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= Stability well-understood: TCP Reno,
STCP.

s Less so: CUBIC, H-TCP.

= Reason: lack of a suitable modeling
framework.
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Contributions of this Work

= New modeling framework applicable to
wide variety of loss-based protocols.

= Application to TCP CUBIC.

= Result: CUBIC is locally asymptotically
stable.

s Simulation framework to test and validate
the models.
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Stability: Difference in Responses
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Stability: Difference in Responses
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Stability: Difference in Responses
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Stability: Difference in Responses
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'Undamped oscillation is
undesirable behavior.

'Convergence to a fixed
point is desirable
behavior.
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Instability with TCP CUBIC
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Stability with TCP CUBIC
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TCP CUBIC can be ill-behaved.

In general, more deviation from fixed-point -
more instability.

Impact on performance metrics
like bandwidth utilization.

Effective modeling - conditions for stability
- ensure efficient operation of the protocol.
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Previous Work

= Misra et al. “Fluid-based Analysis of a Network of AQM Routers
Supporting TCP Flows with an Application to RED.” ACM

SIGCOMM 2000.
dW (t) 1 W (t) “
dt T 2 At =) ( )

= Hollot et al. “A Control Theoretic Analysis of RED.” INFOCOM 2001.

= Analyze system above, present design guidelines for stable AQM operation.

= Liu et al. “Fluid Models and Solutions for Large-Scale IP Networks.”
ACM/SigMetrics 2003.

= Uses (*) as a starting point. Model a network of AQM routers. Obtain transient
behavior of average queue lengths, packet loss probabilities, latencies.
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Term Definition
C per-flow capacity
T link delay
Wmax (t) the size of the cwnd immediately before loss
S (t) the time elapsed since last loss
W (t) the cwnd as a function of time
p(t) a loss probability function
> fixed-point value of U
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TCP CUBIC: Definition

Congestion window function is given by

W (0D
W(t)—c(s(t)i’/ maCX ) 4+ Winax (1)

¢ - scaling factor,
b - multiplicative decrease constant,
s(t) - elapsed time since last loss,

Winax (t) - size of cwnd immediately before
last loss.
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Modeling CUBIC

» Reno: AIMD

avey [l wa ’
G EY G TA.
dt s 2 )
s Scalable TCP: MIMD
s CUBIC:

Wi(t)=c (s(t) — i/WmaCX(t)b) + Wiax (%)
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Observation: loss-based protocols have in
common:

= max cwnd before loss, W, . (%)
= time since last loss, s(t)<

Derive DEs for
instead of for W(t)!
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ole: TCP Reno
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New Model

/ System of differential equations \
(1) Wl __(yy,ty - wie) =T
ds(t Wit —
@ W =Dy y
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Loss probability function

(3) p(t) = max (1 - v&%,o)
Y y
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New Model: First DE

change in maximum
congestion window size

|

4 N
dWmaX(t) (t o T)
== (Wiax(t) = W(t)) p(t —7)
dt T
\ .
delayed by one round trip J
time, since loss occurs at > packet
a congestion point, not at loss rate
the source
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New Model: Second DE

time since last loss grows by one time unit,
and is reset to zero upon new loss

|

f 4 N
ds(t Wit —r1
D _fr - s =Dt — 7y
dt T

. g W,
delayed by one round trip J
time, since loss occurs at > packet
a congestion point, not at loss rate

the source
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Application to CUBIC
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Asvmptotic Stabilit

(Givene>(), for any t > 0, N
340 > 0 s.t.
d|£—x0|| <) = ||z —x()|| <e

<

. Jim |2 — 2(1)]| = 0
A

convergence + Lyapunov
to fixed point stability

trajectory

(1) = W(t)
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oles: FIu:d Model
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Model Validation
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C' =1 Gbps
7 = 10 ms

one flow

NHPL — Non-Homogeneous
Poisson Loss Simulation

Possible application of what
we learned: fixed point
value can be used to
choose initial ssthresh.

C' =1 Gbps
7 = 10 ms
20 tflows



Summa

= New modeling framework consisting of a set of
differential equations, loss probability function, and
congestion window or sending rate function.

= Model used to analyze TCP CUBIC and establish that
it is locally asymptotically stable.
= New lightweight simulation framework generalizable

to a variety of protocoils.
= Used this to validate the fluid model.

See Vardoyan et al. arXiv:1801.02741, Jan
2018 for full proofs, convergence result,
detailed description of simulation framework,
and more...
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Questions?
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Model Equivalence
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CUBIC has a fixed 1. Derive DE for

— point located at its cwnd, W(D).
P saddle point. ——> 2. Linearize DE
about fixed point.
w(t) A 3. Obtain dW(t)/dt=0.
)— e e e o o s s e e e mn e e e e mm e mm o —-—
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Current and Future Work

= Developed a linearizable version of
CUBIC.

= Simulations show that while this controller
IS more responsive, it is also less stable.

= Application of fluid model to H-TCP.

= Conditions derived for stability.

= Simulations show that H-TCP in general
less stable than CUBIC.
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Model Validation
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