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Which way to go to find a TV?

(a) (c)(b)
Figure 1: Intelligent Search: (a) Suppose we are in the hallway of an unfamiliar apartment, with three directions to go, and

want to find a TV. Which direction should we go? (b) An intelligent agent, leveraging visual clues and reasoning that a TV

is more likely to be near a couch, might decide to turn right. (c) In this case, such a choice leads quickly to a TV.

1. Introduction
The general recognition of objects, people, actions and

scene types has been a core focus of computer vision re-

search. However, now that we have achieved a degree of

success in these problems, it is time to define new problems

that will spur us to reach the next level of visual intelli-

gence. The development of visual common sense is critical

to the development of intelligent agents that can be useful

in dynamic, novel environments.

But what exactly is visual common sense? We suggest

that the ability to make intelligent assessments of where

things might be, when not directly visible, is a critical and

ubiquitous capability shared by humans and other intelli-

gent beings, and is a fundamental component of visual com-

mon sense. Humans regularly demonstrate the ability to

make decisions in the absence of explicit visual cue (Fig. 1).

This sort of “intelligent search” is a prominent example of

visual common sense, and we believe it represents a skill

that will be essential in developing intelligent agents.

Closely related to our work are earlier efforts on in-

corporating contextual information for visual prediction

[5, 10, 11, 9]. We believe a formal benchmark on such capa-

bilities in the most basic forms can be a valuable addition.

1.1. The Half&Half visual prediction tasks

In this work, we formalize the problem of inferring the

presence of what we cannot already see in an image. To do

this, we rely on the fact that different views of an image de-

pict the same scene. Hence, individual sections can be used

as contextual cues for the other section. For this reason,

we call these tasks the Half&Half tasks. We define three

different Half&Half tasks (Fig. 2):

• Image-to-Label task: One half of the image is pro-

vided, and the task is to infer a categorical label for
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Figure 2: The Half&Half visual prediction tasks.

what is likely to be present in the other half amongst

the given K choices(Fig. 3).

• Label-to-Image task: A target category and a set of

K half images are provided. The task is to infer which

candidate is most likely to have the target in its other

half (Fig. 4).

• Image-to-Image task: A query image and K image

choices are provided, all of them being half images.

The task is to infer which of the choices is the most

likely to be from the same image as the query (Fig. 5).

The three variants of the tasks were inspired by the

common-sense reasoning capabilities of intelligent beings

under uncertainty. Specifically, an agent trying to find a

specific type of object should be able to decide whether

the current direction is promising (Image-to-Label). And

if not, given observations towards other directions, which

one should be preferred (Label-to-Image)? Image-to-Image

is modeling an intelligent reasoning capability to directly

predict the next visual observations, which can enable an

agent to prepare for imminent encounters.

Our hope is that the Half&Half benchmarks, and per-

haps their next generations, drive forward the research in
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designing intelligent agents by training and evaluating such

systems for visual “common sense”. We aim to make this

benchmark public soon and plan to keep a public leader-

board for the benchmarks.

2. The Half&Half Benchmarks
In this section, we describe our three new benchmarks.

Each benchmark is constructed to study one of the three

variants of the Half&Half tasks introduced in Sec. 1.1. We

make use of images and annotations from existing datasets

originally created for object detection or scene understand-

ing. As we will show in this section, the way we create the

benchmarks requires no additional annotations compared to

those standard recognition tasks. This allows us to directly

make use of large-scale existing datasets.

2.1. The Image­to­Label benchmark

Figure 3: Half&Half Image-to-Label benchmark example

Image selection The benchmark is created using the

training and validation images from MS-COCO [6]. We

consider the left half of each image as the context for the

objects present in the right half . From the above sets, we

sample images that have at least one single object present

in its right half. Furthermore, we discard images whose left

half and right half contain any overlapping objects. As a

design choice, we exclude the “person” category and con-

sider only the remaining 79 categories since we observe that

“person” is very common in MS-COCO and has significant

co-occurrence with the majority of other categories. In to-

tal, we obtain 45, 843 images meeting the criteria above.

Problems and splits Out of all the obtained images, we

create a random train/val/test split of 32, 000/3, 843/10, 000
images. Each of the training and validation images are pro-

vided with one image (the left half) and a set of labels from

the right half. From the test images, we form test problems

in the form of the Image-to-Label task. Fig. 3 shows an ex-

ample. Five candidate categories are given where only one

of them actually appears in the right half. For the correct

candidate choice, we randomly pick one object category

that exists in the right half among the ground truth. For the

wrong candidates, we randomly select from all MS-COCO

object categories not present in the whole image.

Evaluation During testing, we evaluate the performance

of a model on the test problems based on whether it can

pick the right candidate among the five choices, and also

the rank that it assigns to the correct candidate. Specifically,

benchmark users are required to report:

(1) Rank-1 Accuracy: 1

N

∑
i
[[ri = 1]],

(2) Mean Reciprocal Rank (MRR): 1

N

∑
i

1

ri
.

Here N denotes the total number of test samples and ri is

the rank of the correct candidate in a model’s output.

2.2. The Label­to­Image benchmark

Image selection Because of the close formulation be-

tween the Label-to-Image and Image-to-Label tasks, we can

reuse the data collected for the Image-to-Label benchmark,

with a few critical modifications. The same set of images,

labels, and train/val/test image split are used. The differ-

ences only lie in the way the problems are formulated.

...CHAIR1.

Query Correct match (i) (viii) (ix)(ii)

Gallery
9 negative choices

2. SPOON ...

Figure 4: Half&Half Label-to-Image benchmark examples

Problems and splits As illustrated in Fig. 4, a Label-to-

Image problem contains a query label and 10 gallery im-

ages. We create one such problem for each of the images in

the benchmark using the following steps:

(1) Each (right-half object label, left-half image) pair from

Image-to-Label benchmark is sampled as query object

and correct candidate;

(2) From the remaining images in the split, images con-

taining the query object label in their right halves are

filtered out. The remaining left-half images are then

ranked based on the similarity scores with the cor-

rect candidate and 9 images are selected randomly as

wrong candidates from the top 100.

We follow [3] and use low-level visual features (GIST and

color histogram) for computing the similarity. In total, we

obtain 47, 370/5, 686/10, 000 train/val/test problem sets.

Evaluation During testing, the objective is to correctly

pick the correct choice among the K = 10 gallery choices.

The evaluated algorithm is required to provide a ranking

among the choices for each test problem, and the two eval-

uation measures, rank-1 accuracy and MRR, are reported.

2.3. The Image­to­Image benchmark

Image selection Since the Image-to-Image task involves

half images as both queries and candidate choices and re-

quires no label annotations, we are able to consider any nat-

ural images for building the benchmark. We chose to use

the SUN360 dataset [12], which offers a large collection of

high-resolution 9104× 4552 rectangular panorama images.

Using panoramas allows us to cut image crops instead of

using adjacent halves. By making the two “halves” some

distance apart, they will have little overlap in content and

offer diverse visual information.
2
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Figure 5: Half&Half Image-to-Image benchmark example

Problems and splits Among all images available in

SUN360, we randomly sample 27, 999 training images and

29, 142 testing images. Each partition is further divided into

a query partition (from which query and correct choices are

drawn) and a gallery partition (from which negative choices

are drawn). We construct one problem for each image in

the query partition: one of its two crops is randomly chosen

as the query image and the other one as the correct choice.

Nine wrong choices are then randomly sampled from the

corresponding gallery partition. A ranking procedure that is

the same as the Label-to-Image benchmark is also applied

to avoid trivial solutions. In total, we obtain 8, 399 training

and 8, 742 testing problems, which are constructed from the

training and testing partitions, respectively.

Evaluation During testing, the objective is to correctly

pick the correct one among the K = 10 choices. The evalu-

ated algorithm is required to pick a top choice for each test

problem. Rank-1 accuracy is reported for evaluation.

3. Methods and Experiments

3.1. Image­to­Label

Our task for this benchmark is to identify object cate-

gories that are likely to be present in the right half by ob-

serving only the left half. We formulate this as a multi-

category classification problem.

We define two types of classifiers: symmetric and anti-

symmetric. A symmetric classifier is a standard CNN

trained on the left-half image to predict the labels of ob-

jects in the left half itself, which is equivalent to a tradi-

tional classifier. Meanwhile, an anti-symmetric classifier is

trained on the same set of left-half images, but with object

categories present in the right half as the target labels.

For training the classifiers, we use the training split pro-

vided by the benchmark. Given the set of all left-half im-

ages, we train a CNN (ResNet-50 [4] pretrained on Ima-

geNet) to predict the presence of object categories. The

last FC layer is modified to match the 79 object cate-

gories we use according to the classifier (symmetric or anti-

symmetric). If there are multiple categories for an image,

we duplicate the left-half image in the training set and as-

sign an individual category to each of the left-half images.

We follow this approach so as to maintain consistent be-

havior with the benchmark-setting, where our candidate list

only contains a single correct object category.

From the trained network, we obtain the posterior prob-

ability distribution over all 79 categories in the MS-COCO

dataset. We evaluate the performance of our context driven

model on the benchmark by computing the ranking of the

five candidate categories in the candidate list according to

their posterior probabilities.

Tab. 1 compares symmetric and anti-symmetric classi-

fiers, as well as a MLP baseline using GIST [8].

Table 1: Evaluations on the Image-to-Label benchmark. For

reference, chance performance is 20% acc. and 0.457 MRR.

Classifier Rank-1 Acc. MRR

MLP (GIST) 42.0% 0.635

Symmetric 58.7% 0.707

Anti-Symmetric 74.3% 0.855

3.2. Label­to­Image

For the Label-to-Image benchmark, our goal is to rank

the candidate images based on the likelihood of containing

the given query object. We propose following two methods.

Indirect training In this case, we use any classifier

trained on the Image-to-Label task to compute posterior

probabilities for the query object. Based on these posteriors,

candidates are ranked. We directly use the anti-symmetric

classifier trained for the Image-to-Label benchmark.

Direct training In the second method, we train a CNN

to directly compare the given candidate images conditioned

on the query label. We formalize this as a classification

problem where, given the candidate set, the objective is to

predict the most likely image to contain the query label. For

each image in the candidate set, we compute a class score

for the query label. To do this, we consider the output of the

classification layer of a CNN. We then normalize the class

scores across candidate images. This reflects the probabil-

ity distribution among the candidate images given the query

label. Finally, ten candidate images are ranked according to

their respective posterior probabilities for the query label.

We use the same ResNet-50 model (ImageNet pretrained)

as our base classifier.

The direct and indirect classifiers are compared in Tab. 2.

Direct training provides a noticeable gain, which suggests

it is beneficial to have a training objective more closely

aligned with the actual evaluation protocol.

Table 2: Evaluations on the Label-to-Image benchmark.

Classifier Rank-1 Acc. MRR

Indirect 44.7% 0.624

Direct 46.6% 0.646
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3.3. Image­to­Image

For this task, given a query image and the 10 gallery im-

ages, the goal is to find the correct match coming from the

same image. As two baselines, we compute the L2 dis-

tance of feature vectors from the last fully connected layer

of a ResNet-18 [4] between the query image and each of the

gallery images. We use models pre-trained on ImageNet [2]

and Places365 [13].

In addition to the baselines, we also train networks with

two different metric learning techniques. Suppose we have

feature vectors, x ∈ R
D×1, y ∈ R

D×1, computed from

the backbone network. With bilinear metric learning, a

similarity score between x and y is computed by x⊺Wy

where W ∈ R
DxD can be trained. We also train networks

with symmetric metric learning that learns L ∈ R
DxD in

(Lx)
⊺
(Ly).

All of our networks are trained using triplet loss [7],

where a triplet is generated with a query image, the cor-

responding correct match, and one of the 9 negatives. Each

model is then trained such that a query image is closer to the

correct match than to the negative. We first train networks

by freezing the parameters in the backbone network. After

W and L are learned, we also fine-tune the entire network.

Table 3: Evaluations on the Image-to-Image benchmark.

Pre-trained f.t.? L2 Symm.

Metric

Bilinear

Metric

ImageNet 47.3% 54.0% 54.1%

ImageNet X 65.3% 64.8% 70.0%

Places365 56.2% 63.1% 65.1%

Places365 X 67.2% 67.7% 69.0%

Results and comparisons are summarized in Tab. 3. A

few observations can be made: (1) Place365 offers better

pre-training compared to ImageNet for our problems; (2)

various metric learning technique all help significantly com-

pared to direct L2 distances; and (3) fine-tuning the back-

bone network offers consisting improvements.

4. Preliminary Results for Visual Navigation

(a) (b) (c)

Figure 6: Example of a navigation task built from the Ac-

tive Vision Dataset. Query: “toilet”; Correct answer: (c).

In this section, we demonstrate how models trained on

our benchmarks can be useful for visual navigation applica-

tions. For this preliminary evaluation, we build a small test

set using the Active Vision dataset [1], originally designed

for indoor navigation. We formulate the problem statement

as: “Which is the best scene to find the target object?”. We

follow the Label-to-Image task formulation to create an ap-

proximation of visual navigation task by sampling a target

object label and three candidate images (one correct, two

wrong) to create a problem (see an example in Fig. 6).

Model trained on our Label-to-Image benchmark (the

direct training variant) achieves 68% accuracy and human

performance is at 98.3%. We conduct a human study with 6

participants. While our model does show significant advan-

tage over chance performance (33%), there is still a large

gap towards human performance, highlighting the impor-

tance of future research in this direction.
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