur rarely – about once every 7000
events – because the failure-avoiding SHIELD involves only rare
events. PBZip2’s overhead was 4.2% because its failure-avoiding
SHIELD starts with an event that only executes during shutdown.
Hence, SHIELDs do not need to be activated, and impose little over-

head. For Apache1, the overhead was around 21%. Apache2, with its
pair of failure-avoiding SHIELDs, saw overhead around 40%. These
overheads are higher than for the other applications, but still low
enough for deployment. Furthermore, failures are 10 times less fre-
quent with Aviso, so the overheads may be amortized by a decrease
in downtime and time spent patching software.

6.4 Characterization
We instrumented Aviso to characterize its dynamic behavior. Due
to space constraints, we omit the full details of our characterization
study, and provide highlights here.
Event Behavior First, we characterized Aviso’s dynamic event behav-
ior. Our data show that events occur frequently. On average 64% of
events occur within 10µs of one another and are discarded. In Apache
and Transmission, more than 80% were discarded. On average, 19%
are truncated to a single return address. However, as Table 1 indicates,
Aviso reduces failure rates for these programs, so the reduced set of
events being collected is adequate.

We also characterized the proportion of synchronization and shar-
ing events, which varied across applications. For AGet, there are about
two synchronization events for each sharing event, corresponding to
the program’s inner loop, which has a lock acquire and release, and
an access to shared data. Apache has thousands of sharing events per
synchronization event, corresponding to many (often incorrect!) un-
synchronized acceseses to shared data. PBZip2 has far fewer over-
all events than Apache or AGet (10s vs. 100,000s), because it rarely
shares due to the structure of its parallelism.
SHIELD Behavior SHIELD activation checks occur whenever an
event involved in any SHIELD executes. In general SHIELD instan-
tiation checks and activations are infrequent. AGet had about 8,600
SHIELD instantiation checks, and about half led to activations. In
Apache, a small fraction of events led to instantiation checks – around
10 per 10,000 non-discarded events. Of these, about 2 per 10,000
led SHIELD activations. For Transmission, 0.17% of non-discarded
events led to a SHIELD activation check, and only 1 resulted in an
SHIELD activation. The maximum number of simultaneously active
SHIELDs for each application is also small. Apache saw the most,
with around 28 – this corresponds to thread count (25 worker threads,
plus several listener and server threads), suggesting about one active
SHIELD per thread. Other applications saw similar numbers.

6.5 Vetting
Table 2 characterizes vetting. Columns 2 and 3 show the number of
triples and pairs in the RPB for each application. Column 4 shows the
number of SHIELDs not pruned due to excessive overhead. Column
5 shows the CPU time to vet SHIELDs.

The number of candidate SHIELDs produced after a failure is
application-dependent. The more interleaving in the RPB, the more
pairs and triples will be produced. Apache’s RPB has many in-
terleaved events from many threads, resulting in many candidate
SHIELDs. PBZip2 fails on shutdown, when most events are executed
by the main thread, leading to little interleaving and few candidate
SHIELDs. Few SHIELDs were pruned due to low performance –
only a handful of Apache’s thousands of SHIELDs. AGet saw the

5 2012/1/28

App Trip. Pair NoHang Time
Transmission 60 110 170 28m
AGet 73 22 38 2h54m
PBZip2 12 160 172 10h53m
Apache1 2811 4849 7557 70h27m
Apache2 1250 2449 3690 76h22m

Table 2. A table characterizing SHIELD vetting behavior.

Failure Rate Vetting
App Reduction Trip. Pair NotPruned Time
Transmission >1000x 98 60 6 5m
AGet 20x 177 49 57 2h7m
PBZip2 5.3x 234 222 82 3h49m
Apache 5.0x 3232 4231 62 6h48m

Table 3. A table characterizing the use of correct runs in vetting.

most pruned, with 57 SHIELDs being eliminated. The main reason
for the decrease is that all threads run the same loop. Some SHIELDs
lead to situations where threads’ iterations of the loop are serialized,
degrading performance. The time to vet varied from minutes (Trans-
mission) to days (Apache). Vetting is parallelizable, so with many
instances (i.e., hundreds), vetting will be fast. The cost of vetting
is likely less than the cost to manually fix a program [12], which
may include the cost of rushed, incorrect “fixes” [7]. Running with a
SHIELD gives developers time to carefully write and test a fix.

6.6 Using Correct Run Information
We performed a complete second set of experiments to evaluate the
correct run pruning optimization described in Section 5 to show that
it reduces vetting time and does not decrease avoidance. For each
application, we collected RPBs from 100 correct runs. We removed
all SHIELDs from the set produced from the failing run’s RPB that
were produced from any of the correct runs’ RPBs. We vetted the
remaining SHIELDs to isolate the most effective. Table 3 summarizes
our findings. Column 2 shows the reduction in failure rate for the
most effective SHIELD. Columns 3 and 4 show the initial numbers of
pair and triple SHIELDs. Column 5 shows the number of SHIELDs
remaining after correct run pruning. Column 6 shows the vetting time
for the remaining SHIELDs.

The data show that correct run pruning eliminates a majority of
SHIELDs to be vetted – e.g., 99.2% for Apache. The data also show
that with this optimization, effective SHIELDs in the set to vet are
preserved, and lead to reduced failure rates. For Apache and AGet,
the most effective SHIELDs reduced failure rates by more than in
our initial experiments. Interestingly, for both applications the failure
rate reductions came from SHIELDs that did not show up during our
initial experiments. Transmission saw the same failure rate as in the
initial tests, and the most effective SHIELD was very similar to the
one in our initial experiment. PBZip saw a 5.3x decrease in failure
rate in this experiment – less than the first experiment, but still a
considerable improvement over the baseline. The data show using
correct runs cuts vetting time without compromising avoidance.

7. Related Work
There has been a great deal of recent work on techniques dealing with
software failures. Due to space constraints, we focus here on work
that deals with concurrency-related failures.

Most related is Loom [16], a system for patching concurrency bugs
in running programs. Loom is like Aviso in that it aims to prevent
failures between when a bug’s symptom appears, and when a patch is
released. Aviso differs from Loom in an important and fundamental
way: Loom requires the user to understand the cause of a failure
well-enough to write a work-around. Aviso is automated, requiring
nothing from the programmer in most cases to produce a work-around

SHIELD. For some non-fail-stop errors, the user must recognize a
bug’s symptom, which is easier than understanding the cause.

There has been a lot of work on atomicity bugs [3, 8, 9, 14, 15].
Isolator [14] and ToleRace [15] prevent single-variable atomicity vi-
olations, but do not handle the broader class of failures addressed by
Aviso. AFix [3] produces bytecode patches that fix atomicity bugs.
AFix is like Aviso in that it eliminates the need to think about a
failure’s cause. Unlike Aviso it is limited to atomicity errors. Atom-
Aid [9] and ColorSafe [8] address single- and multi-variable atom-
icity bugs. These systems are unlike Aviso in that they only handle
atomicity bugs, and need hardware. Other systems have proposed us-
ing hardware support to force executions to adhere to tested sched-
ules [17, 18]. These systems are similar to Aviso in that they aim to
prevent concurrency-related failures. They differ in that they use hard-
ware, and can ensure reliability only in tested situations. Aviso relies
on information collected from a single failing run, and can apply it in
any situation to avoid failures. Dimmunix [5] and Communix [4] pro-
vide automated deadlock immunity for Java programs. These systems
are similar to Aviso in that they identify and avoid failures mostly
automatically, and Communix systems share failure avoidance capa-
bility. These systems are limited in that they only address deadlocks.

Determinism [1, 11, 13] enforces one event interleaving in every
execution. Aviso also enforces event orderings, but unlike determin-
ism, only over events involved in SHIELDs, not entire executions.
Aviso differs in that it does not restrict the interleaving of the entire
program. Instead, all possible executions are permitted, except where
restricted by SHIELDs.

8. Conclusions
In this work we presented Aviso, a system for automatic avoid-
ing concurrency-related failures. Aviso selectively monitors program
events, and when a failure occurs, Aviso finds event sequences that
may have been responsible. Aviso builds and vets candidate SHIELDs
during subsequent executions. SHIELDs that avoid failures are dis-
tributed to other software instances to share failure avoidance. We
empirically showed that Aviso effectively avoids failures in several
real-world programs. We also showed that Aviso operates with high-
performance, imposing overheads low enough for deployed software.

Acknowledgments
We appreciate the useful feedback from our anonymous reviewers.
We also thank Dan Grossman, Laura Effinger-Dean, Tom Bergan,
Pete Hornyack, and Todd Schiller for their wonderful suggestions on
improving the paper. We thank Anthony Fader and Adrian Sampson
for their superb early contributions to this work.

References
[1] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. Coredet:

a compiler and runtime system for deterministic multithreaded execution.
In ASPLOS, 2010.

[2] T. M. Chilimbi, A. V. Nori, B. Liblit, K. Vaswani, and K. Mehra. Holmes:
Effective statistical debugging via efficient path profiling. In ICSE, 2009.

[3] G. Jin, L. Song, W. Zhang, S. Lu, , and B. Liblit. Automatic atomicity-
violation fixing. In PLDI, 2011.

[4] H. Jula, P. Tozun, and G. Candea. Communix: A collaborative deadlock
immunity framework. In DSN, 2011.

[5] H. Jula, D. M. Tralamazza, C. Zamfir, and G. Candea. Deadlock im-
munity: Enabling systems to defend against deadlocks. In OSDI, pages
295–308, 2008.

[6] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In CGO, 2004.

[7] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes - A
Comprehensive Study on Real World Concurrency Bug Characteristics.
In ASPLOS, 2008.

6 2012/1/28

[8] B. Lucia, L. Ceze, and K. Strauss. ColorSafe: Architectural Support for
Debugging and Dynamically Avoiding Multi-Variable Atomicity Viola-
tions. In ISCA, 2010.

[9] B. Lucia, J. Devietti, K. Strauss, and L. Ceze. Atom-Aid: Detecting and
Surviving Atomicity Violations. In ISCA, 2008.

[10] C.-K. Luk et al. Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLDI, 2005.

[11] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
Deterministically Replaying Shared-Memory Multiprocessor Execution
Efficiently. In ISCA, 2008.

[12] NIST. The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing. http://www.nist.gov/director/prog-ofc/
report02-3.pdf, 2002.

[13] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient determin-
istic multithreading in software. In ASPLOS, 2009.

[14] S. Rajamani, G. Ramalingam, V. Ranganath, and K. Vaswani. Isolator:
Dynamically ensuring isolation in concurrent programs. In MICRO,
2009.

[15] P. Ratanaworabhan, M. Burtscher, D. Kirovski, B. Zorn, R. Nagpal, and
K. Pattabiraman. Detecting and tolerating asymmetric races. In IEEE
Transactions on Computers, 2011.

[16] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications with
execution filters. In OSDI, 2010.

[17] J. Yu and S. Narayanasamy. A Case for an Interleaving Constrained
Shared-Memory Multi-Processor. In ISCA, 2009.

[18] J. Yu and S. Narayanasamy. Tolerating concurrency bugs using transac-
tions as lifeguards. In MICRO, 2010.

7 2012/1/28

