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Abstract—Managed DNS (MDNS) services today excel at
providing a simple and cost-effective way to outsource domain
management and ensure rapid lookup times for geo-distributed
users. The intense focus on optimizing lookup performance
coupled with DNS’ inherent expectations of weak consistency has
had unfortunate side effects: updates are inexplicably slow and
MDNS providers pay scant attention to consistency correctness.
We conduct an empirical measurement-driven study of 8 top-
tier managed DNS providers and find that inter-nameserver
update propagation delays commonly take tens of seconds with
little improvement over the last several years. Client-perceived
inconsistency is rampant with roughly a third of end-users being
vulnerable to TTL abuse by local DNS resolvers. Furthermore,
we find that 6 of the 8 MDNS providers violate monotonic read
consistency under frequent updates and at least one large MDNS
provider appears to violate even eventual consistency.

I. INTRODUCTION

The Internet’s Domain Name System (DNS) is widely
presented as a textbook example of a distributed system
with eventual consistency, a system that effectively trades off
consistency to improve performance and reduce cost. DNS
achieves this design goal through its liberal use of TTL-based
caching, a design that also implicitly embeds the synergistic
assumption of infrequent updates. Weakly consistent caching
alongside hierarchical federation is key to DNS’ scalability.

The expectation of weak consistency coupled with that of
infrequent updates in DNS has had some unintended conse-
quences. For one, managed DNS (MDNS) service providers
have invested enormously in optimizing lookup performance,
e.g., through highly geo-distributed anycast clouds, down to
milliseconds but update performance has been relegated to
second-class status, an artifact we confirmed through our
measurement as well as by interviewing technical personnel
from a number of top MDNS companies (refer §II). Further-
more, observed update delays don’t always match advertised
values, e.g., a leading MDNS provider claims to propagate an
update within 5 seconds [1], but it takes nearly 30 seconds
in practice (refer §III). There is reduced attention if at all
paid to ensuring consistency correctness across replicated
authoritative nameservers of MDNS providers.

Our position is that stronger consistency in DNS is impor-
tant for existing and emerging application scenarios for several
reasons. First, inconsistency implies service unavailability
when service replicas are migrated or taken down as DNS
update propagation can take hours or even several days [2], [3],
[4], [5]. Second, inconsistency implies reduced agility of load

balancing, especially but not only in the context of CDNs, as
it causes reduced control over traffic redirection and reduced
responsiveness of elastic provisioning to load spikes. Third,
in today’s mobile world, enabling any-to-any communication
with seamless endpoint mobility (as opposed to communica-
tion only initiated by mobiles) requires a consistent global
name service in order to ensure mobile reachability. We are
hardly the first to make these and other arguments for stronger
consistency amidst frequent updates in DNS [6], [7], [8], [9],
[10], [11].

In this paper, we seek to empirically determine answers to
the following high-level questions: (1) How does DNS update
performance in MDNS providers compare to that of lookups?
and (2) How strong or weak are the consistency semantics
achieved by MDNS providers and, in particular, if they at least
satisfy even eventual consistency? To this end, we conduct
a large-scale distributed measurement study involving 8 top
MDNS providers using 40 PlanetLab nodes and over 1,000
RIPE vantage points to measure update propagation delays and
as-is or existential consistency [12] amidst frequent updates.

Our main findings are summarized as follows:
1) Inter-nameserver update propagation delays across au-

thoritative nameservers of MDNS providers are inordi-
nately high compared to network propagation delays, e.g.,
Google Cloud DNS and Route53 incur update propaga-
tion delays of over or close to 30 seconds on average and
occasionally over a minute (§III-A).

2) End-to-end user-perceived update propagation delays are
far worse because many local DNS resolvers do not
respect TTL values, presumably to reduce DNS load
on their networks, and roughly a third of end-users are
impacted by such abusive resolvers (§III-B).

3) Update propagation can result in anomalous observations
causing older values to be observed after a more recent
value by an end user; in particular, 6 of the 8 MDNS
providers violate monotonic reads consistency under fre-
quent updates (§IV-B1).

4) At least one major MDNS provider, GoDaddy, likely
violates even eventual consistency, a claim that cannot
be verified with certainty without access to proprietary
internal details (§IV-B2).

II. MANAGED DNS BACKGROUND

Outsourcing to an MDNS provider is the predominant way
for people or businesses to manage their domain names.



MDNS providers ease the task of managing domain names by
offering their customers the promise of high performance and
availability in a cost-effective manner by leveraging economies
of scale. To ensure high performance and availability, MDNS
providers typically maintain a geo-distributed anycast cloud of
authoritative nameservers that store replicated name records on
behalf of their customers. As with any software-as-a-service
segment, MDNS vendors offer a variety of pricing plans
that may limit the number of queries (e.g., to 500K/month
in one plan offered by NS1); allow unlimited queries (e.g.,
CloudFlare or GoDaddy); adopt a pay-as-you-go model (e.g.,
Route53 or Google Cloud DNS); or offer package plans with
different levels of geo-replication, SLAs, and query limits (like
those offered by Verisign, Dyn, DNSMadeEasy and others).
The cost to the customer could be rolled in for “free” with
other hosting packages as is common for individuals or small
businesses and range anywhere from a few dollars to hundreds
of dollars or more per month for large customers.

A. MDNS state-of-the-art architecture

MDNS services are organized as a distributed system as
shown in Fig. 1 and described next.

Fig. 1. Architecture of MDNS services

Web portal and API: MDNS customers use a web or
API portal to manage their domains, e.g., create or update
resource records for their domains. In our measurements, we
use their APIs to issue updates as it allows us to interact
with MDNS services programmatically. An alternative is to
use the standards-based Dynamic DNS protocol [13] but that
is not supported by all MDNS providers (e.g., GoDaddy).
Some MDNS API servers are geo-distributed while others are
not. We infer the location of these MDNS API servers by
pinging their endpoint domain names (shown in Table I) using
a global ping test service [14]; Table I shows these inferred
locations. Although some MDNS providers, e.g., Verisign,
disable echoing ICMP packets on their portal servers, but we
can still infer the API portal location through GeoIP [15].

Replicated storage: Upon receiving an update request, the
portal server forwards the update to an underlying persistent
data store that is replicated across some or all of the MDNS’
authoritative nameservers. The replicated server store is re-
sponsible for maintaining consistency, and must at least ensure
eventual consistency as expected of DNS [16].

Name servers: Nameservers answer DNS queries from
clients. Each domain must have at least two nameservers
for fault-tolerance purpose [16] that maintain authoritative or
primary copies of a name record. If an MDNS nameserver
caches answers, the underlying replicated store must invalidate
the cached answers upon updates. Some providers (like NS1)
adopt a best practice of never caching answers on authoritative
name servers, which also mitigates multi-level caching that is
discouraged by DNS [6].

Anycast network: All of the MDNS providers we inter-
viewed use an anycast network. They announce an anycast IP
prefix from their different regional datacenters causing end-
user traffic to be directed to the nearest (in network distance)
datacenter, which helps improve user-perceived response times
as well as mitigate DDoS attacks via route diversion [17]. As
shown in Table I, Cloudflare has the most number (119) of IP
anycast locations. Most MDNS providers have more than 10
IP anycast locations, and it is common to gradually add new
IP anycast sites to their infrastructure in order to improve their
overall lookup performance.

B. MDNS update delays and consistency

Given our high-level goal of a measurement-driven study of
update performance and consistency in state-of-the-art MDNS
services, we picked the 8 top MDNS providers (as ranked by
Datanyze [18] in May 2018) as listed in Table I. Datanyze
reports the cumulative market share of these companies at
80.1% and they host 4263 out of Alexa top-10K domains [18].
We started this study by interviewing their sales or technical
team representatives as appropriate and asked them the same
scripted set of questions seeking to understand their system
architecture, identify their most important market differen-
tiating features, advertised lookup and update performance,
and consistency amidst frequent updates. The responses across
the board indicated that they prioritized lookup performance,
availability, and security (e.g., resilience against DDoS attacks
but not necessarily DNSSEC that is not universally supported).

On the other hand, update performance or consistency
were either secondary or non-goals. Some providers appeared
unclear on their own update performance (quite unlike lookup
performance that is advertised as a competitive advantage),
e.g., CloudFlare claims that they can propagate an update
within 5 seconds [1], but our measurements indicate much
higher typical values for them as well as other providers. It
was also clear from the responses that the providers had given
little attention to consistency semantics, and it wasn’t obvious
whether they even guaranteed eventual consistency.

Our position is that existing and emerging application
scenarios can significantly benefit from improved update per-
formance and stronger consistency semantics. Dynamically
scaled cloud applications [19] as well as the agile edge com-
puting services [20], [21], [22] rely on frequent DNS updates.
For example, a cloud application can reduce its cost by using
low-cost resources (such as AWS spot instances [23] or Google
preemptible VMs [24]), however such resources are also
typically short-lived and must be dynamically provisioned,



MDNS Number of Minimal Portal API portal Number of authoritative
anycast locations TTL endpoint locations nameservers

Cloudflare 119 120 api.cloudflare.com Global 2
AWS Route53 38 0 route53.amazonaws.com US East 4

Dyn 20 1 api2.dynect.net US West 4
Google Cloud DNS 15 0 www.googleapis.com Global 4

GoDaddy 9 600 api.godaddy.com Global 2
DNSMadeEasy 16 5 api.dnsmadeeasy.com US East 6

NS1 25 0 api.nsone.net Global 4
Verisign 17 0 mdns.verisign.com US East 3

TABLE I
TOP MDNS PROVIDERS STUDIED IN THIS WORK

which necessitates frequent DNS updates. As another exam-
ple, consider an edge computing platform [20] that requires
frequent DNS updates to reposition edge services close to their
mobile end-users or terminate some services due to resource
constraints at edge servers. High user mobility is commonplace
today (e.g., 20% of users change IP addresses over 10 times
a day [9]), and slow update propagation or inconsistency can
respectively render mobile endpoints temporarily or even per-
manently unreachable. These concerns motivate us to conduct
a measurement-driven study of update performance and server-
and client-centric consistency in today’s MDNS providers.

III. MDNS UPDATE PROPAGATION DELAY

Expectation. Given the high-level architecture in Fig. 1,
we expect the update delay to be no more than a few seconds.
This estimate is derived by dividing the overall delay into the
delay: 1) from an API client to the portal, 2) from the portal to
replicated storage, 3) to propagate the update among replicated
storage, 4) to refresh answers at name servers. The third one
dominates the overall delay as the rest are all expected to
happen within a single region. Any reasonable replica coordi-
nation protocol, including consensus-based protocols ensuring
stronger consistency semantics [25], [26], should take no more
than two expected wide-area round-trip times (but may be
somewhat inflated by variance across a large number of geo-
distributed replicas). Update propagation delays significantly
exceeding this expectation likely imply unnecessary overheads
imposed by the MDNS provider.

Measurement setup. To conduct this study, we purchased
DNS service from all these providers for separate domain
names. We use 40 PlanetLab nodes (across Europe, America,
and Asia-Pacific) for active probing so that we have full con-
trol on when to start and to stop a measurement. An alternative
would have been to use other platforms with more vantage
nodes like DNSPerf [27], RIPE Atlas [28], and Catchpoint [29]
to monitor DNS lookup performance, these platforms do not
allow active probing, i.e., immediately start and stop probing
contingent on specified conditions. Moreover, 40 PlanetLab
nodes are enough to cover most of the IP anycast locations of
these major MDNS providers (except Cloudflare).

Before delving into updates, we first measure the distribu-
tion of lookup latency of the 8 MDNS providers as shown in
Fig. 2. For each service provider, we measure 500 lookup
latencies from across 40 PlanetLab nodes (over 20K data
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Fig. 2. Lookup latency distribution

points for each service provider). We ensure that lookups are
served from the name servers maintained by its provider by
directly querying the name servers via their external IP anycast
addresses. We apply a 1-second trim filter to remove outliers,
which removed 0.2% of the points. Fig. 2 shows that median
lookup latency of all the providers is within 50ms. This result
is consistent with the result of state-of-the-art DNS lookup
performance measurement platforms such as DNSPerf [27]
and Catchpoint [29], and shows that the measurements in this
paper are representative of those with other probe platforms.
It also shows that our probe nodes can resolve the domain
with these MDNS providers very efficiently, introducing a
negligible performance overhead to all of our measurements.

A. Update propagation delay across MDNS authoritative
nameservers

To measure the update propagation latency among au-
thoritative name servers, we use the 40 PlanetLab nodes to
send lookup queries for a name to its provider’s nameservers
directly. Each PlanetLab node sends back-to-back queries to all
authoritative name servers and stops when all of them return
the updated address. Immediately after starting the lookup
process on all PlanetLab nodes, we issue an address update
request to the DNS provider through its API. All update
requests in the measurements of this work are sent from a
host on the US east coast, and all update requests return



within a second for all these MDNS providers. We measure the
propagation latency of 100 updates for each MDNS provider.

Fig. 3 shows the update propagation delay of all these
MDNS providers. Three MDNS services, i.e., Dyn, NS1,
and DNSMadeEasy, can quickly propagate an issued update
within 5 seconds. The other MDNS providers take an order of
magnitude longer than network round-trip time, e.g., Google
Cloud DNS takes close to 50 seconds on average to propagate
an update. Curiously, the median of update latency of Route53
increased to 26.7s from 7.9s as measured by CloudHarmony
in 2012 [30]. One explanation is that both measurements just
lower-bound the update latency, and it is possible that the
2012 experiment happened to not observe higher values. We
also found that our measured update propagation latency for
Cloudflare is inconsistent with their claim of 5 seconds [1].

By inspecting the time of the first PlanetLab node that
gets the most recent update, the MDNS providers with large
update delay appear to wait unnecessarily for a period of time
before propagating the update, e.g., 28.5s for Route53, 36.1s
for Google Cloud DNS, 16.5s for Cloudflare (on average). A
plausible explanation for the delays could be message queuing
overhead incurred in their systems or even a deliberate hold to
leverage batching, but that seems unlikely given the infrequent
nature of updates. Caching records for a fixed duration could
be another explanation. Unlike these MDNS systems, the three
with a small update delay all start propagating immediately
(within a second) upon receiving the update.

To ascertain if there are specific laggard regions inflating
the update propagation delay, a question of interest also to
several MDNS network operators with whom we shared our
measurement results, we inspect the region that first and last
completes the update; the overall update propagation delay
is in part determined by the intervening interval. We classify
all the PlanetLab nodes we use into five continental regions,
i.e., North America(NA), South America(SA), Oceania(OC),
Europe(EU), and Asia(AS). Table II shows the number of
rounds that a region first and last completes an issued update.
Nodes in Asia are mostly the last to see the update. Almost all
MDNS services start update propagation from America, which
is expected as the update is issued from a US east coast host.

Can changing the location of the host issuing the update
qualitatively change our observations? We believe that is
unlikely. For MDNS providers like Route 53, Dyn, DNS-
MadeEasy, and Verisign, whose portals are not geo-distributed
and are in N. America, changing the location of the east-
coast host issuing the update is likely to modestly increase the
overall update propagation delay because of the likely increase
in delay from the client to the portal (step 1 in Fig. 1). For
MDNS providers like Google, Cloudflare, NS1, and GoDaddy
whose portals are geo-distributed, neither step 1 nor step 2
is likely to change significantly, implicitly assuming here that
inter-nameserver propagation delays are not sensitive to which
nameserver first receives the update. Thus, the choice of the
host issuing the update is unlikely to explain away the tens of
seconds of observed update propagation delays.
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Fig. 3. Update propagation latency among authoritative name servers: the
vertical lines of the whiskers and box from top to bottom mean 100th, 75th,
50th, 25th, 0th percentiles, respectively. Symbol ’+’ means outliers.

B. User-perceived update propagation delay

Some ISP local DNS resolvers and open DNS resolvers are
anecdotally known to not respect DNS TTLs, caching a record
for much longer [31], presumably to shed load or perhaps to
mitigate DoS attacks [32], thereby causing end-users to see
stale answers for unexpectedly long. We next measure the
fraction of end-users affected by such illegitimate caching.

Experiment setup. We use 1,000 RIPE Atlas probe
nodes [28] (aka “probes”) to resolve a domain name we own.
RIPE Atlas is an open measurement platform operated by
RIPE NCC consisting of over 10K probe nodes [28]. The
platform only permits launching 1,000 probes at a time. We
got probing results from 937 out of the selected 1,000. These
937 probes belong to 925 ASNs and 937 network prefixes
respectively. We force all these probes to perform a resolution
by using their local DNS resolvers, i.e., a DNS query will
always hit a local DNS resolver first and then go to an
authoritative name server if the record is not cached. We set
the probing interval to 1 minute and set the TTL of our record
to 30 seconds. In this way, a cached answer on a local DNS
resolver must have expired before the next query. We use
NS1 to serve the target domain because it propagates updates
relatievly quickly and has good lookup performance [27].
More importantly, we were able to confirm with NS1 that
their authoritative name servers never cache query results,
which helps narrow down the illegitimate caching problem to
local DNS resolvers. We issue update requests every 1 minute,
which gives enough time for the record to get propagated.

Fig. 4 exemplifies the probing process. The update process
issues updates every 60s. Suppose the update sequence is
a1, a2, a3. Probe 1 truthfully resolves the name and evicts
the cache after 30s, the TTL value. So the probing sequence
observed by probe 1 is also a1, a2, a3. However, probe 2 ille-
gitimately caches an answer for 180s, so its probing sequence
is a1, a1, a1. Note that the update process and probes are not
exactly synchronized and the probe’s clock may also drift. But
RIPE Atlas’ Message Queue Cluster mitigates the clock drift



MDNS
# of rounds that the region # of rounds the region

first complete an update last complete an update
NA SA EU OC AS NA SA EU OC AS

Cloudflare 58 8 5 13 16 4 0 0 7 89
AWS Route53 33 22 10 15 20 29 14 12 2 43

Dyn 97 2 1 0 0 20 0 0 7 73
Google Cloud DNS 44 40 4 3 9 5 3 19 2 71

GoDaddy 100 0 0 0 0 43 0 0 1 56
DNSMadeEasy 99 1 0 0 0 8 0 0 28 64

NS1 43 51 1 3 2 86 0 1 1 12
Verisign 99 0 0 0 1 10 3 1 1 85

TABLE II
NUMBER OF ROUNDS THAT A REGION FIRST AND LAST COMPLETES AN UPDATE.

Fig. 4. Probing process with RIPE Atlas

problem among probes [33] and the parameters we choose
ensure that probes detected as illegitimately caching an answer
for over a minute are unlikely to be false positives.

We define caching period as the average number of
intervals for each repeated answer. For example, if the probing
sequence is {a1, a2, a2, a3, a3, a3, a4, a4}, wherein each ai is
an IP address, then its caching period is (1+2+3+2)/4 =2.
Therefore, 1 means a local DNS resolver never abuses TTL,
and a larger value implies a longer illegitimate caching period.

Fig. 5 shows the CDF across 937 probes for the caching
period. The caching period of about two-third probes is 1,
which means these probes always returns an up-to-date value.
Over 5% probes have a caching period greater than 2, implying
that 5% DNS resolvers may cache an expired result for over
2 minutes on average. The longest caching period observed in
the experiment is close to 30 minutes, i.e., some DNS resolvers
cache an answer illegitimately for nearly half an hour.
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Fig. 5. CDF of caching period

IV. MDNS CONSISTENCY ANOMALIES

We next empirically measure the consistency semantics (or
lack thereof) satisfied by our MDNS providers.

Expectation. DNS strictly speaking is expected to satisfy
only eventual consistency, i.e., if no updates take place for a
long time, all replicas will eventually reach the same state. As
such, this server-centric consistency property does not neces-
sarily constrain client-perceived consistency. For example, an
end-client may reasonably expect to not see an older value
after it has observed a more recently updated value, but DNS
may violate this property, especially when multiple updates are
issued concurrently or in close succession. We refer to as an
update anomaly a user-observed event representing a violation
of expected consistency semantics [12].

A. Consistency models

Eventual consistency as defined is not a refutable property
in closed systems, i.e., verifying whether or not a system
is eventually consistent via external observations alone is
not possible. Any blackbox system can trivially claim to
be eventually consistent despite the passage of an arbitrarily
long but finite duration of no updates and inconsistent replica
state. Nevertheless, a dispassionate observer would after a
reasonable duration, say a day, conclude that such a system
is not eventually consistent. So we introduce δ-consistency, a
property refutable via external observations.
δ-consistency: A server system is δ-consistent if all replicas

converge to the same state after a duration δ during which no
updates or failures occur. (Note that this definition may be
slightly different from others in the literature that restrict the
identical state to be the one reached after the most recent
update for a suitable definition of most recent.) With our
definition, δ-consistency is equivalent to eventual consistency
as δ approaches infinity.

There is little reason for a commercial system to relax δ to
very large values and every reason to ensure that it is small.
We consider two δ values to be of particular interest: (1) δ = 1
minute, given that update propagation was rarely observed to
take over a minute in our measurements; and (2) δ = 24 hours.
Our implicit wager is that if a replica remains inconsistent with
other replicas of a record for as long as 24 hours despite no
new updates during that period, it will never reach the correct
state, a correctness violation.



Monotonic reads is a client-centric consistency property
meaning that if a client reads the value of a record, any
successive read operation on the same record by that same
client will always return that same value or a more recently
written value [34]. A violation to monotonic reads happens
mainly due to reconciliation when an MDNS system needs to
resolve a write-write conflict as during the reconciliation, the
value of a DNS record may change back and forth potentially
violating monotonic read consistency.

MDNS services using reconciliation to enforce data consis-
tency tend to have a higher update delay when multiple updates
are issued in parallel. It is also notoriously hard for those rely-
ing on DNS to debug their applications if monotonic reads is
violated. As an example, consider a sequence {a1, a2, a1, a2}
observed by a client after querying the domain for a few times,
where each ai is the effect of an update to the domain. There
is no way for a client to definitively conclude which update is
the most recent stable value, potentially rendering the domain
unreachable. Update anomalies violating monotonic reads do
happen with a non-negligible fraction in our measurement with
some MDNS providers.
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Fig. 6. Monotonic reads consistency with different MDNS providers

B. Measuring update anomalies

In this measurement, we measure both types of update
anomalies, i.e., violation of monotonic reads and violation of
δ-consistency, with the same set of PlanetLab nodes as §III.
We first collect traces with PlanetLab nodes as follows in order
to check for update anomalies.

Trace collection: In each round of the experiment, we issue
exactly two updates near-simultaneously at the beginning.
Then we start probing the record from all the PlanetLab nodes
periodically. Each PlanetLab node sends DNS queries to all
nameservers in parallel every second and stops probing after a
minute. The number of nameservers in the NS record for each
MDNS service is shown in Table I. We repeat the experiment
for 100 rounds and collect the trace from all PlanetLab nodes.
A trace is uniquely identified by a tuple of the round number,
PlanetLab node hostname, and the target nameserver IP ad-
dress, e.g., (5, pl_node, 205.251.195.212) denotes
a trace in the 5th round collected on pl node to a name
server whose IP is 205.251.195.212. Consequently, the

total number of traces collected varies from 8,000 to 24,000
for different MDNS providers. All the results shown in this
subsection are conducted with the traces collected in April
2018.

1) Violation of monotonic read: To measure violation
of monotonic reads, we check each trace independently.
Since we only issue updates at the beginning of each
round, the only violation of monotonic reads that can
happen is that an older value reappears in a trace, e.g.,
{(0, 2.2.2.2), (3, 1.1.1.1), (9, 2.2.2.2), . . . } is a portion of a
trace that violates monotonic reads where the first value in
each tuple is the timestamp and the second is the IP address
returned by a name server.

Fig. 6 shows the fraction of traces that violate monotonic
read. The fraction is calculated as the number of traces that
violate monotonic reads over the total number of traces. This
fraction is 0 only for DNSMadeEasy and Dyn, i.e., we were
unable to observe any violations of monotonic reads by them
in our measurement. NS1 and Verisign both have about 1%
traces that violate monotonic reads and the others have much
higher fractions of violations. These MDNS providers may
adopt a lazy reconciliation mechanism to resolve write-write
conflicts, thereby violating monotonic reads.
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2) Violation of δ-consistency: We check δ-consistency with
all the traces collected in each round as follows. First, the
answer returned by a name server at time δ must be the same
as the answer at the end of each trace, i.e., there is no ongoing
update and the state has already converged to the final state.
Second, the answers at time δ across all the replica traces must
be the same. We also enforce that the final state only has a
single IP address because that is how we update it.

Fig. 7 shows the fraction of rounds that violates δ-
consistency when δ equals to different values. The fraction is
calculated as the number of rounds that violate δ-consistency
(given a certain δ) over the total number (100) of rounds.
The fraction decreases gradually along with δ for all MDNS
providers as expected. However, it also shows that there are
still four MDNS providers including GoDaddy, Google Cloud
DNS, Cloudflare, and NS1, whose fraction is still larger than 0



A
W

S

G
oo

gl
e

G
oD

ad
dy

C
lo

ud
Fla

re
D

yn
N

S1

D
N

SM
ad

eE
as

y

V
er

is
ig

n

F
ra

ct
io

n
 o

f 
δ
-c

o
n

si
st

en
t 

tr
ac

es
 (
δ
=

3
0

s)

0

0.5

1

2 updates

3 updates

4 updates

5 updates

(a) δ-consistency with δ = 30s

A
W

S

G
oo

gl
e

G
oD

ad
dy

C
lo

ud
Fla

re
D

yn
N

S1

D
N

SM
ad

eE
as

y

V
er

is
ig

n

F
ra

ct
io

n
 o

f 
δ
-c

o
n

si
st

en
t 

tr
ac

es
 (
δ
=

6
0

s)

0

0.5

1

2 updates

3 updates

4 updates

5 updates

(b) δ-consistency with δ = 60s

Fig. 8. Sensitivity analysis with different numbers of concurrent updates for
δ-consistency measurement

when δ = 60s, i.e., after a minute, they still haven’t converged
to a consistent state for many rounds of the experiment.
That is, concurrently issued updates can markedly degrade the
update propagation delay. For example, the 99th percentile
update delay with NS1 is within 10 seconds as shown in
Fig. 3. However after 30 seconds, there are still 9 rounds under
reconciliation and 4 after 60 seconds. Interestingly, not every
MDNS’ update performance deteriorates with concurrent up-
dates, for example, the performance of Google and Route53
is comparable to that with single updates in Fig. 3.

We also check the state of the updated record 24 hours
after the end of the experiment. All MDNS providers cor-
rectly propagate our issued updates except GoDaddy, the only
MDNS provider that violates the single-IP-address condition,
i.e., it has more than 1 IP address for the target domain.
The reason is that GoDaddy doesn’t execute their customers’
requests transactionally, so multiple write operations can be
executed on a single record without isolation. The large num-
ber of domains hosted by GoDaddy, currently about 3 million
domains (a number that has escalated dramatically since June
2017 [18]), are potentially vulnerable to this problem.

C. Sensitivity analysis

Our consistency anomaly measurement results may be po-
tentially sensitive to different input workloads. For instance,
it may take longer for an MDNS provider to reconcile write-
write conflicts if more updates are issued concurrently. The
performance of different MDNS providers may also fluctuate
significantly due to the diverse workload they get over time,
potentially affecting our result. To deal with these concerns,
we conduct two experiments to measure: 1) the fraction of vi-
olations of δ-consistency with different numbers of concurrent
updates 2) the fraction of violations of δ-consistency with the
data collected at different times over a few months.

1) Result sensitivity to the number of concurrent updates:
We did the following experiment to study the impact of dif-
ferent numbers of concurrent updates on our result. We rerun
the experiment for 100 rounds with 3, 4, and 5 concurrent
updates respectively. Some MDNS providers have an API
update limitation on their customers, e.g., Dyn allows its
customers to issue at most 5 API updates within a second [35],
DNSMadeEasy allows its customers to issue 150 API requests
within 5 minutes. To comply with the rules of these MDNS
providers and compare them fairly, we issue at most 5 con-
current updates in this experiment. Note, our update rate is
still quite negligible compared to the load of these MDNS
providers received from their customers.

Fig. 8 (a) and (b) show the fraction of rounds that satisfy
δ-consistency with different number of concurrent updates. It
shows that different numbers of concurrent updates have little
impact on the result with different δ values except for Google
whose fraction decreases along with the number of concurrent
updates as shown in Fig. 8 (b). For DNSMadeEasy and Dyn,
since they do not rely on reconciliation to resolve write-write
conflicts, therefore more concurrent updates do not affect their
results. Verisign only executes 2 update requests no matter how
many updates are issued simultaneously as we never observed
more than 2 IP addresses shown up in its traces. Thus the result
for Verisign does not get affected either. GoDaddy almost
always violates δ-consistency within 60 seconds; thus with
more concurrent updates, its behavior won’t get affected as
it can’t be worse than 0. The other MDNS providers (Route
53, NS1, and Cloudflare) correctly execute all update requests,
thus have a higher variation across the different numbers of
updates as shown in Fig. 8. However, the maximum difference
is still within 10%.

The reason that the fraction of δ-consistent rounds decreases
for Google along with the number of concurrent updates is
that their API does not support the update operation as of
the date of our measurement [36]. Therefore, to update an
existing record, we first have to delete it and then create a
new one (or invoke the record update operation supported via
the Google Cloud web console). Hence our updates to Google
Cloud DNS are not atomic, which can potentially explain their
small fraction of monotonic-read-consistent traces.

Overall, these results show that our δ-consistency measure-
ments are insensitive to the number of concurrent updates
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Fig. 9. Sensitivity analysis to data collection time with 5 concurrent updates.

for these MDNS providers except Google Cloud DNS. We
conjecture that this claim would likely also be true for Google
were they to support an atomic update API.

2) Result sensitivity to data collection time: Since all the
traces used to show the consistency results above are collected
in April 2018, in order to asses their sensitivity to the time
of data collection, we continued to collect data on a monthly
basis until November 2018. Note that the set of Planetlab
nodes may vary from month to month, but as long as they
are enough to cover most of the provider’s name servers, the
results are unlikely to be qualitatively different.

Fig. 9 shows the δ-consistency results for δ = 30s and
δ = 60s over eight months. The values for AWS Route53 are
not stable when δ = 30s due to the queueing delay in its
system that is ≈ 30 seconds (refer §III). However, its value
for δ = 60s is always close to 100%, i.e., it always converges
to a consistent, correct state within 60 seconds. The results for
other MDNS providers are very stable over the eight months
when δ = 30s as shown in Fig. 9 (a). Fig. 9 (b) shows that the
results for δ = 30s for Google and GoDaddy tend to fluctuate
a lot due to the lack of transactional update support. We also
checked our GoDaddy name record state well after 24 hours
in these months. Our claim about GoDaddy likely violating
eventual consistency still holds.

3) Result sensitivity to other factors: We believe that our
findings are not sensitive to other factors such as the cost
we incurred or the set of probe nodes. On the cost front,
although the costs we incurred on different MDNS services
are different, that is mainly because of their pricing models
and/or the different total number of DNS queries we issued
to them. More expensive plans with these MDNS providers
provide a larger (instead of better performing) package plan
with more DNS lookup queries and more domain names. On
the latter front, our result is not sensitive to the set of probe
nodes as long as we use enough geo-distributed nodes to cover

the anycast network locations of these MDNS providers. The
set of PlanetLab nodes we use in different months are already
different as PlanetLab nodes tend to go up and down, but the
results in the last section suggest that that does not affect the
consistency measurements.

V. RELATED WORK

To our knowledge, this paper is the first to conduct an
empirical study of consistency (or lack thereof) in popular
managed DNS services, and the first to quantify the extent of
TTL abuse by local resolvers that was known to exist only
anecdotally if at all.

Previous works have investigated consistency issues in DNS
in order to make a stronger case for consistency or propose
alternatives to achieve stronger consistency. Jung et al. [37]
suggest that reducing TTLs aggressively is unlikely to impact
DNS-induced latency while improving freshness. DNScup
by Chen et al. [7] proposes a cache update protocol using
dynamic leases for strong(er) consistency. The specific lease-
based scheme(s) proposed use lazy propagation upon updates,
so they don’t provably ensure strong consistency semantics
like sequential or linearizable, but do help reduce staleness.
ECO-DNS by Chen et al. [6] presents a model to set TTLs so
as to optimize aggregate consistency or the fraction of lookup
queries that see outdated values. Sharma et al. [10] present
a “next-generation” global name service that ensures totally
ordered writes based on consensus to coordinate updates. In
contrast, although our work shares the overlapping motivation
of the case for stronger consistency, it focuses on an empirical
measurement of consistency in MDNS providers in the wild.

RFC 2136 [13] describes Dynamic DNS, a protocol exten-
sion to support DNS updates. In practice, “dynamic DNS”
may be used also to refer to alternatives like HTTP APIs that
essentially accomplish the same. RFC 2136 requires dynamic
DNS updates and lookups to satisfy “atomicity”, which is used
to mean transactional semantics. One interpretation of RFC
2136’s atomicity requirement is that a replicated nameserver
system should ensure linearizability, however a literal reading
of RFC 2136 is ambiguous on whether transactional semantics
should be satisfied only at each nameserver independently
or across the replicated nameserver system; our study indi-
cates that the latter is definitely not obeyed by most MDNS
providers (as linearizability would imply monotonic reads).

Some prior studies have observed the poor update perfor-
mance exhibited by popular MDNS services, e.g., Sharma
et al. in 2014 [10] and by CloudHarmony in 2012 [30].
We reaffirm the results for some MDNS providers but find
others (e.g., Route53) to be out-dated. Different from the
prior works, we also identify the impact of stale caching
posed by some local DNS resolvers operated by ISPs. Most
performance monitoring of MDNS services is outsourced to
performance measurement platforms such as DNSPerf [27]
and Catchpoint [29] that are suitable for monitoring the
performance of lookups, but are unsuitable for updates.

Our work at a high-level is also related to the prior
studies that measure observable consistency (or lack thereof)



in distributed systems in contexts other than DNS, e.g.,
measuring linearizability and sequential consistency for social
networks [12] or key-value stores [38].

VI. CONCLUSION

The Internet has come a long way from DNS’ early days
when updates were expected to be rare and the design de-
cision by the creators of DNS to favor weak consistency
and extensive caching over more sophisticated replication
systems [39] was understandable. In recent years, despite the
widely noted need for agile updates for modern application
scenarios, we find that DNS update performance continues
to be poor. Update propagation delays commonly take tens
of seconds and have hardly improved over the last several
years. Worse, eventual consistency appears to be interpreted in
practice as a license to not worry about consistency correctness
at all. We find that roughly a third of end-user queries are
affected by resolvers that disrespect TTL limits. Few MDNS
providers ensure monotonic reads consistency and at least one
provider likely violates even eventual consistency. Our study
suggests that MDNS providers should consider critically re-
examining update performance and consistency correctness in
their production services. All measurements in this paper can
be independently validated using the data and scripts at [40].
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