UMassAmherst

Towards Stability Analysis of Data Transport Mechanisms: a Fluid Model and an Application

Gayane Vardoyan*, C. V. Hollot†, Don Towsley*

*College of Information and Computer Sciences,

†Department of Electrical and Computer Engineering

Background

- Stability well-understood: TCP Reno, STCP.
- Less so: CUBIC, H-TCP.
 - Reason: lack of a suitable modeling framework.

Contributions of this Work

- New modeling framework applicable to wide variety of loss-based protocols.
- Application to TCP CUBIC.
 - Result: CUBIC is locally asymptotically stable.
- Simulation framework to test and validate the models.

Brief Introduction to Stability

Instability with TCP CUBIC

Fluid model simulation.
Link capacity of 1 Gbps, delay of 100 ms.

This choice of initial conditions leads to unstable behavior.

Stability with TCP CUBIC

Fluid model simulation.
Link capacity of 1 Gbps, delay of 100 ms.

This choice of initial conditions leads to stable behavior.

The Lesson

TCP CUBIC can be ill-behaved.

In general, more deviation from fixed-point \rightarrow more instability.

Impact on performance metrics like bandwidth utilization.

Effective modeling → conditions for stability → ensure efficient operation of the protocol.

Previous Work

• Misra et al. "Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED." ACM SIGCOMM 2000.

$$\frac{dW(t)}{dt} = \frac{1}{\tau} - \frac{W(t)}{2}\lambda(t-\tau) \longleftarrow (*)$$

- Hollot et al. "A Control Theoretic Analysis of RED." INFOCOM 2001.
 - Analyze system above, present design guidelines for stable AQM operation.
- Liu et al. "Fluid Models and Solutions for Large-Scale IP Networks." ACM/SigMetrics 2003.
 - Uses (*) as a starting point. Model a network of AQM routers. Obtain transient behavior of average queue lengths, packet loss probabilities, latencies.

Definitions

Term	Definition
C	per-flow capacity
au	link delay
$W_{\max}(t)$	the size of the cwnd immediately before loss
s(t)	the time elapsed since last loss
W(t)	the cwnd as a function of time
p(t)	a loss probability function
\hat{x}	fixed-point value of $ {\mathscr X} $

TCP CUBIC: Definition

Congestion window function is given by

$$W(t) = c \left(s(t) - \sqrt[3]{\frac{W_{\text{max}}(t)b}{c}} \right)^3 + W_{\text{max}}(t)$$

c - scaling factor,

b - multiplicative decrease constant,

s(t) - elapsed time since last loss,

 $W_{\mathrm{max}}(t)$ - size of *cwnd* immediately before last loss.

TCP CUBIC in Steady State

Modeling CUBIC

Reno: AIMD

$$\frac{dW(t)}{dt} = \boxed{\frac{1}{\tau}} \left(-\frac{W(t)}{2} \lambda(t - \tau) \right)$$

- Scalable TCP: MIMD
- CUBIC:

$$W(t) = c \left(s(t) - \sqrt[3]{\frac{W_{\max}(t)b}{c}} \right)^3 + W_{\max}(t)$$

New Approach

Observation: loss-based protocols have in common:

- max cwnd before loss, W_{max}(t)
- time since last loss, s(t)

Derive DEs for instead of for W(t)!

Example: TCP CUBIC

Example: TCP Reno

New Model

System of differential equations

(1)
$$\frac{dW_{\max}(t)}{dt} = -(W_{\max}(t) - W(t)) \frac{W(t-\tau)}{\tau} p(t-\tau)$$

(2)
$$\frac{ds(t)}{dt} = 1 - s(t) \frac{W(t-\tau)}{\tau} p(t-\tau)$$

Loss probability function

(3)
$$p(t) = \max\left(1 - \frac{C\tau}{W(t)}, 0\right)$$

New Model: First DE

$$\frac{dW_{\max}(t)}{dt} = -(W_{\max}(t) - W(t)) \frac{W(t - \tau)}{\tau} p(t - \tau)$$

delayed by one round trip time, since loss occurs at a congestion point, not at the source

New Model: Second DE

time since last loss grows by one time unit, and is reset to zero upon new loss

Application to CUBIC

$$(1) \frac{dW_{\max}(t)}{dt} = -(W_{\max}(t) - W(t)) \frac{W(t-\tau)}{\tau} p(t-\tau)$$

(2)
$$\frac{ds(t)}{dt} = 1 - s(t) \frac{W(t-\tau)}{\tau} p(t-\tau)$$

System of differential equations

(3)
$$p(t) = \max\left(1 - \frac{C\tau}{W(t)}, 0\right)$$

$$W(t) = c \left(s(t) - \sqrt[3]{\frac{W_{\text{max}}(t)b}{c}} \right)^3 + W_{\text{max}}(t)$$

Loss probability function

Congestion window function

Asymptotic Stability

Examples: Fluid Model

$$C = 1 \text{ Gbps}$$

$$\tau = 50 \text{ ms}$$

$$|\hat{W} - W_0| = 1.66$$
 segments

$$|\hat{s} - s_0| = 4.4$$
 seconds

initial conditions deviate too far from fixed point

$$C = 1 \text{ Gbps}$$

$$\tau = 50 \text{ ms}$$

$$|\hat{W} - W_0| = 0.008 \text{ segments}$$

$$|\hat{s} - s_0| = 0.044 \text{ seconds}$$

initial conditions yield asymptotically stable response

Model Validation

$$C = 1 \text{ Gbps}$$

$$\tau = 10 \text{ ms}$$

one flow

NHPL – **N**on-**H**omogeneous **P**oisson **L**oss Simulation

Possible application of what we learned: fixed point value can be used to choose initial *ssthresh*.

$$C = 1 \text{ Gbps}$$

$$\tau = 10 \text{ ms}$$

20 flows

Summary

- New modeling framework consisting of a set of differential equations, loss probability function, and congestion window or sending rate function.
- Model used to analyze TCP CUBIC and establish that it is locally asymptotically stable.
- New lightweight simulation framework generalizable to a variety of protocols.
 - Used this to validate the fluid model.

See Vardoyan et al. arXiv:1801.02741, Jan 2018 for full proofs, convergence result, detailed description of simulation framework, and more...

Thank you!

Questions?

Backup Slides

Model Equivalence

$$\begin{split} W(t) &= \frac{W_{\text{max}}(t)}{2} + \frac{s(t)}{\tau} \\ \dot{W} &= \frac{\dot{W}_{\text{max}}}{2} + \frac{\dot{s}}{\tau} \\ \dot{W} &= \frac{1}{\tau} \left(1 - s \frac{W_{\tau}}{\tau} p_{\tau} \right) + \frac{1}{2} \left((W - W_{\text{max}}) \frac{W_{\tau}}{\tau} p_{\tau} \right) \\ \dot{W} &= \frac{1}{\tau} \left(1 - s \frac{W_{\tau}}{\tau} p_{\tau} \right) + \frac{1}{2} \left(\left(W - 2 \left(W - \frac{s}{\tau} \right) \right) \frac{W_{\tau}}{\tau} p_{\tau} \right) \\ &= \frac{1}{\tau} - s \frac{W_{\tau}}{\tau^2} p_{\tau} - \frac{W}{2} \frac{W_{\tau}}{\tau} p_{\tau} + s \frac{W_{\tau}}{\tau^2} p_{\tau} \\ &= \frac{1}{\tau} - \frac{W}{2} \frac{W_{\tau}}{\tau} p_{\tau}. \end{split}$$

Initial Attempt to Model CUBIC

Current and Future Work

- Developed a linearizable version of CUBIC.
 - Simulations show that while this controller is more responsive, it is also less stable.
- Application of fluid model to H-TCP.
 - Conditions derived for stability.
 - Simulations show that H-TCP in general less stable than CUBIC.

Examples

Model Validation

