1907.09883v2 [cs.GT] 26 Aug 2019

arxXiv

Greedy but Cautious: Conditions for Miner
Convergence to Resource Allocation Equilibrium

George Bissias!, Brian N. Levine', and David Thibodeau?

1College of Information and Computer Sciences, UMass Amherst,
{gbiss,levine}Qcs.umass.edu
2Florida Department of Corrections,
davidpthibodeau@gmail.com

August 27, 2019

Abstract

All public blockchains are secured by a proof of opportunity cost among
block producers. For example, the security offered by proof-of-work (PoW)
systems, like Bitcoin, is due to spent computation; it is work precisely
because it cannot be performed for free. In general, more resources provably
lost in producing blocks yields more security for the blockchain. When
two blockchains share the same mechanism for providing opportunity cost,
as is the case when they share the same PoW algorithm, the two chains
compete for resources from block producers. Indeed, if there exists a
liquid market between resource types, then theoretically all blockchains
will compete for resources. In this paper, we show that there exists a
resource allocation equilibrium between any two blockchains, which is
essentially driven by the fiat value of reward that each chain offers in
return for providing security. We go on to prove that this equilibrium is
singular and always achieved provided that block producers behave in a
greedy, but cautious fashion. The opposite is true when they are overly
greedy: resource allocation oscillates in extremes between the two chains.
We show that these results hold both in practice and in a block generation
simulation. Finally, we demonstrate several applications of this theory
including a trustless price-ratio oracle, increased security for blockchains
whose coins have lower fiat value, and a quantification of cost to allocating
resources away from the equilibrium.

1 Introduction

Cryptocurrencies such as Bitcoin [22] are a confluence of systems engineering,
economics, and game theory. In some ways, cryptocurrency economics is a prosaic
application of classic economic theory. For example, the economy defined by
Bitcoin has an extremely simple monetary policy: a fixed coin issuance schedule,
which makes inflation entirely predictable'. However, the procedural properties

LCoin destruction, through loss of private keys, is much more difficult to measure.

of cryptocurrencies, more software than policy, give rise to remarkably crisp
economic tradeoffs that manifest surprisingly regular macro-level phenomena.
In this paper, we examine one such phenomenon that arises from the dynamics
of the so-called difficulty adjustment algorithms (DAAs) used by blockchains
that employ proof-of-work (PoW) for security. We show that, as predicted by
Spiegelman et al. [27], but in contrast to the model of Kwon et al. [17], much
of aggregate miner behavior can be explained by their proclivity to increase
immediate profit. More specifically, we offer a rationale for the division of
hash rate that is manifest between two blockchains that share the same PoW
algorithms. Remarkably, the same reasoning generalizes to the division of security
resources between blockchains using different PoW algorithms and even using
different consensus mechanisms altogether. We make the following contributions
over prior work.

e We define a hash rate allocation equilibrium between two blockchains that
use the same proof-of-work (PoW) algorithm. We show that a unique
allocation equilibrium exists and that it aligns with one of the Nash
equilibria described by Kwon et al. [17]. The allocation equilibrium is
much less stringent than a Nash equilibrium. The former assumes only
that miners individually tend to act to maximize their profit according to
a metric similar to the popular difficulty adjusted reward indexz (DARI). In
contrast, the Nash equilibrium assumes that miners have knowledge of a
complex utility function and the strategies of other miners at equilibrium.

e We prove the conditions under which hash rate allocation will converge to
the allocation equilibrium and anticipate allocation dynamics when these
conditions are not met.

o We show that, given an efficient market for buying and selling PoW hash
rate, the allocation equilibrium generalizes to pairs of blockchains that use
different PoW algorithms. We also show that the existence of efficient hash
rate markets allows for generalization to equilibria between PoW and PoS
blockchains.

e We empirically validate the existence of allocation equilibria between
several of the top blockchain projects that share the same PoW algorithm,
including BTC versus BCH, and ETH versus ETC. Their adherence to the
equilibrium is found to be quite strong. We also corroborate our theoretical
results in simulation, showing precisely the conditions under which pairs
of blockchains converge to, or diverge from, the allocation equilibrium.

e We provide several applications for the allocation equilibrium in the real
world, including: a trustless price-ratio oracle, increasing security for
minority hash rate blockchains, and measuring the cost to miners who
provide security to a blockchain beyond the equilibrium.

2 Related Work

Prat and Walter [23] modeled the impacts of mining difficulty and coin exchange
rate on mining profitability for a single blockchain. They found that miners will
not purchase new mining hardware if the fiat value of the coinbase reward is
insufficient to accommodate the resulting rise in mining difficulty. The paper
demonstrates empirically that this relationship holds quite well in practice for
data ranging from 2012 until 2018. Furthermore, in the context of a single
blockchain, Ma et al. [19] showed that there exists a Nash equilibrium for the
computing power allocated by miners given a fixed mining difficulty.

The work of Kwon et al. [17] is similar to ours. They showed that there
exist multiple Nash equilibria for miners who allocate their hash rate among
two bockchains sharing the same PoW and inter-block time. One equilibrium,
Eocon (Which coincides with our allocation equilibrium), exists at the relative
price ratios of the two coins, but for the others, which we denote collectively as
Eothers, NO subset of economically rational miners will dedicate their hash rate
to the discounted blockchain having the lower coin price. And if a sufficiently
large fraction of miners commit to mining the discounted blockchain, then they
will be alone in mining on that chain. These results suggest the possibility that,
in the presence of mostly rational miners, the discounted blockchain may end up
supported solely by a centralized cabal of committed miners. Kwon et al. [17]
further reported a tendency for profit-seeking miners to generally move toward
Eecon, but argued that they can also be pulled toward equilibria Eytpers, and
it is not clear how these dynamics play out in an iterative game. Moreover,
their model involves a complex utility function, sophisticated strategies, and
requires that each miner knows the strategy of the others in order to maintain
equilibrium. In the present work, we assume only that a certain fraction of
miners act so as to increase their immediate profit. We show formally that,
under those conditions, hash rate allocated to the discounted chain will always
converge t0 Eecon- This result implies that the discounted chain can count on a
minimum hash rate proportional to its coin’s price relative to competing chains.
Moreover, we demonstrate empirically and in simulation the conditions under
which convergence succeeds. Our analysis also generalizes to equilibria between
blockchains using different PoW algorithms and even those using proof-of-stake
(PoS).

Also closely related is the work of Spiegelman et al. [27] who apply the theory
of Potential Games [21] to the problem of miner hash rate allocation across
multiple blockchains. They prove that, regardless of individual hash rate and
coinbase rewards for each of the blockchains, hash rate allocation will converge
to a pure equilibrium provided that miners follow better response learning. The
model assumes “minimal rationality on behalf of the players, i.e., that they follow
an arbitrary better response step improving their individual payoffs.” Spiegelman
et al. [27] do not identify a specific equilibrium point, nor do they specify what
the better response should be. But their work anticipates some of the theoretical
results we present in Section 3. Furthermore, they show that the equilibrium
point can be changed by changing a blockchain’s coinbase reward, a property

that is emergent from the properties of the equilibrium and one that we exploit
to increase security in Section 6.2. Altman et al. [9] reached similar conclusions
as Spiegelman et al. [27] using a slightly different game theoretical model of hash
rate allocation across cryptocurrencies and mining pools.

Meshkov et al. [20] introduced the term coin-hopping to describe the strategy
that involves some subset of miners moving among blockchains using the same
PoW according to which is most profitable at a given time. They showed that
this behavior can lead to unstable block times and proposed a modified difficulty
adjustment algorithm to compensate. Coin-hopping corresponds to our definition
of greedy behavior in Section 3. Kirly and Lomoschitz [16] expanded on the
study of the coin-hopping strategy, which they show can be profitable in the
long-term for miners with at least 12% of the total hash power.

Han et al. [15] investigate doublespend on blockchains with relatively low
hash rate instigated by either miners from a higher hash rate chain or attackers
who purchase hash rate from a marketplace such as NiceHash?. They find that
doublespend transactions with fiat value on the order of 1e5 USD are sufficient
to motivate Bitcoin miners to carry out an attack on Bitcoin Cash.

Several authors have sought to determine the optimal hash rate allocation
between blockchains for individual miners or mining pools. Bissias et al. [10]
argue that miners allocate their hash rate between multiple blockchains so as to
minimize the risk associated with fluctuations in coin price. Cong et al. [12] make
a similar argument except that their measure of risk is volatility in the payout
rate between mining pools. Chatzigiannis et al. [11] extend this model to mining
across blockchains with different PoW algorithms. All of the above approaches
are complimentary to the present work, which seeks only to explain aggregate
miner behavior. In fact, miner-specific behavioral choices help to explain why the
aggregate hash rate allocation does not fully allocate to one chain over another
(see Section 7.1 for details).

Sapirshtein et al. [25] devised a Markov Decision Process (MDP) for dis-
covering optimal selfish mining [13] strategies. Gervais et al. [14] expanded
the model to incorporate adjustable network parameters and include analysis
of doublespend attacks. Sai et al. [24] extend the MDP of Gervais et al. [14]
to model mining difficulty adjustment. The biggest differences between these
approaches and the present work is that the former analyze optimal deviant
behavior in single blockchains while the present work attempts to explain protocol
compliant behavior across multiple blockchains.

3 Miner Allocation Among Blockchains

In this section, we consider two blockchains A and B, each generally using
different PoW algorithms W4 and Wpg. Having different PoW algorithms, we
imagine that the sets of miners M4 and Mp of each coin are generally disjoint,
but in the special case where W4 = Wp or when the algorithms support the
same mining hardware, the sets can be equal or intersect. The native hash rate

2https: //www.nicehash.com

https://www.nicehash.com

(hashes per second) for miner m is denoted H(m), and with H4 and Hp we
denote the aggregate native hash rate on chains A and B, respectively. Through
secondary markets such as NiceHash®, an economically rational miner m € M4
will trade her hash power in A for hash power in B when the latter can earn her
more fiat reward during the next moments of mining. Thus, miners M4 U Mp
collectively represent the aggregate achievable security of coins A and B, which
is fluid, subject to changes in the profitability of mining across chains A and B.

DEFINITION 1: The spot hash price at time s, Sx(s), is the quantity of
hashes per second using PoW algorithm Wx that can be traded for 1 unit of
fiat.

Using definition 1, and assuming a perfectly efficient hash rate market, we can
translate native hash rate on chain B into units of native hash rate on chain A,
a process we term hash rate regularization. The regularized hash rates for chains
A and B are equal to Hy = H4 and Hg = ’HB%B}. The regularized, aggregate
hash rate across chains is given by H = H4 + Hpg, where H is native to chain A,
a convention that we will follow throughout this document. By H(m), we denote
the regularized hash rate for miner m. Finally, define regularized allocation
vector w = (wa,wp) (or simply allocation for brevity) to be the fraction of H
that miners devote to chains A and B, respectively. The following are definitions
useful for discussing miner hash rate allocations and their relationship with
blockchain security.

DEFINITION 2: The hash weight of miner m, denoted W(m) is equal to
H(m)/H, and the weight of a set of miners M, denoted W(M) is given by

2 men W(m).

DEFINITION 3: The relative security of chain X is the fraction of fiat value
of PoW applied to that chain, which is given by

HX/SX Hx/SA Hx

K frd = = .
X Ha/Sa+Hp/Sg Ha/Ss+ Hp/Ss Ha+ Hp

(1)

In terms of relative security, the regularized allocation vector is given by
w = (K4,Kp). Notice that the relative security for chain X € {A, B} is
equivalent to the fraction of total available regularized hash rate (i.e., in terms
of the W4 PoW algorithm) allocated to chain X. Thus, when chains A and B
share the same PoW algorithm, w gives the share of hash rate for each chain.

The target, expected block inter-arrival time for chain X € {A, B} is denoted
Tx. In general, blocks from chains A and B will be produced at different times,
but we require some method of marking time universally. Let 7 be a discrete
variable that represents the times when a block is mined on either chain A or
B. At time 7, the actual inter-arrival time for the last block from chain X
is given by T'x(7), and the fiat coinbase value for chain X is given by Vx (7).

3https: //www.nicehash.com

https://www.nicehash.com

Coinbase value decomposes into Vx (7) = cx Px (7), where cx is the quantity of
X coins paid out per block and Px(7) is the fiat value of each X coin at time
7. Furthermore, define the hash adjusted reward* (HAR) for chain X at time
T by nx (1) = #1(1’2(7) The HAR for chain X represents the expected fiat
value of each regularized hash on chain X. Finally, define the relative reward of
the two chains by R(7) = ——Alr)

Va(r)+Ve(r)
contribution of fees to the coinbase.

. Note that in this analysis we ignore the

DEFINITION 4: A security adjustment algorithm (SAA) is any algorithm
that adjusts the expected number of hashes required to mine blocks so that their
expected inter-arrival time tends toward T'; when the block time reaches T', the
SAA is said to be at rest. It is further assumed that the SAA is a function of
the properties of previously mined blocks, thus it can only update the security
after a new block is mined.?

DEFINITION 5: The greedy choice allocation, denoted wy, is one that yields

that maximum weighted sum of HAR vector m(7) = (7a(7), 75(7)), i.e. wlm.

DEFINITION 6: Blockchains A and B are said to be at allocation equilibrium
if when both SAAs are at rest, there exists no greedy choice in allocation, i.e.
7 = ¢(1,1) for some constant c.

LEMMA 1: Assume that at time T both SAAs have come to rest, relative
reward R is stable, and the allocation vector is fixred at w = (xR,y(1 — R)),
where x >0, y >0, and xR+ y(1 — R) = 1. Then the HAR vector is given by

Va(r) 4+ V(1) 1 1
m(r) = = H - <xTA’yTB>' (2)

PROOF: For X € {A, B}, if at time 7 the SAA for chain X has come to rest,
then the actual inter-block time T'x (7) is approximately equal to its expected
time T'x. Therefore, the HAR vector is given by
Val(r Ve (T
(7TA (7—)7 TB (T)) = TA(T?;{Z(T)’ TB(TBS[(—[;(T))

Va(r) V(1)
TaAHA’' TpHp

_ 1 (Va(» VB(T))

H \Tawp’ Tpwp

_ 1 (Va(n) _Ve(7))

- H \ 2TaR’ yTs(1—R)

_ Va(m+Ve(n) (L L)
H zTa’ yTp) °

O

4The HAR is analogous to the popular difficulty adjusted reward index (DARI) metric,
except that the latter normalizes by the blockchain difficulty.

5In practice, most PoW blockchains employ a difficulty adjustment algorithm, which adjusts
a value that is inversely proportional to the mining target ¢t. Because difficulty is ambiguously
defined between blockchains, we opt for this definition instead.

THEOREM 1: Assume any choice of SAA for chains A and B (not necessarily
the same), and further assume that total hash rate is fized at H. When the
relative reward stabilizes, there exists a unique equilibrium allocation
w. — < TR Ta(1— R) >
© \TBR—TaR+Ta TgR—TaR+Ta)’

(3)
which simplifies to

We = (R7 1- R)7 (4)
if Ta=Tg.

PROOF': An equilibrium allocation is one where the HAR vector is homogeneous,
i.e. the HAR values for chains A and B are equal. Assuming the SAAs are at
rest and relative price is stable, from Lemma 1 we can surmise that HAR values
will be equal iff 2Ty = yT. We can solve this equation for z and y along with
the simultaneous constraint zR + y(1 — R) = 1:
Tp Ty
= , and Yy = .
TR —T4R+ Ty TR —TasR+ T4

Substituting z. and y. into the identity w, = (2.R,y.(1 — R)) (from the
statement of Lemma 1) yields Equation 3, as desired. Moreover, because the
constraints constitute a system of two linearly independent equations with two
unknowns, w, must be the only equilibrium allocation.

Te

O

We next derive results related to how miners behave relative to the equilib-
rium.

DEFINITION 7: The distance between two allocations w; and ws is given
by the Ll-norm of their difference: |w; — wa|.

DEFINITION 8: The e-greedy allocation policy moves the current allocation
e closer (in terms of Definition 7) to the greedy choice, e.g. if mo(79) > 7p(70),
then w(71) = (wa(mo) + §,wp(10) — 5).

DEFINITION 9: The set of miners loyal® to chain X € {4, B}, denoted by
Mx«, are those that will allocate all hash rate to chain X over chain Y regardless
of the value of mx relative to my .

THEOREM 2: Assume that equilibrium allocation w, is fized over an arbi-
trarily long period of time and loyal miner hash weights are such that W(Ma+) <
weaH and W(Mp+) < w.pH. If the SAAs on both chains have come to rest
and reward ratio Vao(7)/Vp(7T) is constant in T, then from an allocation not at
equilibrium and for sufficiently small €, the e-greedy allocation policy converges
to the equilibrium allocation.

60ur definition of loyal is consistent with Kirly and Lomoschitz [16], but not Kwon et
al. [17].

PROOF: We prove this result in two stages. In the first we show that a non-
loyal miner, making an e-greedy choice will always move in the direction of w,.
In the second, we argue that non-loyal miners comprise sufficient hash weight to
reach w,.

To prove the first stage, it will suffice to show that for a suitably small €, the
e-greedy allocation w(71) always moves the current allocation w(7p) closer to
the equilibrium allocation w.. Without loss of generality, we may assume that
ma(70) > 7p(79). In this case, because wp(19) = 1 — wa (1), we need only show
that wa(79) < wea to prove the theorem. This follows from the fact that our
assumption implies that the greedy choice will increase wa: wa (1) = wa(mo)+ 5,
which can only move the allocation closer to w4 provided that § < wea —w A(T0).

Before proceeding, note that because the reward ratio is stable, there exists
an r such that V4(7)/Vp(r) = r for all 7. Similarly, because the SAAs are
assumed to have come to rest, we assume that Tx(7) = Tx for every 7 and
X € {A, B}. We have

Va (7 Vi (7
ma(r0) > T(M) = e > W
N Va (7o) VB (10)
HU)A(TO)TA H’u}B(To)TB
- b

wA((lTo) > 1—wa(70)
= U)A(To) < aL—Q—b’
where a = /T4 and b = 1/Tg. On the other hand, similar reasoning shows that
Wep = a%rb So we have wa(7g) < wea, as required.

To prove the second stage, it will suffice to argue that the hash weight
of non-loyal miners at time 7y is non-zero. We again assume without loss of
generality that that m4(79) > 7p(79). Let M = M4 U Mg, and note that
by definition W(M) = H. The hash weight of non-loyal miners is given by
WM) = W(My-) = W(Mp-). In stage 1, we proved that w4 (79) < wea, which
implies that W(Ma+) < wea H. And by assumption W(Mp+) < wepH. Finally,
because wa (1) + wp(19) = 1, we know that W(M) — W(Ma«) — W(Mp-) > 0,
which implies that the hash weight of non-loyal miners at time 79 must be

non-zero.
O

COROLLARY 1: If the SAAs on both chains have come to rest and reward
ratio V4 /Vp is stable, then for any allocation within distance ¢ of the equilibrium
allocation, following the (254 ¢€)-greedy allocation policy, € > 0, causes divergence
from the equilibrium allocation.

PROOF:: Similar to the proof of stage 1 in Theorem 2, it will suffice to show
that for any e > 0, the (26 + ¢)-greedy allocation w(7;) always moves the
current allocation w(ry) further from the equilibrium allocation w.. Let 4 =
|wa(1o) — wea| and 6 = |wp(79) — wep|, which according to Definition 7
must satisfy 04 +dp = J. Again, without loss of generality, we may assume
that 74 (79) > mp(70), which implies that the greedy choice will increase w4:
wa(71) = wa(m0) + 6 + 5. The proof of stage 1 of Theorem 2 showed that

wa(T0) < Wea, giving weq = wa(19) + d4. It follows then that

wa(T1) :wA(TO)+6+§:weA_5A+5+§.

Similarly, wg(71) = wep + dp — 6 — 5. Therefore, the (20 + €)-greedy choice
at time 79 moves w(7) further from w, by |wa(71) — Wea| + |wp(T1) — Wep| =

[0 —04 +€/2|+ |0 — 0+ €/2| =e. -

DEFINITION 10: The extreme greedy policy for a non-loyal miner is to
allocate all hash rate entirely to the greedy choice.

COROLLARY 2: Let W(M4-) and W(Mp-) be the hash weights of miners
loyal to coins A and B, respectively, and define
1 1

wy = (1= W(Mp), W(Mp-)) 32 and w; = (W(My-), 1= W(M-)) .
Suppose equilibrium allocation w, is such that wos < weq < wia and w1 <
wep < wap, and suppose further that reward ratio V4 (7)/Vp(7) is constant in
7. Then for any choice of SAAs, non-loyal miners following the extreme greedy
policy will result in hash rate fluctuations that oscillate between w; and ws.
SAAs that come to rest faster will result in higher frequency oscillations.

PROOF: Without loss of generality, we can assume that at time 7y the greedy
choice is to allocate all hash rate to chain A, which implies that w(m) = w;.
Now assume that both SAAs have come to rest at time 7y (if W(Mp«) = 0, then
the SAA for chain B will not have had an opportunity to run because it has
hash rate zero, but we nominally regard this as being at rest). It will suffice to
show that the greedy choice at time 77 is to shift allocation to coin B. Suppose,
for the purpose of contradiction, that the greedy choice at time 7y is to maintain
maximum allocation to coin A. In that case, according to Theorem 2, there
must exist some € > 0 such that [wis + § — wea| < |wia — wea|. But this is
not possible because, by assumption wj4 > wea, so the greedy choice at time 7y
must instead be to shift allocation to coin B, i.e. w(m1) = ws. Notice that SAAs
that come to rest faster will realize faster fluctuations in the extreme greedy
choice, and will therefore result in higher frequency oscillations between extreme

allocations.
O

4 Beyond PoW

Fundamentally, the results of Section 3 tie the aggregate relative security of a
blockchain to the value of reward given to those who provide security (i.e., PoW).
PoW can be seen as proof-of-opportunity-cost for miners, who sacrifice energy
and CPU cycles in return for the opportunity to gain native coins and a vote
on the next block. The HAR measures fiat value per unit of opportunity cost.

And the SAA is simply a means of regulating this value so as to achieve to the
desired emission of the native currency.

We can generalize PoW concepts as follows. Each blockchain defines a cost
function Cx with which it maps a unit of native cost to some quantity of native
coin X. In PoW, native cost for chain X is the execution of a single hash using
algorithm Wx. Define a proof of cost (PoC) voting system as one that allocates
votes and native reward to participants proportional to their demonstrated
cost. Furthermore, define a cost adjustment algorithm (CAA) as an algorithm
that adjusts cost function Cx so as to achieve a desired distribution of coin
X over the short-to-medium-term. Total cost per second, Hx, on chain X is
the amount of cost levied collectively against all participants in a single second.
Regularized hash rate, H x is interpreted as the total cost per second on chain X,
denominated in units chain A cost. The cost-adjusted-reward (CAR) is the fiat
value of reward per unit of regularized cost. Some proof-of-stake (PoS) systems
meet the criteria of a PoC voting system, and therefore, there exists the potential
for an equilibrium to form relative to a PoW blockchain.

Public blockchains produce blocks as the result of a voting process, where
votes are awarded to participants proportional to their opportunity cost. In
PoW systems, the set of participants is entirely open: anyone with access to
hardware capable of running the PoW algorithm can vote. But in PoS system,
the set of participants is restricted: only those holding native coins can vote.
Moreover, most PoS systems make a distinction between active validators who
actively stake coins and simple coin owners. The former set can vote, while the
latter cannot. Blocks are produced in validation rounds. Delegated PoS or DPoS
blockchains are somewhat different still; coin holders vote for delegates and it is
the delegates that create blocks using an alternative form of consensus such as
Byzantine Fault Tolerance [18]. Another difference is that, instead of fixing the
number of coins ¢ comprising the block reward, PoS blockchains tend to define ¢
as a function of the number of coins staked by active validators.

4.1 Basic PoS Equilibria

Consider PoS blockchain X. At time 7, there are kx coins staked on chain X.
The total reward for a single validation round is cx, and each round lasts Tx
seconds. Thus, total reward value is given by Vx = cx Px, where Py is the fiat
value of coin X. The total opportunity cost during a validation round, Hx, is
equal to rkxTx Px, where r is the risk-free rate of return for investing 1 unit
of fiat for 1 second. In words, H x measures the amount of fiat that could be
earned by exchanging quantity kx coins X for a so-called risk-free asset such
as the 1-year US Treasury Note. Because the native unit of cost for Hy is fiat,
Sx =1,and HxSa = Hx. The CAR is given by mx = Z—’;

EXAMPLE 1: NEO is a DPoS blockchain [6]. There are two native coins
on the chain: NEO and GAS. Holding NEO affords the bearer two privileges:
the right to vote for delegates and access to a stream of GAS. Exactly 100e6
NEO coins exist; initially 50e6 were distributed during a crowd sale and the

10

type actual equilibrium

bch bsv bch btc bsv btc etc eth
0.6-
0.96 - 0.975- 0.96 -
0.5-
0.95-
T 04- 0.93- 0.950-
= 0.94-
0.31 0.90- 0.925- 005
0.2- :
. . 057) . 0800~ 1 . 092- :
Jan Apr Jan Apr Jan Apr Jan Apr
time

Figure 1: Actual hash rate allocation between various pairs of cryptocurrencies (red)
juxtaposed with the equilibrium allocation (blue). The plots show strong agreement
between the actual allocation and the allocation predicted by the equilibrium, the latter of
which is based entirely on expected block times and coinbase values. The data ranges from
December 1, 2018 until June 1, 2019.

remaining 50e6 were reserved by the NEO council to be used in the future to
pay for development. GAS is awarded to NEO holders every validation round
(occurring roughly once every Tgas seconds) according to their percentage of
the total available NEO. Initially, 8 GAS per round where awarded total, i.e.
cagas = 8. Every 2e6 validation rounds (roughly 1 year), cgas is reduced by 1
GAS". As of July 27, 2019, more than 4e6 blocks have been mined®, therefore
cagas = 6. With these definitions, we can directly compare the security of the
NEO blockchain to that of an arbitrary PoW blockchain using the framework
from Section 3.

5 Evaluation

In this section, we validate the theoretical results from Section 3. Recall that the
actual resource allocation between two blockchains is given by w = (K4, Kg),
where Kx is the relative security of chain X € {A, B} (see Definition 3). When
chains A and B employ the same PoW algorithm W, w is simply the fraction
of aggregate hash rate for algorithm W applied to each of the chains. (Note
that by aggregate we mean between chains A and B only, so |w| = 1.) We first
show that the equilibrium point w,., described by Theorem 1, closely matches
the actual allocation w for real historical blockchain data. We then show results
from a block mining simulation that corroborate Theorem 2 and Corrolary 2.

Thttps: //docs.neo.org/docs/en-us/basic/whitepaper.html
8https: //neotracker.io

11

https://docs.neo.org/docs/en-us/basic/whitepaper.html
https://neotracker.io

5.1 Historical Convergence to Equilibrium

We collected historical data for several of the largest PoW blockchains by market
cap including Bitcoin (BTC), Bitcoin Cash (BCH), Bitcoin Satoshi Vision (BSV),
Ethereum (ETH), and Ethereum Classic (ETC). Included in the dataset were
hourly prices for ETH, ETC, and BSV from the Bitfinex exchange® and for BTC
and BCH from the Binance exchange'®. Difficulty data were collected for each
block from Blockchair!! with the exception of ETC, which was collected hourly
from Coinwarz'?. From the difficulty, we were able to extract the approximate
hash rate for each of the blockchains. Figure 2 plots the actual hash rate
allocation w in red for various pairs of blockchains (one pair per facet) along
with the equilibrium allocation w,, which is plotted in blue. Agreement between
the two curves indicates that there was an observed convergence to equilibrium
as predicted by Theorem 2. The plots generally show strong agreement except for
times when there were well-documented macro-level disturbances. For example,
BSV hard-forked from BCH in November, 20183, and we can see corresponding
divergences from the equilibrium at this time. Also, a bug was exploited in the
BCH ABC client during a hard fork upgrade in May, 2019, which caused a delay
in block production and a chain reorganization'*. Corresponding to this event,
we again see divergence from the equilibrium.

There are two reasons why allocations might diverge from equilibrium at
these times. First, the equilibrium defined by Theorem 1 assumes that blocks
arrive exactly at their targeted times (every 10 minutes for BCH and BSV).
However, during the events discussed above, block times were significantly slower
than 10 minutes for a period of time, which means the plotted equilibrium is not
quite accurate. Second, prices tend to fluctuate wildly during hard-forks and
when bugs are encountered. (Indeed, there was no trading of BCH or BSV for
several days on most exchanges during the November, 2018 hard-fork.) At those
times it is difficult to correctly formulate an equilibrium with inaccurate price
data, and also it is possible that miners will cease to mine greedily in order to
ensure a given chain continues to produce blocks.

5.2 Convergence to Equilibrium in Simulation

We implemented a block mining simulation where miners were given the choice
between chain A or B. For simplicity, it was assumed that both chains used the
same PoW algorithm, had the same target inter-block time, and issued the same
number of coins per block. The ratio of prices was initially 0.5, but we allowed
it to vary according to a random walk with mean 0 and standard deviation 5e-3.
We simulated 15 months of block generation total, but discarded the first 90

Yhttps: //www.bitfinex.com
10https: //www.binance.com
M https: //blockchair.com
12https: //coinwarz.com
I3https: //en.wikipedia.org/wiki/Bitcoin_Cash#November_2018 split
M https: //cointelegraph.com /news/bitcoin-cash-experiences- bug-during-scheduled- hard-fork-
upgrade

12

https://www.bitfinex.com
https://www.binance.com
https://blockchair.com
https://coinwarz.com
https://en.wikipedia.org/wiki/Bitcoin_Cash#November_2018_split
https://cointelegraph.com/news/bitcoin-cash-experiences-bug-during-scheduled-hard-fork-upgrade
https://cointelegraph.com/news/bitcoin-cash-experiences-bug-during-scheduled-hard-fork-upgrade

-
o
|

—— greedy (¢ =0.001)
equilibrium

o
©
\

allocation
o o
> o
!

Figure 2: Results from 3 block
mining simulation runs where
miners chose between chains
A and B. Each curve shows
the equilibrium (red) and actual
(blue) allocations to chain B.
Each facet varies € and 90% of
miners follow the e-greedy policy.
Of the remaining miners, 5%
are loyal to chain A and 5% are
loyal to chain B. The plots show

greedy (£ =0.005)
equilibrium

allocation

X R e oo o oo e e o o e
Month 234 5 6 7 8 9 10 11 12 close adherence to the equilib-
10- rium for small € and wild oscil-
greedy (€=0.010) | |ations between extreme alloca-
08- ki - .
- frtittit tions as € increases.
206-
= Wl
[9) | LIRS L
2 04- | IR
T \ ‘

0.2-

0.0 7 i e e
Month 2 3 4 5 6 7 8 9 0 11 12
1

days to ensure the system had reached a steady state. Both chains A and B
were assumed to use the difficulty adjustment algorithm (DAA) of Bitcoin Cash
(BCH) [26], which uses a rolling average of the ratio of chain work to block time
over the last 144 blocks (roughly 1 day). For each run of the simulation, we
assumed that 5% of the miners were loyal to chain A, 5% were loyal to chain B,
and the remaining 90% followed the e-greedy strategy where € was allowed to
vary between runs.

Figure 2 shows the results of a single simulation run for each choice of
e € {le-3, 5e-3, le-2}. The plots show the second component of the equilibrium
vector (w.p) in red, juxtaposed with the actual aggregate allocation to chain
B in blue. As predicted by Theorem 2, sufficiently small e (top facet) ensures
convergence to the equilibrium. On the other hand, larger choices for € result in
divergence from the equilibrium (lower two facets), as predicted by Corollary 1.
Moreover, as predicted by Corollary 2, the divergence from the equilibrium
results in oscillations between the extremes defined by the fraction of loyal
miners: W(Mp-+) at one extreme and 1 — W(M4+) at the other.

13

6 Applications

6.1 Trustless Price-Ratio Oracle

Price feeds are a fundamental tool for many popular smart contract applications
including prediction market Augur [1], stable coin issuer MakerDAO [4], hedge
fund Numerai [7], and loan initiator Dharma [2]. Existing price feed solutions
range from crowd-sourced [3,28] to trusted/whitelisted sources [5,8]. In this
section, we present an application of the allocation equilibrium presented in
Section 3 that delivers an estimate of the fiat price ratio of the coins native to
blockchains A and B who share the same PoW algorithm.

We now describe how chain A can implement a price ratio oracle, but it
should be noted that chain B could also do the same. Smart contract Oracle
runs on chain A and returns an estimate of the price ratio Pg/P4 when the two
chains are each at a given block height. Essentially, Oracle runs a light client
for blockchain B, which contains all the headers since the chain’s genesis block.
There are just two public methods exposed: Update(hp) and Query(ba,bg).
Method Update(hpg) allows any user or other contract to update the chain of
headers with a new header hp having the following properties: (i) the block
height of hp is exactly one greater than the previous header; (ii) the previous
block hash of hp points to the block hash of the previous header; and (%ii) the
PoW associated with the the hash of hp meets the difficulty implied by earlier
headers and chain B’s protocol. If any of the conditions are not met, then it
returns an error. Method Query(ba,bp) returns an estimate of the price ratio
Pg/P4 at the time when chain A was at block height b4 and chain B was at
height bp. If either (4) the header at block height bg is unknown to Oracle or
(#1) the block on chain A at height b4 has not yet been mined, then an error is
returned. Any party interested in maintaining the validity of the oracle will be
sure to quickly run Update(hp) for all new headers hp for chain B.

We assume that Oracle will have native access to the header of the current
block on chain A, h4. Using headers h4 and hp, Oracle will estimate Pp/Pa
using Definition 1 and Theorem 1. Let H(hx) be an estimate of the hash rate
for chain X derived from header hx. On Bitcoin-like blockchains, the hash rate
is simply 2**/p where D is the difficulty, which is included in the block header.
Hash rate can be extracted via similar transformations on other blockchains.
From Definition 3, we have that

N H(ha)
wA ~ Tr7 N T 11/ \?
H(ha)+ H(hp)

where w4 denotes the fraction of total hash rate H shared between chains A
and B that is devoted to chain A. According to Theorem 1,
B TR
a TBR — TAR + TA
at equilibrium, where Ty and T are expected block times for chains A and B,
R = VAV+7AVB’ Vx = ¢x P, and cx is the number of coins rewarded per block on

wa

14

chain X € {4, B}. Therefore,

H(hA) ~ TR
H(hA)+H(hB) TpR—TaAR+Ta

=

P~ it (PG T+ Ta) — -

Figure 2 demonstrates that the equilibrium (shown in blue) typically agrees
strongly with the security implied by the relative hash rate (shown in red). For
this reason, we expect that price-ratio predictions will often be quite good. Of
course an approximation of this sort is likely never to be as good as a centralized
price feed. Thus, we envision the consumers of Oracle to be users or smart
contracts that require a fully decentralized oracle, or perhaps require a safety
check on the trust placed in a centralized price feed.

EXAMPLE 2: Suppose that we wish to introduce fully decentralized futures
contracts to blockchain A intended to be negotiated between two parties: guar-
antor G and beneficiary B. To do so, a smart contract can be developed that
leverages Oracle. Each futures contract, or future transfers from guarantor to
beneficiary a quantity of coins A equivalent to the value of a quantity of coin B
at a future date. Specifically, a future issued at the time when chains A and B
are at block heights b4 and bp, allows the beneficiary to trade the contract to
the guarantor for a quantity of coins A equivalent to 1 coin B on the expiry date.
We define expiry as the latter of block heights b/, and bz, anticipated to be some
time in the future (for example 90 days). Contract Future implements four
methods: Deposit(a), Recover(a), Issue(ba, bg, b/, bz, a), and Redeem(b/y, b'5).
Deposit is signed by G; it deposits quantity a of coin A into Future. This will
be used to pay B at expiry. Prior to calling Issue, the funds can be redeemed
by G if he signs Recover. The call to Issue must be signed by both G and
B; signifying that they agree to the initial and expiry block times and fee of
a coins, which is paid by B and immediately transferred to an account owned
by G. Once headers h/y and h’; at height b’y and bz have been generated, B
first calls Update(h/;) on Oracle and then signs Redeem. In response to this
method, contract Future deposits into an account controlled by B a quantity of
A coins that are equivalent to the value of 1 coin B as determined by calling
Query(by,b) on contract Oracle.

6.2 Increasing Security

Consider two blockchains A and B that have the same PoW algorithm W and
target inter-block time 7. BTC and BCH constitute an example where W is
the SHA256 algorithm and 7" = 600 seconds. Recall from Section 3 that P4 and
Pp are the fiat coin values for A and B, respectively, and that, ignoring fees,
coinbase value Vx = cx Px, where cx denotes the number of coins issued per
block on chain X. Finally, recall that R = V,/(V4 + Vg). Suppose that coin
B is consistently less valuable than coin A; i.e., Pg/P4 = « for some o < 1. If
ca = cp, then because they share the same PoW algorithm and inter-block time,

15

Theorem 1 predicts that the equilibrium allocation will be

We = (Ra 1- R)
_Va _Vp
Va+Vp’ Va+Vp

PatPs’ PatPs

= 1J%Q(L Q).

Thus, chain A will tend toward having 1/« more hash rate than chain B, which
constitutes lower security for chain B. This can lead to a negative feedback
loop where lower security leads to lower coin price, which in turn leads to even
lower security. One way to break this loop is for chain B to simply increase the
issuance per block, cg. Of course Pg will be reduced in value as a result, but
somewhat surprisingly, the net effect is not necessarily zero sum.

The market capitalization (CAP) for coin X, mx, is a measure of the
aggregate future value of the corresponding blockchain in the same sense that
the CAP of an equity is a measure of the capacity for the underlying corporation
to deliver returns to investors in the future. We do not attempt to economically
justify the CAP of blockchain coins, but rather we treat the CAP as an objective
measure of overall blockchain value that is emergent from the coin market. At
time 7, CAP is related to circulating coin Ix and coin price by mx = Ix(7)Py(7).
Because no new value is generated for a blockchain by circulating more coin, an
increase in issuance alone should not increase the CAP. But since more coin has
been issued, the fiat price of each coin must decrease. Therefore, an increase of
AI coins for chain B during time A7 must decrease the value of coin B by

S o)
)

APp = mp (IB(T§+AI - IBl(T))
_ mpg (1 _ IB(T)—‘,-AI)
- IB(T)+AI IB(T) (6)
- mp
- IB(T)JrAIIB(T)
PB(T)AI
7IB(T)+AI

Suppose that until time 7, chains A and B have each issued I4(7) = Ig(7) =1
total coins and have each issued the same number of new coins per block:
ca(T) = ¢p(1) = c. Because Pg/P4 = «, we also have mp/m4 = a. At time 7,
chain B decides to increase its issuance per block by factor k > 1 for a period of
time A7, i.e. cg(7') = ke while cs(7') = ¢ for 7/ € [1,7 + A7]. At time 7 + AT,
BI total A coins and I total B coins will have been issued, where v > 5 > 1.
As a result, according to Equation 6,

Pao(r+ A7) = PA(T)_%
= P (1-55)
= gPa(r)

16

while
Pg(t + AT)

I
=
\]

= Pp(r
= aPA(T (1—E)

At time 7 4+ A7, noting that R = P4 /(P4 + kPg), the equilibrium allocation
becomes
we(r+ A7) = (R,1—-R)

— Pa 1— —Pa
Pa+kPg> Pa+kPp

- (2 1_1é) (7)

1 ko> 1, ka
BT BT

1 _a
1+k:[3 9 O,_A,_klﬁ

Comparing the new equilibrium in Equation 7 to the equilibrium prior to the
increase in issuance given by Equation 5, we see that chain B will have increased
its share of the hash rate so long as v/(kf3) < 1.

EXAMPLE 3: In 2020, both BTC and BCH are expected to have mined
18.375¢e6 total coins and will reduce their coinbase rewards from ¢ = 12.5 down
to ¢ = 6.25 coins in what is called a halving event'®. At that point, both
chains will have completed fraction 0.875 of their total planned issuance of 21e6
coins. Suppose that at the time of the planned halving, BCH decides instead
to continue issuing 12.5 coins per block for an additional 4 years, and then
resume with the convention of halving the coins every four years after that. This
practice ensures that BCH will always award twice as many coins as BTC (that
is until both coins eventually cut issuance to 0), i.e. £ = 2. BCH will also emit
approximately 2e6 additional coins, which amounts to slightly less that 10%
more than the originally planned issuance. Based on the new issuance, at all
times (/v > 18.375¢6/(2e6 + 18.375¢6) > 0.9. Using Equation 7, we find that in
the worst-case, this increases the allocation for BCH to a/(a 4 0.55) of the total
hash rate from a/(« + 1) before issuance was increased. On July 2, 2019, BTC
traded for approximately 11,000 USD and BCH traded for roughly 400 USD'6.
This implies that o ~ 0.036, which means that the current equilibrium hash rate
allocation for BCH is approximately 0.034 of the total, but it would increase to
0.061 of the total after extending its coin issuance, nearly a two-fold increase.

EXAMPLE 4: Expanding on Example 3, we can imagine a blockchain B that
tunes its issuance in the extreme to achieve a chosen hash rate equilibrium
relative to another chain A. Suppose that Pg/P4 = « < 1, but chain B chooses
¢p = ca/a so that Vp/Vy = 1. Theorem 1 predicts that as long as Pg > 0,
wi = (0.5,0.5). Of course, cg > ca, so B coins are issued more rapidly than

15https: //en.bitcoin.it/wiki/Controlled_supply
16https: //coinmarketcap.com

17

https://en.bitcoin.it/wiki/Controlled_supply
https://coinmarketcap.com

A coins. This means that chain B will have achieved parity in security with
chain A at the expense of more rapidly devaluing its coin relative to coin A. A
natural question is, will the market reward chain B for this increase in security
with an increase in market cap? Note that the mechanism proposed here is more
complicated than the one proposed in Example 3 because here we require that
the chain B protocol has knowledge of the price ratio Pg/P4. One way that
this can be accomplished is for chain B to implement the Oracle contract as
described in Section 6.1.

6.3 Cost of Loyal Mining

In this section, we attempt to quantify the cost for miners who are loyal to
mining a single chain B when there exists an option to mine either chain A or
B. At times, this choice can be profitable, but at other times, there exists an
opportunity cost in the form of higher profits associated with mining on chain
A. Equation 2 gives the hash adjusted reward or HAR vector 7 associated with
the allocation vector w = (xR, y(1 — R)), where x and y are arbitrary positive
constants such that zR + y(1 — R) = 1. Vector « indicates the expected reward
per hash performed on each blockchain. Theorem 1 identifies a unique choice
for z and y that gives an equilibrium allocation, w., which is the only point
where the HAR values for each chain are equal. Finally, Theorem 2 establishes
that when the allocation to chain B is less than the equilibrium; i.e. wp < wep,
the greedy choice is to increase allocation to B and therefore the HAR value is
higher on chain B than on chain A. Thus, in this regime a miner loyal to chain
B will profit. However, once wg > wep, the opposite is true.

For miner m, define hash rate vector ¢ as the allocation for m expressed as
a fraction of total hash rate H; e.g. H¢x gives the hash rate for m on chain X.
The wtility vector for m is defined as

Component U(¢,) x gives the total fiat value captured by m mining for one
second on chain X. Note that U(w, w) gives the aggregate utility for all miners

collectively. The opportunity cost to m for shifting from allocation ¢ to ¢’ is
given by

K(d)?ﬂ-; (rb/vﬂ-l) = U(d)v 7T) - U(d)lvﬂ-/)' (9)
6.3.1 Utility between highly similar blockchains

In the special case where Ty =Tp =T, S4 = Sp, and c4 = cp = ¢, the utility
for miner m is given by

c(Pa + Pp) 11
U = ¢ | —,—).
(pm) = A0 (w y)
At equilibrium, x = y = 1 and utility becomes
cop(Py+ P
U(¢)e = (b(AT B)v

18

Figure 3: Opportunity cost in
USD (Equation 11) to miners
from BTC who divert hash rate
to BCH in order to cause block-
chain reorganization. Attacker
diverts multiple «y times the equi-
librium BCH hash rate (Hach),
where v > 1, in order to create a
fork of the BCH chain. Attacker
also leaves SHgcn to mine on
BTC. For hash rate 8 + -, op-

= =
=) o

opportunity cost per block (USD)
S

— B+y=11 B} .
100 - — B+y=3 portunity cost is lowest as ~y
§+V=i’0 approaches 1, but this requires
L B)
,3+:=15 much longer to reorganize the
YL 2 4 4 s 6 7 8 s dom 12 13 14 15 BCHchain f4 4 = 15 corre-
B sponds to roughly 55% of the

total hash rate.

where ¢ = |¢|. Therefore, the opportunity cost to m for mining with allocation
vector ¢’ is given by

gt = AL (oo (1.0), (10)

'y

EXAMPLE 5: Consider blockchains A and B that are similar in the sense

of Section 6.3.1, and assume that Pg/Ps = « such that w. = (H%a, 1-%04

Assume further that the allocation is initially at equilibrium, i.e. w = w.. Now
suppose that a group of miners m loyal to coin B, and having total hash rate
¢ = kw.p, wish to increase chain B’s share of the hash rate by a factor k,
such that wy = kw.p. Since w exceeds the equilibrium allocation to chain B,
Theorem 2 shows that greedy miners will abandon chain B and therefore only
loyal miners will mine on chain B, i.e. wz = ¢’3. By definition, R = 1/(1 + a),
and from Lemma 1, we have that Ra' =1 — k—o‘ and y'(1 — R) = 1+ . Hence,
according to Equation 10, we find the opportunlty cost per block to be

o). = elbat Pa) (90— 6 (3.3))

_ k k R(l+a) (1-R)(14«

= c(Pa+Pp) 1+aoz = (0, 55) - <lfa(k71)7 ")))
= o(Pa+Pp) ({5 +R-1)

= ¢(Pa+ Pg) (k1+102a)

= ¢(Pa+ Pg)aR(k—1)

= C(/ﬂ — 1)PB

In words, the opportunity cost for miners m to increase the hash rate of chain
B by a factor k beyond the equilibrium allocation for 1 block is exactly equal to
k — 1 times the expected coinbase reward from chain B.

19

EXAMPLE 6: Continuing with Example 5, suppose that a group of miners
m from chain A, having aggregate hash weight (8 +)%, where v > 1 and
B+ < %, conspire to reorgainze, i.e. orphan, the last z blocks on chain B.
They will do this by diverting hash rate v from chain A to a fork of chain B.
Thus, the existing hash rate on chain B, 1%}, will be lost entirely. For simplicity,
we assume that both DAAs come to rest immediately (which incurs negligible
error when z is large). It follows then that, during the attack, the new hash

allocation will be

l—ay ay
l: 1 - 1— .
w' = (+0¢)<1+a,1+a> (1—av,a7)
with fraction %/(ﬁ - 15 = 1357 of w/, and the entirety of wy being

controlled by miners m. In the parlance of Section 6.3.1, we have ¢’ = (af3, ay),
o=a(f+7), 2 =(1+4+a)(l—ay), and ¥ = (1 + «). Therefore, using the
same reasoning as in Example 5, the opportunity cost for miners m is equal to

@ = e (06 (22)
c(Pa+ Pg) (a(B+7) — (aB,a) - (umimw Wlﬂ)))
e(Pa+Pp) (a(B+7) ~ grasti=am ~ 18a

(11)
Figure 3 shows the opportunity cost to BTC miners who attempt to carry out
a reorganization attack on the BCH chain. We assume here that Pgcp = 400,
Pgrc = 11000, and o = Pgcu/Psrc = 0.36 as was the case on July 2, 2019'7.
Prior to attack, BCH has fraction «/(1 + «) of the hash rate. The attacker
diverts ya/(1 +), v > 1, hash rate to a fork of the BCH chain and leaves
fraction Sa/(1 + a) to mine on BTC. The plot shows that opportunity cost is
lowest as v approaches 1, but this also means that the attacker has roughly the
same hash rate as honest miners on the other BCH fork. Thus, a cheaper attack
will take much longer to reorganize the BCH chain for fixed reorganization depth
z.

7 Discussion

7.1 Greedy is obvious, but why cautious?

Section 5 showed empirically that the hash rate allocations among several pairs
of the largest blockchain projects by market cap closely follow the equilibrium
described in Theorem 1. There are exceptions, where the allocation diverges from
equilibrium, but they tend to be short-lived and align closely with events like
hard forks. Also in that section, similar results were observed in simulation when
the majority of miners follow an e-greedy policy (see Definition 8) for sufficiently
small e. This suggests that much of miner behavior can be explained by a
preference for improving immediate reward, but not to an extreme. Specifically,

Thttps://coinmarketcap.com

20

the simulation also showed that for a choice of € that is too large, allocations
oscillate wildly, a phenomenon not typically observed in practice.

So if mining on a particular chain is currently more profitable than mining
on another, why don’t miners fully allocate to that chain, i.e. follow the extreme
greedy policy? Prior works discussed previously in Section 2 provide possible
explanations. Chatzigiannis et al. [11] suggested that miners incur less risk in
the form of variance in block reward by mining simultaneously in a mixture of
pools and across blockchains. Therefore, there exists incentive to mine at least
partially on the less profitable chain in order to enjoy lower variance in payout.
Most chains also impose a cool-down period'® for newly awarded coins during
which they cannot be spent. Bissias et al. [10] argued that this imparts risk
to the miner in the form of price volatility during the cool-down period. They
showed that miners can minimize risk by allocating their hash rate to a mixed
portfolio of blockchains. Thus, again, the extreme greedy policy may be inferior
to a mixed strategy that reduces miner risk

7.2 Implications for Minority Hash Rate Chains

A major conclusion from Kwon et al. [17] is that minority hash rate blockchains
such as Bitcoin Cash (BCH) might be doomed to fail due to a lack of genuine
miner interest. Their reasoning is that, if there exists a loyal miner base devoted
to BCH that exceeds the equilibrium allocation, then no profit seeking miners
will also mine BCH. Thus, the loyal miners will be alone in propping up the
blockchain. While we do not dispute the possibility of this scenario, it is also not
clearly a likely outcome. First, Theorem 2 proves that for greedy but cautious
miners, there exists a tendency to move toward equilibrium. In Section 5, we
demonstrated empirically that this tendency is typically manifested in the real
world. And at equilibrium, there exists no preference to mine one chain over the
other. Thus, there is typically no need for loyal mining to maintain hash rate.
Second, Example 5 shows that loyal mining beyond the equilibrium point incurs
a cost linear in the value of the coinbase reward of the minority chain. Therefore,
loyal miners who are actively propping up the hash rate of a blockchain are
financially disincentivized from continuing this practice over the long-term, which
will also tend to move hash rate allocation back to equilibrium.

The examples in Section 6.2 illustrate that the allocation equilibrium point
itself is quite fluid, depending mainly on the value of the coinbase reward. As
discussed in Section 2, this is a concept that was first suggested in abstract by
Spiegelman et al. [27], and we have extended it by quantifying the change in
equilibrium given a specific change in coinbase reward. The implication of these
results is that minority hash rate blockchains can significantly increase their
security relative to the majority hash rate blockchain by simply adjusting their
coinbase reward. We further demonstrated that this increase in security can be
accomplished for BCH without significantly devaluing the currency.

Finally, for minority hash rate blockchains, there exists a danger that miners

18https://bitcoin.org/en/blockchain-guidefttransaction-data

21

from the majority hash rate chain will force a long reorganization of z previously
confirmed blocks. In Example 6, we derived an expression for the opportunity
cost to attackers from the heavier weight blockchain. For BCH versus BTC
(Figure 3), every reorganization costs at least 100 USD per block. However, the
lowest cost attacks only allow the attacker to match the hash rate on BCH. This
means that the reorganization of many blocks will likely take a long time since it
is required that the attacker mine n 4+ z + 1 blocks in the time the honest miners
mine n. Cost rises exponentially as the attacker increases hash rate beyond
honest BCH miners. For example, if the attackers double the honest hash rate
on BCH, then the opportunity cost jumps to at least 3,000 USD per block for
any set of attackers with less that 50% of the total BTC + BCH hash rate.

8 Conclusion

In this paper, we have shown formally that a singular hash rate equilibrium
arises for miners who split their hash rate among two blockchains assuming that
the miners are both greedy and cautious. If they become overly greedy, then
their hash rate will oscillate in the extreme between the two chains. Assuming
an efficient market for buying and selling hash rate, the results also hold between
two blockchains with different PoW algorithms, and even between PoW and PoS
blockchains where hash rate is replaced by the opportunity cost associated with
locking up stake in the PoS system. We demonstrated these theoretical results
empirically using historical data from real world blockchains and data from a
block mining simulator. Finally, we presented several applications including a
trustless price-ratio oracle, enhanced security for minority hash rate blockchains,
and quantification of loyal mining costs.

9 Acknowledgements

We would like to thank David Jensen and Akanksha Atrey for many thought
provoking discussions, which helped us to focus our investigation. We would also
like to thank Rainer Béhme for his insights in the discussions we had with him.

References

[1] Augur. https://www.augur.net.

[2] Dharma. https://blog.dharma.io.

[3] Dutchx. https://dutchx-rinkeby.d.exchange.

[4] MakerDAO. https://makerdao.com.

[5] MakerDAO Price Feed. https://developer.makerdao.com/feeds.
[6] Neo. https://neo.org.

[7] Numerai. https://numer.ai.

22

https://www.augur.net
https://blog.dharma.io
https://dutchx-rinkeby.d.exchange
https://makerdao.com
https://developer.makerdao.com/feeds
https://neo.org
https://numer.ai

(8]

(9]

(10]

(11]

(12]

(13]

14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

Provable. http://provable.xyz.

AvLTMAN, E., ALEXANDRE, R.-M., MENASCHE, D. S., DATAR, M., DHAMAL, S., AND
Touatl, C. Mining competition in a multi-cryptocurrency ecosystem at the network edge:
A congestion game approach. https://hal.inria.fr/hal-01906954, October 2018.

Bissias, G., LEVINE, B., AND THIBODEAU, D. Using Economic Risk to Model Miner Hash
Rate Allocation in Cryptocurrencies. In Workshop on Cryptocurrencies and Blockchain
Technology (CBT) (2018).

CHATZIGIANNIS, P., BALDIMTSI, F., GRIVA, 1., AND L1, J. Diversification Across Mining
Pools: Optimal Mining Strategies under PoW. In Workshop on the Economics of
Information Security (WEIS) (2019).

Cong, L. W., HE, Z., AND L1, J. Decentralized Mining in Centralized Pools. https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=3143724, February 2018.

Evar, I., AND SIRER, E. G. Majority is not enough: Bitcoin mining is vulnerable. In
International conference on financial cryptography and data security (2014), Springer,
pp. 436-454.

GERvAIS, A., O. KARAME, G., WusT, K., GLYKANTZIS, V., RITZDORF, H., AND CAPKUN,
S. On the Security and Performance of Proof of Work Blockchains. https://eprint.iacr.
org/2016/555, 2016.

Han, R., Sui, Z., Yu, J., Liu, J., AND CHEN, S. Sucker punch makes you richer:
Rethinking Proof-of-Work security model. https://eprint.iacr.org/2019/752, June 2019.

KIrALY, T., AND LoMOSCHITZ, L. Profitability of the coin-hopping strategy. http:
//web.cs.elte.hu/egres/www/qp-18-03.html, March 2018.

Kwon, Y., Kim, H., SHIN, J., AND KiM, Y. Bitcoin vs. Bitcoin Cash: Coexistence or
Downfall of Bitcoin Cash? https://arxiv.org/abs/1902.11064, February 2019.

LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine generals problem. In ACM
Transactions on Programming Languages and Systems (1982), vol. 4, pp. 382-401.

Ma, J., Gans, J. S., AND TOURKY, R. Market Structure in Bitcoin Mining. https:
//papers.ssrn.com/sol3/papers.cfm?abstract_id=3103104, June 2019.

MEesHKOV, D., CHEPURNOY, A., AND JANSEN, M. Revisiting Difficulty Control for
Blockchain Systems. In Cryptocurrencies and Blockchain Technology (CBT) (2017).

MONDERER, D., AND SHAPLEY, L. S. Potential Games. In Games and Economic Behavior
(1996), vol. 14, pp. 124-143.

NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System, May 2009.

PrAT, J., AND WALTER, B. An Equilibrium Model of the Market for Bitcoin Mining.
https: //papers.ssrn.com/sol3/papers.cfm?abstract_id=3143410, February 2018.

Sa1, A. R., BUCKLEY, J., AND LE GEAR, A. Assessing The Security Implication Of
Bitcoin Exchange Rates, 2019.

SAPIRSHTEIN, A., SOMPOLINSKY, Y., AND ZOHAR, A. Optimal Selfish Mining Strategies in
Bitcoin. https://arxiv.org/pdf/1507.06183.pdf, July 2015.

SECHET, A. Implement simple moving average over work difficulty adjustement algorithm.
https: //reviews.bitcoinabc.org/D601, October 2017.

23

http://provable.xyz
https://hal.inria.fr/hal-01906954
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3143724
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3143724
https://eprint.iacr.org/2016/555
https://eprint.iacr.org/2016/555
https://eprint.iacr.org/2019/752
http://web.cs.elte.hu/egres/www/qp-18-03.html
http://web.cs.elte.hu/egres/www/qp-18-03.html
https://arxiv.org/abs/1902.11064
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3103104
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3103104
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3143410
https://arxiv.org/pdf/1507.06183.pdf
https://reviews.bitcoinabc.org/D601

[27] SPIEGELMAN, A., KEIDAR, I., AND TENNENHOLTZ, M. Game of Coins. https://arxiv.
org/abs/1805.08979, May 2018.

[28] WHGEORGE. Decentralized price oracle. https://ethresear.ch/t/decentralized-price-
oracle/1941, May 2018.

24

https://arxiv.org/abs/1805.08979
https://arxiv.org/abs/1805.08979
https://ethresear.ch/t/decentralized-price-oracle/1941
https://ethresear.ch/t/decentralized-price-oracle/1941

	1 Introduction
	2 Related Work
	3 Miner Allocation Among Blockchains
	4 Beyond PoW
	4.1 Basic PoS Equilibria

	5 Evaluation
	5.1 Historical Convergence to Equilibrium
	5.2 Convergence to Equilibrium in Simulation

	6 Applications
	6.1 Trustless Price-Ratio Oracle
	6.2 Increasing Security
	6.3 Cost of Loyal Mining
	6.3.1 Utility between highly similar blockchains

	7 Discussion
	7.1 Greedy is obvious, but why cautious?
	7.2 Implications for Minority Hash Rate Chains

	8 Conclusion
	9 Acknowledgements

