KUDA: GPU Accelerated Split Race Checker

Position paper

U. Can Bekar

Kog University, Istanbul, Turkey
ucbekar@ku.edu.tr

elmas@eecs.berkeley.edu

Tayfun Elmas

University of California, Berkeley,

Semih Okur

University of Illinois at Urbana
Champaign, Urbana, USA

okur2@illinois.edu

Serdar Tasiran

Kog University, Istanbul, Turkey
stasiran@ku.edu.tr

Abstract

We propose a novel approach for runtime verification on
computers with a large number of computation cores, with-
out any hardware extension to mainstream PC environment.
The goal of the approach is making use of all hardware re-
sources to decouple the computational overhead of tradi-
tional race checkers via parallelizing the runtime verifica-
tion. We distinguish between two kinds of computational
overhead: (i) overhead caused by monitoring, and (ii) over-
head due to the verification algorithm(s). So far, runtime ver-
ification algorithms have been designed to run on the same
threads as the code being monitored and both (i) and (ii) con-
tribute to the slowdown of the program being monitored. The
framework we propose allows us to carry out (ii) on separate,
dedicated cores and threads. As a result, the program being
monitored only experiences slowdown due to (i) and plus the
communication of the events to be monitored. There exists
related work showing that with some inexpensive hardware
support (i) can be reduced to negligible levels. By paralleliz-
ing analyses our experiments show that they run as fast as
the program being monitored, but on separate computational
resources, one can potentially use this approach for monitor-
ing, error detection, containment, and recovery from errors.
As a demonstration of concept, we investigate runtime mon-
itoring for concurrency bugs, in particular, data race detec-
tion. We use a few CPU threads and a large number of cores
on a GPU to minimize the slowdown of the application on
which race detection is being run.

1. Introduction

We propose an approach to make use of some of the com-
putation cores and other hardware resources in a computer
to monitor the programs running on other cores for concur-
rency errors, to contain and/or recover from these errors, if
not immediately, shortly after they take place. While explor-
ing such an approach, we had two goals: (i) to have minimal,
tolerable impact on the threads being monitored, and (ii) to

have the monitoring algorithms work at the same speed as
the program, while possibly lagging behind by a bounded
amount. The rationale behind the first goal is to enable effi-
cient, even post-deployment use of the monitoring and bug-
detection algorithms for safety-critical systems. The ratio-
nale behind the second goal is to make it possible to contain
concurrency errors, notify the threads that have experienced
the errors, and gracefully shut down the program or to re-
cover from the error. One result of the second goal is to force
the monitoring framework to parallelize the event logging
and analysis algorithms as much as possible.

In our approach, the application being monitored and
the actual monitoring code run on separate processing unit-
s/resources. They communicate with each other using some
shared memory or message passing. The instrumented appli-
cation code only has the additional responsibility of commu-
nicating relevant events to the monitoring code. The moni-
toring and runtime analysis code can be quite complex, but
runs on separate processors and is parallelized, thus, the ap-
plication performance is not affected by the runtime anal-
yses being performed. We conjecture that the performance
penalty on the application being monitored due to instru-
mentation and communication of relevant events can be re-
duced to negligible levels, for example, using inexpensive
hardware support such as hardware-assisted message pass-
ing [4]. The goal is for the monitoring code to run at least the
same speed as the application being monitored, but lag be-
hind by a very small delay due to event communication. (In
our experiments this delay was in milliseconds.) This makes
possible scenarios in which, in response to errors detected,
the application has shut down gracefully, or a previous valid
checkpoint is restored or the application is restarted.

As a demonstration of concept, we investigate runtime
monitoring for concurrency bugs, in particular, data race de-
tection. Since systems with hundreds of cores are not yet
available as mainstream, to investigate the feasibility of our
proposal, we use a few CPU threads/cores to carry out the
efficient concurrent transfer of logged events from the CPU



cores to a Graphics Processing Unit (GPU), and we use the
GPU to run our race detection algorithm. Today’s GPUs pro-
vide a highly parallel, multithreaded, computation environ-
ment with hundreds of processor cores and a higher mem-
ory bandwidth than CPUs. Thus, our framework allows us
to investigate opportunities for efficiently performing vari-
ous kinds of runtime analyses on highly parallel computing
environments.

We provide a framework that instruments binaries so that
the application threads log the interesting events in a central
event list. The analysis threads then work off of this event list
to perform possibly expensive but parallelized analyses. For
this, we use carefully designed non-blocking algorithms and
block-based handling of the event list for efficient record-
ing of the events in this list. In particular, we communicate
the events to the GPU for processing in fixed-size segments
called frames. We accomplish fast, highly parallelized run-
time analysis on a GPU with hundreds of cores by exploring
algorithms that can check each event frame independently
from other frames. Our experience was that this can be done
without significantly affecting the soundness of the check-
ing. Long-enough frames allow the analyses to catch all er-
rors that can be caught by analyzing the entire execution.
Since the computational cost of the analysis threads does not
affect application performance, in this highly parallel set-
ting, one can achieve a lower performance impact while still
not sacrificing from precision.

For demonstration, we adapted the well known ERASER
and GOLDILOCKS algorithms for data race checking, so that
they can be parallelized to run on a large number of threads
and cores on the GPU. Surprisingly, this high parallelism has
a simplifying effect on the algorithm implementation. Since
we have many threads/cores, the algorithm can be written to
make each thread or core to perform a local and independent
check (for a single memory access) without having to worry
about sharing or interaction with other threads. Each thread
creates only the necessary data structures for the check and
discards/reuses them after the check completes; this avoids
the need for memory management and sharing of compli-
cated algorithm-specific data structures.

We implemented our proposed system in a tool
called KUDA. KUDA is open source and available at
http://kuda.codeplex.com. We use the Pin [5] library to
instrument binaries for monitoring and the CUDA [7] li-
brary to run our analysis algorithms on the GPU. We ap-
plied KUDA to a number of multithreaded programs from the
PARSEC and SPLASH-2 benchmark suites. We performed
experiments using CPU and GPU implementations of the
ERASER and GOLDILOCKS algorithms. We chose ERASER
to represent a cheap (although imprecise) algorithm, while
GOLDILOCKS served as a representative precise, higher-
complexity algorithm. We contrasted two approaches: (i) a
straightforward implementation of ERASER running on the
same threads and cores as the application, and (ii) an imple-
mentation of GOLDILOCKS using our framework, where the
checking threads are decoupled and run on the GPU. Over-
all, our early experimental results indicate that our approach

is promising. Using a cheaper race detection algorithm using
the traditional approach as exemplified by (i) causes about
twenty times more slowdown compared to a more complex
race-detection algorithm implemented in our approach!

2. Challenges in runtime monitoring

The purpose of this section is to point out the key challenges
one is likely to face when building a runtime verification tool
for concurrency-related errors. In order to make our ideas
concrete we will work out this section using a well-known
data-race detection algorithm.

2.1 Example: Eraser algorithm for data-race detection

ERASER is a well-known lockset-based algorithm for detect-
ing race conditions dynamically [9]. For simplicity of pre-
sentation, we focus on the core algorithm using only locksets
without distinguishing between read and write accesses.

A race condition occurs if two different threads perform
conflicting accesses (i.e., at least one of them is a write) on
a shared (global) variable and there is no proper synchro-
nization between these accesses. In order to detect race con-
ditions, ERASER enforces the locking discipline that every
shared variable x is protected by a common lock throughout
the execution.

The Eraser algorithm maintains a lockset LS(x) repre-
senting the set of the algorithm’s guess of the locks protect-
ing x. It also maintains for each thread ¢, a lockset LH ()
representing the set of locks held by thread ¢ at a given point
in an execution. L H (t) is updated appropriately when thread
t acquires and releases a lock. The algorithm attempts to in-
fer the actual protecting locks for each data variable x by
initializing LS(x) to the set of all locks in the program and
then updating LS(z) to be the intersection LH (t) N LS(z)
at each access to x by a thread .

2.2 Cost of runtime monitoring on the CPU

The implementation of the ERASER algorithm requires 1) to
monitor the events in an execution that the algorithm needs
to keep track of, which is usually done by instrumenting the
program’s source or binary code, and 2) to perform some
computation to update the algorithm-specific data structures,
i.e., the maps LH and LS, and check some conditions,
i.e., “Does LS(x) become empty?”. In 1), events are either
immediately communicated to the algorithm by running a
callback function to perform 2), or saved to a temporary
buffer to be processed later (e.g., in a linked list of events as
in [2]). There are two main sources of runtime cost, which
combined together contribute highly to the overhead of the
monitoring on the application:

The instrumentation cost, i.e., the cost of monitoring and
communicating events to the algorithm for processing. In
ERASER, every shared memory operation and synchroniza-
tion (locking) operations has to be monitored. As the number
and variety of events monitored by the algorithm increases,
the frequency of interrupting the execution with callbacks to
the algorithm increases and this becomes a bottleneck even
though the actions of the algorithm are simple and cheap.



Our experimental results in Sec. 5 show that only instru-
menting the program (without performing any computation
at instrumentation points) can generate 1.6X to 7.1X over-
head on the uninstrumented program.

The analysis cost, i.e., the cost of processing the events and
updating the algorithm’s state accordingly. Runtime veri-
fication algorithms for concurrent programs usually main-
tain data structures shared among the threads participating
in the algorithm, For example, the ERASER implementation
maintains a lockset for each thread and and for each shared
variable. Other algorithms maintain, e.g., pointers to the last
accessing thread or an additional virtual-clock vector to in-
ternal locks for synchronizing accesses by different threads.
Fetching and manipulating these data structures at high fre-
quencies creates a considerable overhead and may cause big
divergences in the timing behavior of threads.

For ERASER, accessing the map LS (or LS(x), if the
map is distributed) may require to use a common lock to
avoid two threads both accessing x to manipulate LS(z) si-
multaneously. This creates large critical sections (code seg-
ments to be executed atomically) throughout the execution
and is a significant source of runtime overhead. In summary,
while ERASER is one of the simplest, cheapest algorithms
for race detection, its implementations can cause consider-
able runtime and memory overhead and this makes the race
checking hard to apply at the post-deployment.

In order to reduce the runtime overhead of the checking,
we distribute the responsibilities for the algorithm to worker
(checker) threads separate from the application threads.
Checker threads run on separate cores, and do not slow down
the application being monitored. In this paper, we investi-
gate this idea by running the runtime analyses on GPUs. Our
novel approach has the side benefit of simplifying the im-
plementation of runtime verification algorithms, which are
often forced to make use of tricky data structures and opti-
mizations when run on the same threads as the applications.
When run on separate cores, simpler but parallelized imple-
mentations of these algorithms provide the required perfor-
mance.

The programmer has to spend a high amount of effort to
make use of nontrivial and often error-prone mechanisms.
For example, a naive ERASER implementation requires a
large memory space to store locksets when there are a high
number of shared variables. Moreover, it has to manage the
locksets in the case of dynamic and frequent allocation/deal-
location of threads and variables. In order to reduce the run-
time and memory cost of the algorithm, the programmer has
to develop a highly optimized implementation. For exam-
ple, to reduce the number of memory allocations for lock-
sets, locksets of deallocated variables are reused for newly
allocated variables, requiring a memory pool of locksets. As
another example, some algorithms adjust the granularity of
shared variables between collection of variables (objects, ar-
rays) to individual memory cells [10, 12]. These and simi-
lar extra management tasks are usually nontrivial and error-
prone to implement and if not implemented carefully, may
create extra overhead on the core algorithm. This results in

GPU

Frame to check

55

GPU threads

Application threads

Llst of event frames
(See Fig. 2)

Algorithm-specific Result of checking
memory space

Figure 1. Components of our runtime monitoring system.

Worker thread

Full event frame

highly complicated implementations for very simple algo-
rithms such as ERASER. Our separation of instrumentation
and analysis allows one to focus on not tricky optimizations
but a simple implementation of the core algorithm on highly
efficient cores.

3. Our approach I: Overall system

Motivated by the challenges given in the previous section,
our main goal is to design a runtime verification framework
that will have the minimum negative impact on the pro-
gram’s running time and concurrency. Our key design deci-
sion is to carry out the checking algorithm (i.e., data-race de-
tection) on physically separate multi-processors, in our case
the GPU cores. The application threads running on the CPU
are only responsible for recording their events in a shared
data structure and communicating events to the GPU for fur-
ther processing. Fig. 1 illustrates this separation of responsi-
bilities between the CPU and GPU threads. In this section,
we present our techniques for observing an execution trace,
i.e., recording events and communicating them to the GPU.
The following section complements this description by giv-
ing GPU-based algorithms for data-race detection.

3.1 Observing the execution trace

Our technique is based on logging the execution as a linear
sequence of events and running the analysis in a very effi-
cient way. In order to enable efficient handling of the event
log, we only process a fixed-size segment of this log, called
frame, at a time. In our experiments we fixed this size as
1024-events and refer to it by the FRAMESIZE constant. We
treat each event frame a unit of input for the analysis imple-
mented in the GPU. Each frame is checked independently
from other frames and minimal information is kept between
frames, e.g., racy variables to omit accesses to those vari-
ables. When a frame is completely checked, the events in it
is discarded and it is reused to store later events.

While splitting the execution into independent frames
may cause unsound results due to pairs of events from sepa-
rate frames, our framework allows to adjust the precision to
increase the chance of finding bugs. We have chosen to defer
the soundness issue, since the goal of this study was to show
the feasibility of highly parallel, at-speed runtime verifica-
tion. Empirical evidence by other researchers indicates that
this is a minor source of unsoundness: Many concurrency er-
rors involve a small number of threads, and can be detected
by focusing on a short portion of the execution [6].

Fig. 2 shows our main data structure for keeping event
frames: a circular linked list. At any time this list contains



Tailey

H‘i””l o Frames to be filled First frame

Algorithm RecordEvent(e)
(Executed by application threads)
// Find the first frame to insert the event
frame .= Head
index := AtomicGetAndIncrement(frame.size)
while (index > FrameSize) {
if (frame = Tail) { goto line 1 } // restart
frame := frame.next
index := AtomicGet AndIncrement(frame.size)

Frames to be checked

N O Ut W N

}

// Insert event to the frame at index
8 framelindex]:=e
// Shift Head, if the frame becomes full
9 if (index = FrameSize — 1) { Head := Head.next }

Algorithm CheckFrames()

(Executed by worker thread)

1 while (program is running) {

2 wait until Head # Tail

3 frame := Tail
// Check frame at GPU

4 Copy frame to GPU device memory
Asynch-Call GPU kernel for race checking
// Shift Tail to reuse the frame

6 frame.size :=0

7 Tail := frame.next

8 wait until GPU kernel finishes

9 Copy result of the checking from GPU
10 }

Figure 2. The cyclic linked list of event frames and related
algorithms.

a fixed number of frames, where each frame is a memory
buffer to store FRAMESIZE events. As explained below,
the circular linked list allows us to reuse the frames in an
efficient way throughout the execution. Fig. 2 shows pseudo
code to record events (RecordEvent) and to process full
event frames, i.e., communicating them to the GPU for the
analysis (CheckFrames). While the former is performed by
application threads, we dedicate a separate worker thread
(running on the CPU) for the latter.

The event list is managed by non-blocking algorithms
with few atomic instructions; no lock is required to record
an event and process an event frame. At any point in the
execution, we keep two pointers to frames in our event list:
Head and Tail. The part of the list between Head and Tail
(both inclusively) contains the frames (shown in white color
in Fig. 2) that are being filled by application threads. The
rest of the list between Tail and Head contains the frames
that have become full and waiting to be checked (shown in
gray color). At the initial state of the event list Head and Tail
points to the same frame. While frames become full, Head
is shifted, and as the full frames are checked, 7ail is shifted
(as shown in Fig. 2). In order to prevent data races on Head

and T7ail, we read from and write to these variables using
atomic-reference operations.

Recording events (RecordEvent in Fig. 2). Each event
frame has a field called size, which stores the number of
events in the frame. When an application thread wants to
record an event, it traverses the list starting from Head (lines
1-7). At each step it performs an atomic operation that reads
the current size of the frame being visited and increments
its size by one (lines 2 and 6). If size of the last visited
frame before incrementing was less than FRAMESIZE, then
the thread uses that value as index of the frame to record the
event (line 8). Otherwise, the thread tries following frames
in the list in a loop (lines 3-7). If a thread reaches Tail while
traversing the list, it restarts as this indicates that the current
frame is full and subject to checking by the worker thread.
In our experiments we observed that, because the checking
of the frames runs at speed very close to the program, such
restarts were quite rare, i.e., there is always at least one
empty slot to insert an event between Head and Tail.

After adding the event to the right frame, if the current

application thread finds out that the current frame is Head
and has just become full, it shifts the Head pointer to the
next non-empty frame in the list (lines 9).
Processing full event frames (CheckFrames in Fig. 2).
Our worker thread takes a full frame a time and sends it to
the GPU for the checking (in Fig. 2 this is the rightmost
frame in gray). For this, the worker thread continuously
executes the loop until the program finishes (We omit the
code that processes the non-empty frames after the program
terminates). At each iteration of the loop, the thread first
waits until Head and Tail do not point to the same frame,
i.e., the list contains full frames (line 2). When the condition
holds, the thread locates the frame pointed by 7ail (line 3)
and checks it at the GPU. See Sec. 4.1 for explanation of
procedure (lines 4-5 and 8-9) for running the analysis on the
GPU. As the analysis on the GPU runs asynchronously with
the CPU, the worker thread spends the time to wait until the
GPU computation terminates to mark the currently checked
frame empty (line 6) and to shift 7ail forward and make
the frame available to be reused to record new events (line
7). Upon completion of the kernel call (line 8), the worker
thread copies the result of the checking, i.e., racy accesses,
from the GPU’s memory back to the CPU’s memory (line 9),
in an algorithm-specific memory space. While our system
reports all the errors at the end of the execution, it can be
modified to report the errors as soon as it gets the response
from the GPU.

4. Our approach II: Checking frames on the
GPU

Having explained the CPU part of our runtime monitor-
ing system, we present parallel algorithms for the data-race
checking on the GPU cores. We first brief on GPU comput-
ing using the CUDA model and bring in some challenges
in that model, which affected our system design. Then, we
present our adaptation of ERASER and GOLDILOCKS algo-
rithms to run on parallel GPU threads.



4.1 Background on GPU computing using CUDA

The CUDA model allows programmers to write code in
an extension of the C language that will be run on GPU
in a highly parallel manner. The mapping of the code to
physical processing units on the GPU is transparent to the
programmer, and this enables one to write parallel code
that can scale for devices with different parallel processing
capabilities.

Each code portion to be run on GPU is written as a C
function called kernel and can be called from C/C++ code
executing on the CPU. Thus, in our framework, each anal-
ysis algorithm is written as a C function. The CPU and
GPU threads operate on memory modules physically iso-
lated from each other. As a result, we have to maintain a
separate memory space on the GPU’s own device memory.
For this, at the beginning of the execution, we pre-allocate
a memory region, as large to fit a full event frame, on the
GPU’s own device memory at the beginning of the execu-
tion. Additional space is also allocated to hold the interme-
diate results and outputs of the kernel’s computation. The
pointers to these memory regions are given as arguments
when to the kernel call. Our worker thread (running on the
CPU) must follow the following steps to run an analysis on
a full event frame:

1. The worker thread first copies the contents of the event
frame to the pre-allocated region on the GPU device
memory.

2. It calls the kernel function of an available checker algo-
rithm. That kernel function is executed by the GPU cores
in parallel and asynchronously with the CPU. When call-
ing the kernel function, it passes as arguments the pointer
to device memory region storing the current frame as well
as additional values, such as the number of events in the
frame. Each kernel is executed in a SIMD (single instruc-
tion, multiple data) style on multiple cores and threads.

3. The worker thread uses CUDA routines to synchronize
with the kernel execution for further processing. Upon
completion of the kernel call, the worker thread copies
the result of the checking, i.e., pairs of racy accesses in
the case of data-race detection, from the GPU’s device
memory back to the CPU’s memory to be reported later.
Given the challenges in writing kernels, we wrote paral-

lel kernels for the ERASER and GOLDILOCKS algorithms.
The challenge in writing the kernels is to trade the chal-
lenges given above with the large number of cores avail-
able on the GPU. In our algorithms, each thread checks a
unique variable access in the given event frame, creating
the data structures, i.e. locksets, necessary for the check lo-
cally (in its stack) and discarding them after the check com-
pletes. The implementations of the kernels is also available
at http://kuda.codeplex.com.

Due to the limited GPU memory space and the require-
ment to pre-allocate the memory used by the kernel, us-
ing bounded sized representations for data structures in the
kernel is essential. For this, we represent locksets in both
the ERASER and GOLDILOCKS kernels with bloom filters,
which can represent a collection of addresses (of locks, vari-

ables, etc.) in constant-size bitsets. As the data required for a
single check is of finite size and used locally and temporar-
ily, dynamically created objects or threads do not create extra
memory space or management.

5. Experimental evaluation

We aim to evaluate two claims we referred to in Sec. 1:
First, our separation of monitoring and analysis to CPU and
GPU significantly reduces the overhead of the traditional ap-
proach in which both are performed on the same threads/-
cores. Second, our analysis code runs at a similar speed as
the program and finishes soon after the program terminates.
For this, we implemented our proposed system in a proto-
type tool called KUDA and applied KUDA on a collection of
multithreaded benchmarks. KUDA consists of two parts:

1. A dynamic library containing the core functionality in-
cluding the routines for recording events, managing event
frames, and running the race detection kernels on the
GPU. We use the CUDA 4.0 library [7] to write and call
kernels for analyzing frames and to manage the GPU re-
sources (e.g., transferring data to/from the GPU device
memory). While our experiments are performed using the
global memory, our system can use constant and texture
memory. The fact that event frames are only read by the
kernel enables us to make use of the constant and texture
memory, which are cached for fast read-only access.

2. A Pin [5] tool to dynamically instrument x86 bina-
ries in order to callback the routines in our dynamic
library on certain events (shared memory read/write,
thread creation/join, and inter-thread synchronization).
Our Pin tool supports multithreaded programs written us-
ing the pthreads library (for thread creation and join, and
synchronization primitives including mutex and reader-
s/writer locks).

5.1 Experiments

Benchmarks. We applied our tool KUDA on a collection of
multithreaded programs from PARSEC [1] and SPLASH-
2 [11] benchmark suites. Due to space restrictions our ex-
periment results table is not presented in this paper. But note
that, in a typical execution, our benchmarks generate a few
hundreds of millions of events and hundreds of thousands of
frames, each of which is checked on the GPU.

Hardware. We performed our experiments on a HP xw9300
Workstation running Ubuntu Linux 10.10 32-bit kernel.
Our machine has two (single-core) AMD Opteron proces-
sors with 2600 MHz clock frequency, 128 KB L1 cache,
1 MB L2 cache, and 8 GB memory (400 MHz). We used
a GeForce GTX 465 GPU card with Fermi chipset. Our
card provides 352 cores (11 processors with 32 cores
each) with 1.21GHz clock rate, 1.23 GB of memory space
with 1.4 GB/sec host-to-device memory bandwidth and
71.3 GB/sec in-device memory bandwidth.

Configuration parameters. For the experiments, we chose
the following parameters that gave the best results in terms of
runtime and memory overhead. We selected the event frame



size (FRAMESIZE) to be 1024 events. We initialize the cyclic
list in Fig. 2 with 2048 frames. Thus, our system requires
only 2048 frames * 1024 events (each frame) * 8 bytes (each
event) = 16 MBytes of memory space to store the events for
the CPU. We run 128 GPU threads over each event frame.
In order to get the maximum benefit from the GPU device’s
concurrent computing functionality, we collect and send to
the GPU 128 consecutive event frames at a time. In this way
we aim to utilize the high parallelism on the GPU to analyze
multiple frames simultaneously.

5.2 Results

The results indicate that the instrumentation even without
executing any extra code incurs overhead that ranges be-
tween 1.6X and 7.1X.

In order to compare the runtime cost of our approach
and the traditional approach in which the race detection runs
on the same cores as the application, we implemented the
ERASER, and two vector clock-based algorithms DJIT* [8]
and FASTTRACK [3] (available in our code base). For these
algorithms, we used the same Pin instrumentation, but ap-
plied the algorithm’s rules on the application threads imme-
diately when a relevant event occurs. Our implementations
are not perfectly optimized as in the original implementa-
tions, but still provide a rough estimate for the overhead of
checking on the CPU.

We observed that the overhead of the DJITT and FAST-
TRACK implementations on the CPU are much higher
than ERASER. Thus, the ERASER algorithm provides lower
bounds for the runtime and slowdowns for these algorithms.
Note that, the slowdown when running such a simple algo-
rithm starts from 31.4X. Overall, running ERASER on the
same cores as the application incurs a very high overhead
and a few hundreds of times slowdown.

While our system contains GPU kernels for both the
ERASER and GOLDILOCKS algorithms, we observed that
the overhead when using ERASER gives only slightly lower
overhead. GOLDILOCKS is a precise race-detection algo-
rithm, and is the most expensive and complex one of the
algorithms we investigated.

In fact, we observed that the analysis terminates shortly
after the program terminates. The difference ranges between
1-3 milliseconds (on average 2.5 milliseconds). In addition,
we observed that our system does not need to allocate new
event frames; it simply reuses the initially allocated 2048
frames. This result, together with the small difference be-
tween the execution times of the program and analysis, in-
dicates that the analysis runs at speed very close to the pro-
gram, following the program behind only in milliseconds.

Our results clearly indicate that performing the checking
on separate cores in a highly parallelized way dramatically
reduces the overhead of the runtime verification. The ratio
of the slowdown of the race checking on the CPU to that of
the race checking on the GPU is between 3.3 (bodytrack)
and 14.7 (fmm). Only for streamcluster the CPU-based
implementation beats our system and gives less slowdown.
Moreover, for raytrace benchmarks in both PARSEC and

SPLASH-2, the execution took more than our specified up-
per time limit, 30 minutes; thus when we also consider these
benchmarks, the ratio of the slowdown of the CPU-based
race checking to that of the GPU-based checking reaches at
least 17 and 20 times, respectively.

The ratio of the overall slowdown to that of only man-
aging the events goes only up to 1.4 (e.g., blackscholes).
While the overhead of recording events is still high (e.g., for
post-deployment purposes), this small difference between
enabling and disabling on-GPU checking gives a promis-
ing evidence that the parallel processing events on the GPU
gives negligible overhead.

References

[1] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The parsec benchmark suite: Characterization and ar-
chitectural implications. Technical Report TR-811-08, Prince-
ton University, January 2008.

[2] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks:
a race and transaction-aware java runtime. In PLDI, pages
245-255, 2007.

[3] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient
and precise dynamic race detection. In PLDI, pages 121-133,
2009.

[4] Poletti Francesco, Poggiali Antonio, and Paul Marchal. Flex-
ible hardware/software support for message passing on a dis-
tributed shared memory architecture. In DATE, pages 736—
741, Washington, DC, USA, 2005.

[5] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In PLDI,
pages 190-200, 2005.

[6] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard
Basler, Piramanayagam Arumuga Nainar, and [ulian Neamtiu.
Finding and reproducing heisenbugs in concurrent programs.
In OSDI, pages 267-280, 2008.

[7]1 NVIDIA Corporation. NVIDIA CUDA Programming Guide
v4.0. NVIDIA Corporation, 2011.

[8] Eli Pozniansky and Assaf Schuster. Multirace: Efficient on-
the-fly data race detection in multithreaded c++ programs.
Concurr. Comput. : Pract. Exper., 19(3):327-340, 2007.

[9] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. Eraser: a dynamic data race de-
tector for multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391-411, 1997.

[10] Christoph von Praun and Thomas R. Gross. Object race
detection. In OOPSLA, pages 70-82, New York, NY, USA,
2001.

[11] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The splash-2 pro-
grams: characterization and methodological considerations.
In ISCA, pages 24-36, 1995.

[12] Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient
detection of data race conditions via adaptive tracking. In
SOSP, pages 221-234, 2005.



