
INFORMATION AND CONTROL 65, 158-181 (1985)

Sparse Sets in NP-P:
EXPTIME versus NEXPTIME*

J. HARTMANIS

Department of Computer Science, Cornell University, Ithaca, New York 14853

N . IMMERMAN

Departments of Mathematics and Computer Science, Yale University, New Haven, Connecticut

AND

V. SEWELSON*

Department of Computer Science, Cornell University, Ithaca, New York 14853

Received March 6, 1984; accepted May 9, 1985

This paper investigates the structural properties of sets in NP-P and shows that
the computational difficulty of lower density sets in NP depends explicitly on the
relations between higher deterministic and nondeterministic time-bounded com-
plexity classes. The paper exploits the recently discovered upward separation
method, which shows for example that there exist sparse sets in NP-P if and only if
EXPTIMECNEXPTIME. In addition, the paper uses relativization techniques to
determine logical possibilities, limitations of these proof techniques, and exhibits
one of the first natural structural differences between relativized NP and CoNP.
© 1985 Academic Press, Inc.

INTRODUCTION AND OUTLINE OF RESULTS

It is well known that if higher deterministic and nondeterministic com-
plexity classes do not collapse then the corresponding lower classes are also
distinct. This downward separation is easily obtained by padding arguments
and it yields, for example, that EXPTIME # NEXPTIME implies P ~ NP.
In this paper we prove that for some important complexity classes there
also exists an upward separation method which reveals that certain struc-
tural properties of P, NP, and PSPACE would imply the separation of

* This research was supported, in part, by National Science Foundation Grants MCS83-
01766 and MCS81-05754.

, Current address: Department
College, Hanover, NH 03755.

0019-9958/85 $3.00
Copyright ~ 1985 by Academic Press, Inc.
All rights of reproduclion in any form reserved.

of Mathematics and Computer Science, Dartmouth

158

E X P T I M E VERSUS N E X P T I M E 159

higher (exponential) deterministic and nondeterministic complexity
classes.We investigate this strong and unexpected coupling of the structural
properties of lower and higher complexity classes by the upward separation
method and use relativization techniques to explore possible structural
properties of NP sets as well as limitations of these proof techniques.

The original motivation for this work was the desire to understand better
what makes the computational solution of problems in NP hard, provided
P ¢ N P . It is generally conjectured that P C N P (Aho, Hopcroft, and
Ullman, 1974; Garey and Johnson, 1979) and therefore, for example, it is
thought to be very difficult to determine whether Boolean formulas in con-
junctive normal form have satisfying assignments. Furthermore, there is a
more explicit belief that the computational difficulty of finding satisfying
assignments for Boolean formulas does not depend only on the existence of
the aggregate of satisfiable Boolean formulas, SAT, but that there are
"individual" instances of formulas for which it is hard to find satisfying
assignments. In particular, we conjecture that there are syntactically simple,
sparse subsets of Boolean formulas for which it cannot be decided in
polynomial time whether they are satisfiable.

In this paper we show that lower density sets in NP and P S P A C E (but
apparently not in CoNP) can be coded more compactly to yield denser sets
in the correspondingly higher complexity classes. Therefore, lower density
sets can exist in NP-P if and only if the higher complexity classes do not
collapse.

More precisely, a set A is sais to be sparse if and only if it contains only
a polynomial-in-n number elements up to size n (Berman and Hartmanis,
1977; Hartmanis, 1983)

Some of the following results were first outlined in (Hartmanis, 1983;
Hartmanis, Immerman, and Sewelson, 1983).

THEOREM. There exists a sparse set in NP-P, PSPACE-NP, or
PSPACE-P if and only if, respectively, N E X P T I M E ~ EXPTIME,
E X P S P A C E ~ NEXPTIME, and E X P S P A C E ~ EXPTIME.

This result has the interesting implication that if P ~ N P but
E X P T I M E = N E X P T I M E then any sparse set in NP is already in P.
Furthermore, since A E N E X P T I M E - E X P T I M E implies that T A L L Y (A)
is in NP-P (Book, 1974; Book, Wrathall, Selman, and Dobkin, 1978), we
conclude that there exist sparse sets in NP-P if and only if there exist tally
sets in NP-P. Later in this paper we will see that this property does not
necessarily hold for CoNP-P.

It is interesting to note that it has been shown by Wilson (1980; Book,
Wilson, and Xu, 1981) that there exist oracle sets A such that

pA V~ Npa but E X P T I M E A = N E X P T I M E A.

160 HARTMANIS, IMMERMAN, AND SEWELSON

Furthermore, it has been shown more recently by Kurtz (1985) that there
are oracle sets B such that P ~ NP ~ and NPB-P B contains no sparse sets.
Since our results hold for relativized computations as well, we now know
that EXPTIME A= NEXPTIME A if and only if there are no sparse sets in
NpA-p A. This shows that the two relativization results mentioned above
are equivalent.

The above results can be generalized to show that the collapse of deter-
ministic and nondeterministic classes below exponential time forces the
corresponding sets of higher density from NP into P and that the collapse
starts bounding the computation time of SAT.

THEOREM. There are no 6(n)= n l°gn uniformly distributed dense sets in
NP-P if and only if

U NTIME[2C'/~] = U TIME[2c'/~]
c>O c>O

and if this happens then S A T e TIME[2C'f~].

An interesting question is whether the assumption that S A T can be com-
puted in less than exponential time has direct structural implications on the
higher complexity classes. We show that at least for relativized com-
putations the computation speed of NP problems can be decoupled from
structural properties of the exponential complexity classes.

THEOREM. There exists an oracle A such that

NPA ~-- U TIMEA[nc*°g"]
c?~O

and

EXPTIME A ~ NEXPTIME A.

These upward separation results have other implications about the
relations between complexity classes based on the fact that standard
diagonalization methods can be "slowed down" to yield sparse sets which
separate complexity classes. We state one such result.

COROLLARY. I f TIME[n l°g"] ~ NP then

P ~ NP, EXPTIME ~ NEXPTIME,

EEXPTIME ~ NEEXPTIME, etc.,

E X P T I M E VERSUS N E X P T I M E 161

as well as

P ~ P S P A C E and E X P T I M E ~ EXPSPACE,

where E E X P T I M E = U c > o T IME [2C2"].

Conversely, if we could separate P from NP by a sparse set then we
would have shown that P ~ NP as well as E X P T I M E # NEXPTIME,
which may be a much harder task than just showing that P CNP.
Therefore, we conjecture that the separation of P and NP will be first
acheived by an indirect proof or a constructive proof yielding a set in NP-P
which is not sparse. For related ideas see (Kozen, 1978; Kozen and
Machtey, 1980).

In this connection it is interesting to observe that until now the
separations of nondeterministic complexity classes have been obtained with
proofs by contradiction (translation lemmas), not by explicitly yielding the
sets which separate the complexity classes (Cook, 1973; Ibarra, 1972;
Seiferas, 1977). Furthermore, our results show that Ladner's (1975) delayed
diagonalization construction of an incomplete set in NP-P, under the
assumption that P ~ NP, cannot be modified, even by techniques that do
not relativize, to yield a sparse set unless E X P T I M E ¢ NEXPTIME.

A very interesting open problem is the existence of sparse sets in the
polynomial-time hierachy, P H (Garey and Johnson, 1979; Stockmeyer,
1976), under the assumption that E X P T I M E = NEXPTIME. Or equivalen-
tly, if there are no sparse sets in NP-P can there exist sparse sets in PH-P?
Quite surprisingly, we show that for some relativized computations the
collapse E X P T I M E = N E X P T I M E does not imply the collapse of the
exponential-time hierarchy, EXPH, and therefore even though there are no
sparse sets in NP-P there can be sparse sets in PH-P.

THEOREM. There exists an oracle A such that E X P T I M E "~ =
N E X P T I M E A and ~,~,A ¢ N E X P T I M E A. Therefore there are no sparse sets
in NP A - pA but there are sparse sets in S~' A _ pA.

In spite of this oracle, we still conjecture that the collapse of
E X P T I M E = N E X P T I M E implies the collapse of the entire exponential-
time hierarchy. However, the existence of the oracle gives evidence that the
proof of such a result would be difficult.

Another relativization result reveals a limitation of the upward
separation method and shows an early structural difference between
relativized NP and CoNP sets.

We first observe that the upward separation results for NP relativize and
we get the following generalization.

162 HARTMANIS, IMMERMAN, AND SEWELSON

COROLLARY. For any A, there are sparse sets in N p A - p A i f and only if
there are tally sets in NPa-P A and this happens if and only i f
E X P T I M E A ~ N E X P T I M E A.

Quite surprisingly this is not the case for relativized CoNP computations
from which we can force out tally sets without forcing out all sparse sets

THEOREM. There exists an oracle B such that CoNpB-p 8 contains sparse
sets but C o N E X P T I M E B = E X P T I M E '~ and therefore there are no tally sets
in CoNPB-P B.

SPARSENESS RESULTS

In this section we introduce the upward separation method and derive
necessary and sufficient conditions for the existence of sparse sets in NP-P,
PSPACE-NP, and PSPACE-P, respectively. We assume that the reader is
familiar with the standard results and notation about deterministic and
nondeterministic polynomial-time computations (Aho et al., 1974; Garey
and Johnson, 1979). We say that a set S, So_S*, is sparse if and only if
there exists a constant k such that

I S ~ (~ + Z')" I <~nk+k

i.e., the number of elements in S up to size n is polynomially bounded in n.
Let P and NP denote the deterministic and nondeterministic polynomial
time acceptable languages, respectively. Let

E X P T I M E = ~ TIME[2C"],
c>0

N E X P T I M E = U NTIME[2Cn],
c>O

E E X P T I M E = [,_) TIME[2C2"],
c>O

and

N E E X P T I M E = U NTIME[2"2"] •
c>0

It is interesting to note that the location of the constant in the exponent is
required by the upward separation method.

Intuitively, a sparse set has so few elements that it seems reasonable that
there should be some compact way of naming its members such that we

E X P T I M E VERSUS N E X P T I M E 163

can recover the original string from this short name in nondeterministic
exponential time. In fact, there is such a way and it is that property on
which the following proof depends. We would like to be able to name a
string by its position in the sparse set, e.g., the 15th string, but it would
take double exponential time to recover the original string from this
encoding. Hence, we shall use nondeterminism to be able to simulate
knowing a string's position in S and hence be able to recover the string in
nondeterministic exponential time.

THEOREM 1. There exists a sparse set S in NP-P if and only if

E X P T I M E ¢- NEXPTIME.

Proof If E X P T I M E ¢ NEJ(PTIME then we may assume that there
exists a set A, A_c {0, 1}*,

A ~ N E X P T I M E - EXPTIME.

If we prefix each string in A by a 1 and interpret these strings as binary
representations of integers, then we can convert A to tally notation:

T A L L Y (A) = { l " l n ~ 1A}.

Since A is in N E X P T I M E and not in E X P T I M E

TALL Y(A) e NP-P.

Thus we see that under this assumption there exists a sparse set in NP-P
(Book, 1974; Book et al., 1978).

Conversely, suppose that E X P T I M E = NEXPTIME. We shall then show
that every sparse NP set is in P. If we let S be a sparse set in NP, as stated
above, we will encode S into a new set S' that we shall show to be in
NEJ(PTIME and hence in EXPTIME. From this we shall be able to con-
clude that S ~ P . Let p(n) be a polynomial such that I s n n s L <<.p(n).
Assume that the elements of S are lexicographically ordered. We define S'
as follows.

S ' = { n # i # j # k # d [3 x 1 < x 2 < "'" < x i < ~ x < y t <Y2 < " " y j ~ S

and Ixll = lyjI = n and the kth digit o f x i s d } .

So, given x of length n in S, x corresponds to five-tuples n # i #
j # k # d, where i and j encode lower bounds on the position in S of x and
where k and d encode the characters that make up x. It is important to
note three things at this point:

643/65/2-3-6

164 HARTMANIS, IMMERMAN, AND SEWELSON

1. Given x ~ S of length n the n # i # j # k # d's that correspond to x
are of length O(log n) due to the sparseness of S.

2. Given a five-tuple n # i # j # k # d we need to guess only a
polynomial in n number of strings of length n to verify that n # i #
j # k # d E S ' .

3. Verification of membership in S is a nondeterministic polynomial-
in-n process--so requires an existential quantifier.

From these we see that S 'eNEXPTIME. Since we assumed that
EXPTIME = NEXPTIME, we now know that S' ~ EXPTIME. We shall
use this fact to show that S e P.

Given x of length n, we first find the exact census of S, i.e., we find cn =
[Xnn S[. We run our exponential time algorithm for membership in S' on
thep(n) pai rsofs t r ings

n # 1 # 0 # 1 # 0 and

n # 2 # 0 # 1 # 0 and

n # 3 # 0 # 1 # 0 and

n # 1 # 0 # 1 # 1 ,

n # 2 # 0 # 1 # 1 ,

n # 3 # 0 # 1 # 1 ,

n # p (n) # O # 1 # O and n # p (n) # O # 1 # 1 .

c, will be the i - l , where i is the least integer such that both
n # i # 0 # 1 # 0 ¢ S' and n # i # 0 # 1 # 1 ¢ S'. This is because asking if a
pair of strings n # i # 0 # 1 # 0 and n # i # 0 # 1 # 1 is in S' is simply ask-
ing if there are at least i strings of length n in S. Since we run an exponen-
tial in log n algorithm at most a polynomial in n number of times, we can
find c, in polynomial time.

Knowing the census cn we observe that there is some pair of integers io
and Jo whose sum is cn such that there are exactly io strings in S of lengh
less than or equal to n that are smaller than x and exactly J0 strings in S of
length n that are greater than x. By noting that all of the
n # io # Jo # k # d in S' will describe x, we simply run our exponential
time algorithm for S' on

{ n # i # j # k # d l i + j = c ~ , k = l, 2,...,n

with d the appropriate character of x }.

x will be in S if and only if for some pair i 0 and Jo all of the appropriate
n # i o # J o # k # d are in S'. Again we run an exponential in log n
algorithm at most a polynomial in n number of times and hence we can
determine whether x is in S in polynomial time. |

By similar reasoning we can derive related results for PSPACE.

E X P T I M E VERSUS N E X P T I M E 165

COROLLARY 2. There are sparse sets in PSPACE-NP and PSPACE-P if
and only if E X P S P A C E # N E X P T I M E and E X P S P A C E v a EXPTIME,
respectively.

Quite surprisingly, we will show later that related results do not hold for
relativized CoNP computations, whereas all above results hold for
relativized computations.

It is interesting to note that it is possible to relativize computations so
that NPA v a pA and E X P T I M E A = N E X P T I M E A (Wilson, 1980). Since
Theorem 1 relativizes, this is equivalent to the case in which there are no
sparse sets in NPA-P A but yet E X P T I M E A= N E X P T I M E ~ (Kurtz, 1985).

Next we show that the previous result can be sharpened considerably.
We say that a set S is polynomial-time printable if and only if there is a k0
such that all the elements of S, up to size n, can be printed by a deter-
ministic machine in time nk°+ ko. Clearly, every polynomial-time printable
set is sparse and is in P.

COROLLARY 3. There ex&ts a polynomial-time printable set S such that
S n S A T ~ NP-P if and only i f E X P T I M E ~ NEXPTIME.

Proof. From the previous result we know that if there exists a sparse
set in NP-P then E X P T I M E ~ NEXPTIME. Therefore, we just have to
show that

E X P T I M E ¢ N E X P T I M E

implies that the desired set S exists and that

S n S A T ~ N P - P .

Let A ~ N E X P T I M E - E X P T I M E then T A L L Y (A) ~ NP-P. Since
T A L L Y (A) is in NP it can be reduced to S A T by a one-to-one, length
increasing polynomial time reduction g (Berman and Harmanis, 1977;
Cook, 1971; Aho et al., 1974). This guarantees that

g E T A L L Y (A)] and g(l*)

are sparse sets and furthermore that g(l*) is polynomial-time printable.
Since g is a reduction of T A L L Y (A) to S A T we know that

x ~ TALLY(A).~. , g(x) e SAT.

Therefore g [T A L L Y (A)] ~ _ S A T n g (I *) and if g (l t) ~ S A T then
l t~ TALLY(A) , yielding g [T A L L Y (A)] = S A T n g(l*). Finally,
g [T A L L Y (A)] ~ N P - P since T A L L Y (A) c N P - P . This completes the
proof. |

166 HARTMANIS, IMMERMAN, AND SEWELSON

The existence of sparse polynomial-time recognizable sets S such that
S n S A T e N P - P was conjectured by D. Joseph (1982). The above results
show that sparse sets exist in NP-P if and only if there exist polynomial-
time printable sets S such that S n SATe NP-P.

COROLLARY 4. There ex&t sparse sets in NP-P if and only if there exist
tally sets in NP-P.

Finally, it is easily seen that we have actually shown that
EXPTIME=NEXPTIME if and only if every sparse set in NP is
polynomial-time printable. Therefore if one could show that there are
sparse sets in P which are not polynomial-time printable it would follow
not only that P ~ NP but also that EXPTIME # NEXPTIME.

We have seen that there are polynomially sparse sets in NP-P if and only
there is a separation of complexity classes at the exponential level. It is
interesting to ask whether something happens to other classes besides
polynomial ones if EXPTIME= NEXPTIME, or whether there is some
special relationship between exponential and polynomial classes. In the
next result, we see that not only does the collapse of EXPTIME and
NEXPTIME push all sparse from NP into P but it pushes sets of density
~(n) from NTIME[6(n)] into TIME[6(n)].

We say that the set A has density 6(n) if

]An(~+X)" i<~f (n) .

COROLLARY 5. For n < 6(n) <~ 2" with log(f(n)) computable in time 6(n) c
for some constant e, there is a set of density 6(n) in

U NTIME[6(n)C]- U TIME[6(n) c]
e > 0 c > 0

if and only if EXPTIME ~ NEXPTIME.

Proof The proof is very similar to that of Theorem 1. If EXPTIME ¢
NEXPTIME and A e N E X P T I M E - EXPTIME then

{x# la-kzIxb-lXllxeA}e U NTIME[g(n)C] - U TIME[g(n)C],
c > 0 c > 0

and has density 6(n).
Conversely, if S has density 6(n) and

Se U NTIME[6(n) '] - U TIME[6(n)C],
c > 0 c>O

EXPTIME VERSUS NEXPTIME 167

then the same S' as in Theorem 1 will be in N E X P T I M E - E X P T I M E .
One has only to note that in this case the length of a five-tuple, n # i #
j # k # d , in S' has length O(log(f(n))). |

O T H E R DENSITIES

From the above, we see that in order to separate EXPTIME and
NEXPTIME it is enough to have a sparse set in NP-P. We looked at
sparse sets in order to formalize the notion of an "individual" instance of a
satisfiable Boolean formula. Therefore, it seems that the choice of sets of
polynomial density was rather arbitrary. We shall now investigate the con-
sequences of the existence in NP-P of sets of various densities. We divide
this investigation into two parts, one for sets whose density is greater than
polynomial and one for sets whose density is smaller. The reason behind
this division is that the technique of Theorem 1, in order for the original
restricted density set S to be in P, requires that we guess and verify the
membership of at most polynomially many strings. To do this, given a
string x of length n, we need to find an interval around x that contains at
most a polynomial in n number of strings of S. If S is of density greater
than polynomial, it is not clear how to do this. And this seeming inability
to trap polynomially many elements of S leads to the "uniformity conjec-
ture" below. However, if S has density less than polynomial, then we can
trap polynomially many elements of S around x by simply taking all
strings in S up to length n.

For sets with density lower than polynomial in NP-P we are able to
prove the separation of deterministic and nondeterministic complexity
classes higher than exponential.

THEOREM 6. For any monotonically increasing, time-constructible T(n),
where T (n) > 2 n and where 27"-~/n) is computable in time bounded by a
polynomial in n,

U NTIME[T(n) c] ~ U TIME[T(n) c]
c > 0 c > 0

if and only there b a set of density 2 r l(n) in NP-P.

Proof Let T (n) > 2 n be monotonically increasing and time-construc-
tible and suppose that

~) NTIME[T(n)"] ¢ U TIME[T(n)C] •
c>O c>O

168 H A R T M A N I S , IMMERMAN, A N D SEWELSON

Let A ~ Uc>oNTIME[T(n) c] -Uc>oTIME[T(n)C]. It is easy to see that
A ' ~ N P - P , where A ' = { x # lr(rxl)-ixilx~A}. To see that A' has the
correct density, note that up to length n there are at most 2 r-'~n) strings of
the form x # 1T<I~t) jxl, since for these strings Ixl = T l(n).

Conversely, if we assume that

NTIMEET(n) c'] = U TIME[T(n) (']
c > 0 c > 0

and let S~ NP and suppose S has density 2 r-l("), we shall show that S~ P.
Let S be in NTIME [nk+ k] for some k. Define S' to be

{ t # ilup to length T(log t) there are at least i strings in S}.

Note that for t # i to be in S', the density of S ensures that i < t .
S'~NTIME[T(n) c] for some c, since on input t # i of length at most
2 log t we guess i < t strings of length T(log t) and verify that they are in S.
This takes time

iT(log t)[T(log t) k + k] ~< tT(log t)[T(log t) k + k].

Since T(n)> 2", this takes time at most

T(log t)T(log t)[T(log t) k + k] ~< T(2 log t)T(2 log t)[T(2 log t) k + k],

which is polynomial in T of the input length, as desired.
Since we assumed that

U NTIME[T(n)(] = U TIME[T(n)C] ,
c > 0 c > 0

then S'eTIME[T(n) a] for some d. Hence, on input t # i we can deter-
ministically compute the maximal i, such that t # i, E S'. But then, in
TIME[T(n) f] we can compute for input t # 1 the sequence of i, stings in S
up to size T(log t), x, # x2 # "" #xi,. Thus, for any x of length n, a deter-
ministic polynomial time machine can compute the same string from input
2 r-'~") # 1 and check if x~ S. Hence, if

U NTIME[T(ny] = U TIME[T(n)"]
c > 0 c > O

then S e P. l

In particular, if we let T(n)= 2 2n in Theorem 6 we get the following
corollary. Recall that a set A, A _~ _r*, is super sparse if there exists a con-
stant k such that

iA r~ (e+x)n l ~<klog n.

E X P T I M E VERSUS N E X P T I M E 169

COROLLARY 7. There exist super-spare sets in NP-P if and only i f

E E T I M E = U T IM E [2r2"] ¢ L) N T I M E [2r2"] = NEETIME.
r > O r > O

The sparseness results can also be generalized to sets of greater than
polynomial density and the corresponding collapse of deterministic and
nondeterministic classes below exponential time. Furthermore, the collapse
of these classes starts bounding the computation time of SAT. We illustrate
these possible generalizations with the next result.

Recall that the set A has density 6(n) if

]A (~ (e+Z) '] ~< 6(n).

To prove the following result we need the assumption that the 6(n)-dense
sets are uniformly distributed. We conjecture that this assumption is not
needed, but so far have not been able to eliminate it from the proof:

A set A of density 6(n) is uniformly distributed if and only if any
interval of length 2"/6(n) contains at most polynomially many
elements of A up to size n, where an interval is any set of strings
consecutive in the lexicographic ordering of X*.

Note that for A to be uniformly distributed, it is enough for each of the
6(n) canonical intervals that divide X" equally to have only polynomially
many elements of A. A canonical interval consists of all strings of length n
that have the same log (6(n)) leading bits.

THEOREM 8. There are no 6(n)= n l°gn uniformly distributed dense sets in
NP-P if and only i f

N T I M E [2 c'/~] = [9 T IME[2 ~'/~]
e > O ¢ > 0

and i f this happens then S A T e TIME[2C'/~].

Proof. To prove one direction, suppose that

U NTIME[2c'/~] ~ ~ TIME[2C'/~],
e > O c > O

and let A_~ {0, 1}* and

A e U N T I M E [2c'/~] - [9 TIME[2C'G] •
c > O c > O

170 HARTMANIS, IMMERMAN, AND SEWELSON

Define

A ' = { x # 12"/W-lxl]x6A}.

Clearly A' ~ NP-P. Given

w = x # 12"/~xl - rxl

of length n, Ix I= log 2 n. Therefore, there are at m o s t 2 l°g2n s u c h w, and so
A' must have density ~<n l°g'. Each of the canonical intervals has at most
one element of A', since A' has at most one string of length n beginning
with any sequence of logZn bits. Thus A' is uniformly distributed.

Conversely, suppose S~NP has density 6(n)=n ~°g" and that each
canonical interval has fewer than n k' + k' elements of S. Then the set

C = (t # l # i lin the lth interval of strings of length t there are at least i
elements in S}

is in NTIME [-2~'f~], for some k. Since for x of length t, the representation
of t, i, and l is bounded by log 2 t, and in time t k = 2 k l°g2t, we can guess the
i ~< t~'+ k' strings and verify that they are in the /th interval and in S. A
string x is in t he / th interval if and only if its first log(6(n)) bits are l, hence
it is easy to verify.

If NTIME[2 k'/~] ~_ TIME[2 e'/~] then in TIME[2 d'~/~] we can compute
the maximal it.l such that t # l # i,.z ~ C. This gives the number of strings of
S of length t in the /th interval. But then, a TIMEE2 a''/~] machine can
compute, for input t # l, the i,,t strings in S in t h e / t h interval. Hence, for
any x of length t, a deterministic polynomial time machine can compute
the strings of S of length n in the same interval as x and check if x e S.
Thus S ~ P. To see how the computation time of SA T is affected, observe
that NP~_ U,.>oNTIME[2C~/~]. |

The crucial points that make the above technique work are that when we
encode the 6(n) dense set into shorter strings, we encode strings of length n
into strings of length log(6(n)) and that to verify the encoded set, we guess
no more than nk+ k strings for some k. This is where the uniformity was
required.

In the above proof we used the number of the canonical interval for the
log(6(n)) bits. However this can be generalized to any log(6(n)) bits which
somehow encode the endpoints of an interval with only'polynomially many
elements of the set in question. From this we propose the following weaker
notion of uniform distribution. A 6(n) dense NP set S is uniformly dis-
tributed if given a string x of length n, we can guess log(6(n)) bits of infor-
mation from which in time n ~ + k, we can nondeterministically compute an
interval that contains only polynomially many elements of S, including x, if

E X P T I M E VERSUS N E X P T I M E 171

x ~ S. It is our belief and we conjecture that any 6(n) dense N P set S is
uniformly distributed. The reason for this conjecture is that an NP set is
computationally fairly simple. It would seem incongruous for this simplicity
to be coupled with a complex distribution. If this uniformity conjecture is
true, not only may we drop the uniformity condition from the above
theorem, but we have an interesting connection between NP sets and
Kolmogorov complexity with bounded computation time.

In the last theorem, we saw how structural properties of N P sets affect
the deterministic computation of SAT. This leads us to wonder if the com-
putation time of S A T has any structural effect on NP. A negative answer to
this question is suggested by the following theorem. As with all
relativization arguments, this does not imply that this holds for regular
(not relativized) computations, but it shows that there are "worlds" for
which this result holds and indicates that the result is most likely very hard
to prove or disprove for regular computations.

THEOREM 9. There exists an oracle A such that

NP A ~_ TIMEA[n l°g~] and E X P T I M E A ~ N E X P T I M E A.

Proof Sketch (For details see Sewelson, 1983). This oracle is construc-
ted as the disjoint union of two sets. The strings of A that start with a 0
encode a N E X P T I M E A set into A that can not be decoded in exponential
time using the oracle A thus ensuring that N E X P T I M E A ¢ E X P T I M E A.
The strings of A that start with 1 encode an NPA-complete set into A such
that this complete set can be recovered in n c log n.tim e using the oracle A
thus ensuring that N P A ~ _ Uc>oTIMEA[nc~°gn]. More precisely,

1. L = { l " t 3 y ([y [= 2 n and 0 y e A) } will be constructed by
diagonalization so that it is not in E X P T I M E A.

2. L (N A) = {x[1 # x # 0 hI°g" e A }, where L (N ~) is complete for N P 8
for any oracle B and where N B runs in time n~+ k.

A is constructed in stages so that the above two requirements are
met. |

SEPARATION RESULTS

Next we show that the upward separation results have very strong
implications under the assumption that NP contains a deterministic, time
bounded complexity class above polynomial. If this happens, then standard
diagonalization arguments, when they are slowed down, can produce
sparse and super-sparse sets in NP-P. As we have seen, this forces the
higher complexity classes not to collapse.

172 HARTMANIS, IMMERMAN, AND SEWELSON

THEOREM 10. Let R(n) be real-time computable and for all k >~ 1 let

n k

lim~ R - ~ = O.

Then TIME[R(n)] c_NP implies that for any monotonically increasing,
time-constructible T(n), where T(n)> 2 ~ and where 2 r-~(') is computable in
time polynomial in n,

NTIME[T(n) c]¢ ~ TIME[T(n)C].
c>0 c>0

Proof Since R(n) is real-time computable the limit condition permits
us to diagonalize over all deterministic polynomial time machines. Since
this diagonalization process can be stretched out by rejecting large num-
bers of elements before diagonalizing over the next machine, we see that
deterministic diagonalization can yield sets of any computable density in
TIME[R(n)] - P. Therefore, if

TIME [R(n)] ~_ NP,

we know that NP ¢ P and because of the arbitrarily sparse sets in NP-P an
application of Theorem 6 separates deterministic and nondeterministic
classes at the T(n) c level.]

Taking particular values of R(n) and T(n) yields

COROLLARY 11. I f TIME[n ~°gn] c__NP then

P ~ NP, EXPTIME ¢ NEXPTIME, EEXPTIME ~ NEEXPTIME,

etc., as well as

P ~ PSPACE, EXPTIME ¢ EXPSPACE, etc.

Theorem 10 can easily be generalized to other complexity classes.

COROLLARY 12. I f TIME[n l°g'] ~_ PSPACE then

P v ~ PSPACE, EXPTIME ~ EXPSPACE, etc.

It is interesting to note that if we could show that P ¢ NP by any process
which can be "stretched" to yield sparse and super sparse sets, then we
would not only have shown that P ~ NP, but also that

EXPTIME ~ NEXPTIME

EXPTIME VERSUS NEXPTIME 173

and

EEXPTIME 4= NEEXPTIME.

Clearly, one possibility of showing that not only P :/: NP but that the
higher deterministic and nondeterministic time computations are different,
is suggested by Theorem 10. This would require showing that NP contains
some (properly defined) deterministic time classes above polynomial.
Unfortunately, at this time we do not believe that this is true. We conjec-
ture that NP contains P properly and that furthermore NP contains no
deterministic time classes above P. We conjecture that the corresponding
relations hold between P and PSPACE and NP and PSPACE.

In spite of this belief, we are able to find a relativized world where,
indeed, NP contains a deterministic-time class higher than polynomial and
hence one where all classes are distinct. It is interesting to contrast this
oracle with the long standing unsuccessful search for a single oracle A such
that A simultaneously separates every level of the polynomial time
hierarchy, ie.

(Baker and Selman, 1979).

THEOREM 13. There is an oracle B such that

U TIMEB[ncl°gÈ] ~- NPB
c > O

Proof Sketch (For details see Sewelson, 1983). We construct B to con-
tain an encoded [)c>oTIMEB[ncl°gn]-complete set. Let M A be an n kl°g-
time bounded oracle Turing machine such that L(M A) is complete for
U~>0 TIMEA [ncl°gn] under polynomial-time many-one reductions for all
oracles A. If we create B such that

MB(x) accepts ~=~ 3 y(ly[= [x] 2, x # y ~ B)

then L(M B) ~ NP B. Hence we shall have

Q) TIMEB[n cl°g'] ~ Np B,
c > O

as desired. |

174 HARTMANIS, IMMERMAN, AND SEWELSON

SPARSE SETS IN THE POLYNOMIAL-TIME HIERARCHY

A fascinating and important open problem in this research area is the
relation between the nonexistence of sparse sets in NP-P and in other parts
of the polynomial-time hierarchy. The main problem is whether the
collapse E X P T I M E = N E X P T I M E which forces all sparse sets from NP
into P also forces all sparse sets from the polynomial-time hierarchy
(Garey and Johnson, 1979; Stockmeyer, 1976) into P.

The importance of this problem is emphasized by the fact that many
interesting sparse sets are in the polynomial hierarchy if and only if the
hierarchy is finite. For example, it has been observed by A. R. Meyer that
there exist polynomial size circuits for S A T if and only if there exists a
sparse oracle set S such that SATe_ pS (Berman and Hartmanis, 1977).
Furthermore, from (Karp and Lipton, 1980) we know that if such an
oracle S exists then S is in the polynomial-time hierarchy and the hierarchy
is therefore finite. If E X P T I M E = NEJ(PTIME would also force all sparse
sets from the polynomial-time hierarchy into P, then the existence of
polynomial-size circuits for S A T or, equivalently, the existence of a sparse
complete-set for NP under polynomial-time Turing-reducibility, would
imply that P = NP. The equivalence comes from the assumption that all
sparse sets in the polynomial-time hierarchy are in P. For under this
assumption when the polynomial-size circuits for S A T give us a sparse set
S in the polynomial-time hierarchy such that NP c_ pS, S is in P hence in
NP.

We recall that the existence of sparse complete-sets under many-one
polynomial-time reductions implies that P = NP (Mahaney, 1980).

Another interesting open problem is whether E X P T I M E = N E X P T I M E
implies that for every sparse subset S ~ SAT, which we know is in P, we
can find in polynomial time a satisfying assignment for F in S. If
E X P T I M E = N E X P T I M E forces all sparse sets from the polynomial time
hierarchy into P, then we can easily determine the minimal satisfying
assignment of F in S in polynomial time from a sparse set in A S, which by
assumption is in P.

To define the exponential hierarchy, EXPH, let

Z ~ = N E X P T I M E and I1~ = CoNEXPTIME.

525 consists of all languages C such that there exist a constant c and a
polynomial time predicate Rc for which

c = (xl(3y, lyl ~< 2'lxl)(¥z,]zt ~< 2ct-k)ERcEx, y, z]]};

the other classes are defined analogously.

EXPTIME VERSUS NEXPTI ME 175

Equivalently, we can define the exponential hierarchy as follows:

52~ = EXPTIME and Vk > 0 Z ~ = NEXPTIME ~-1.

Thus, for example, ~ P = N P sAT and Z~ '=NEXPT1ME sat. Note that
52~+ 1~ a 52~ if and only if)2ke+ l - ~ ; o contains a sparse set. From this
definition it is clear that a collapse of the polynomial hierarchy will imply a
collapse of the exponential hierarchy. Since there is an oracle A such that
pA # N p A but E X P T I M E A = N E X P T I M E A (Wilson, 1980), it becomes
equally clear that it is possible for E X P T I M E = NEXPTI ME but yet to
have the exponential hierarchy exist at higher levels. The reason a collapse
at the base of the polynomial hierarchy topples the entire structure is the
close coupling of the oracle and the underlying machine, e.g., ~P = NP uP.
In light of this, it is the behavior of the polynomial hierarchy that is
peculiar, and not that of the exponential hierarchy. We expect the exponen-
tial hierarchy to collapse if E X P T I M E = NEXPTIME only because the
hierarchy with which we have the most familiarity has the accident of being
a special case.

As the next result shows, there are oracles for which
E X P T I M E A = N E X P T I M E A but the exponential hierarchy does not
collapse, thus not all the sparse sets in the polynomial hierarchy are forced
into pA. For related results see (Heller, to appear).

THEOREM 14. There is an oracle A such that

EXPTIME A = NEXPTIME A but ~ , A ¢ NEXPTIME A.

Proof This oracle is constructed as the disjoint union of two sets. The
strings of A that start with a 0 encode a Z~ ,'~ set into A that can not be
decoded in exponential time using the oracle A thus ensuring that ~2~ :,A ¢
EXPTIME A. The strings of A that start with a 1 encode an NEXPTIME A-
complete set into A such that this complete set can be recovered in
exponential time using the oracle A thus ensuring that EXPTIMEA=
N E X P T IME A. More precisely,

1. L = {x l~ygz ([y l = 2 IXI and [z[= [y[~ O x y z ~ A) } will be con-
structed by diagonalization so that it is not in EXPTIME A.

2. L (N A) = {x[1 # x # 0 2k~~l ~A}, where L(N ~) is complete for
NE X P T IME ~ for any oracle B and where N B runs in time 2 k".

We construct A in stages so that the above two requirements are met.
Before stage n, the membership in A of no strings of length greater than kn
has been determined. We let {Mg- } be an enumeration of all exponential
time bounded oracle machines, where M~- runs in time 2 l°g(i)n. We can get
such an enumeration by simply taking a standard enumeration of all deter-

176 HARTMANIS~ IMMERMAN, AND SEWELSON

ministic Turing machines and putting a 2 ~n clock on the k th machine.
Since each machine appears infinitely often, it will appear as some Mk
where 2 l°g(~)n is greater than its actual running time. Such an enumeration
is needed since we wish to diagonalize over these machines and need the
nth machine to query fewer than 2 2" strings on an input of length n.

Initially, A ~ ~b. Stage n, Part 1. To guarantee condition 1, we find some
string Xo of length n such that for each y of length 2 n there is a z of length
2 n such that the membership in A or .,t of 0x0 yz has not been determined.
For such an Xo to exist, we must have determined the membership of fewer
that 2 2" strings so far.

To diagonalize over EXPTIME A, we run M2(xo) adding to -d the strings
that M~ queries whose membership had not yet been determined. This will
guarantee that A remains consistent throughout the construction. Note
that this determines at most 2 ~ log n strings. If M~ accepted x0 we want to
put xo into .,~. Hence, for each y of length 2" we add Oxo yz to A for some z
of length 2 ~. This can be done because there are fewer than 2 2" strings in ,4
so far. If M~ rejected xo we want to add x0 to A. Hence, we must find some
Y0 of length 2 ~ such that for no z of length 2 ~ has OxoYoZ been put into A.
We then add all OXoYoZ to A where Izl--2 ~. Such ayo exists since we have
added fewer than 2 2" strings to A so far.

It is important to note that:

1. We queried strings of length up to 2 n log

2. We put into A at most 2" tog, queried strings.

3. We add to A strings of length 2 ~ ÷ t + n + 1.

Part 2. To guarantee condition 2, we run N A on strings x of length
between (n - 1)log(n - 1) and n log n. We try to make N A accept to prevent
us from having to determine the membership of too many strings. To do
this, we see what strings we can consistently add to A to make N A accept.
If this is possible, we add to A or A the queried strings along an accepting
computation path. If we can not make N A accept, then it does not matter
what happens to A in the future, so we do nothing. We add 1 # x # 02k~x~ to
A if NA(x) accepted and to A if it rejected.

It is important to note that:

1. We queried strings of length up to 2 k" tog,.

2. We add to A or A at most 2 k" tog, 2 ~ log n strings.

3. We add strings of length 2 k" tog, + n log n + 1, which is longer than
any strings put into A or A by any previous process so that there are no
conflicts. |

The above results, as well as other earlier work, seem to indicate that
there may be a fundamental difference between many-one and Turing

E X P T I M E VERSUS N E X P T I M E 177

polynomial time reducibilities on sets in NP. For example, the existence of
polynomial-size circuits for NP may not necessarily imply that P = N P as
does the existence of sparse many-one complete NP set (Mahaney, 1980).

In response to this question, very recently, Kurtz (1985) and,
simultaneously, Immerman and Mahaney (1982), have shown that there
exists an oracle A and a sparse oracle S such that

NpA ~ pA but Np,~ ~ (pA)S.

This shows that for these oracles the Karp-Lipton result is indeed different
from Mahaney's result (Mahaney, 1980; Karp and Lipton, 1980).

Clearly the strong assumption that the exponential hierarchy collapses to
E X P T I M E or the even stronger assumption that E X P T I M E =
EXPSPA CE has interesting implications since if forces all sparse sets from
P H into P.

COROLLARY 15. I f E X P H = E X P T I M E then the existence of
polynomial-size circuits for N P and P S P A C E implies, respectively, that
NP = P and PSPA CE = P.

Proof From (Karp and Lipton, 1980) we know that the polynomial-
size circuits for NP and P S P A C E are in P H and since their descriptions
form sparse sets, the hypotheses guarantees that they are in P and therefore
N P = P and PSPA CE = P, respectively. |

The upward separation method works well for N P and P S P A C E com-
putations for which we can code down sparse sets based on guessing,
verifying, and counting. At the same time, CoNP computations do not have
explicitly the ability to guess as do NP computations and therefore the
upward separation method does not seem to apply to sparse sets in CoNP.
Our next result shows that at least for some relativized computations this is
indeed the case.

THEOREM 16. There is an oracle A such that there are sparse sets in
CoNPA-P A but there are no sparse sets in NpA-p a.

Proof We first set up some notation. Let { M i } be an enumeration of
all polynonial time oracle machines where M; runs in time n ~°g i + log i. We
need this enumeration for a diagonalization which will require the running
time of the nth machine to be less than 2". N is a nondeterministic
exponential time oracle machine running in time 2 k", where k is a constant,
such that L (N A) is complete for N E X P T 1 M E A for all oracles A.

This oracle is constructed as the disjoint union of two sets. The strings of
A that begin with a 1 encode a sparse CoNP A set that is not in pA. The

178 HARTMANIS, IMMERMAN, AND SEWELSON

strings of A that begin with a 0 encode an NEXPTIME A complete set that
can be recovered in exponential time, thus ensuring that EXPTIMEA=
NEXPTIME A, i.e., that there are no sparse sets in NpA-p A. More precisely,
we will construct A in stages so that

1. S = {xlVy[y] = I xl ~ l x y C A } ~ CoNPA-P A and is sparse.

2. 0 # x # 12~lxl E A iff NA(x) accepts.

Condition 1 will be achieved by diagonalization over polynomial time
oracle machines.

We add elements to A in stages. Each stage has two parts, one for each
condition. No elements are to be in A except those explicitly mentioned.
Initially, A is empty.

Stage n, Part 1. To achieve condition 1, we diagonalize o v e r p A

machines and put at most one string of each length into S, ensuring spar-
seness.

If 2 kl°g2(n) 2 l°g2(n) log2(n)n + n l°g" + log n < 2 n (which is true almost

everywhere) then find some Xo of length n such that for no y of length n has
the membership of lxoy been determined. Since the left-hand side of the
above inequality is the number of strings of length 2n + 1 whose mem-
bership in A or J is determined (this will become clear after reading part 2
of this construction) and since there are 2nx's of length n, we can find such
an Xo.

Run M~ on input xo reserving for 7 all strings queried whose mem-
bership has not yet been determined--this will ensure that as we change A
in future stages it will not affect this particular computation. The number
of strings queried is at most the running time of M~ on Xo, rtl°g n ..]_ log n. If
it accepts we want Xo ¢ S. So we add some lxoy to A. Since we put into
at most nl°gn + log n < 2 n strings, we can find a free lxoy. If it rejects we
want Xo ~ S. So we put into A all lxoy.

Whether or not M n accepted Xo, if 2 ~ l°g2(")21°g2~") log2(n)n < 2 n we want
S to remain sparse in spite of strings put into A in future stages. So, we
shall make sure that the only strings in S are those put in by the above
diagonalization. To do this, for each x ¢ Xo of length n add one lxy to An
guaranteeing that x ¢ S. Please note that for every x ¢ xo of length n there
is some y of length n such that the membership of lxy has not been deter-
mined, since the left-hand side of the above inequality is the number of
strings of length 2n + 1 whose membership in A or A is already determined
and we have 2" choices for lxy. S will be sparse since the above inequality
is true almost everywhere.

It is important to note that in the part l's of the first n stages:

1. We queried strings of length up to n l°gn+log n, the running time
of M2 on an input of length n.

E X P T I M E VERSUS N E X P T I M E 179

2. We put into/1 at most n(n l°gn + log n) queried strings, the number
of stages times the running time of M~.

3. We add to A strings of length up to 2n + 1.

Part 2. Run N A on inputs x such that log2(n)~< I xl <logZ(n+ 1). If
NA(x) accepts, add 0 # x # 12kl~l to A and put into A all strings queried on
some accepting computation path whose membership in A had not yet
been determined (again to preserve this computation even as we change A
in future stages). If N ~ (x) rejects then to preserve this rejection we would
have to add to A strings on all computation paths. This would be too
many for our counting arguments so instead we see if we can, by adding to
A, make it accept. If so, add those strings on one accepting computation
path and 0 # x # 12klxl to A and put into _~ those strings queried along one
accepting path whose membership in A had not yet been determined. If we
can not make N A accept, we need do nothing to A since nothing will
change this acceptance.

It is important to note that in all part 2's so far:

1. We queried strings of lengths between 2 k log2(,)and 2 k log2(, + 1), the
running time of N A.

2. We determine the membership of at most 2kl°gln+l)21°g2(n+l)
log2(n + 1)n strings, the running time of N A times the number of strings of
length between log2(n) and log2(n+ 1) (the number of strings of length
log2(n + 1) times an upper bound on log2(n + 1)-log2(n)) times the num-
ber of stages.

3. We add to A strings of length 2kl°g2('+~)+log2(n+ 1)+3.

Observe that in Part 1 we query strings shorter than those to be added
in Part2 so Part 2 does not interfere. In addition, part 2 adds strings as it
goes along that are larger that N A could query so Part 2 does not interfere
with itself. Since we put into .~ the strings we queried, the strings added in
future Part l's can not affect what is done here. |

COROLLARY 17. There is an oracle A such that C o N p A - p A has sparse

sets, but no tally sets.

Proo f The oracle A of Theorem 16 suffices because CoNPA-P A con-
tains sparse sets, but because N E X P T I M E A = E X P T I M E A all tally sets in
N P a are in pA. This also forces all tally sets from C o N P A into pA, since if
T is a tally set in CoNPA-P A then the tally set 1" • T is in N P A and hence
in pA. But now T is in pA, since x ~ T if and only if x of the form 1 k and x
is not in l*c~T. |

This theorem has many interesting implications. It is one of the first
oracles, A, to display a structural difference between N P A and C o N P A. Not

643/65/2-3-7

180 HARTMANIS, IMMERMAN, AND SEWELSON

only does it show that NP A and CoNP A can be distinguished by the
existence of sparse sets, but that only for CoNP A can we decouple sparse
sets from tally sets. Note that by the same methods we can show structural
differences for relativized CoNP and PSPACE, since the upward separation
method works for PSPACE (see Corollary 2). It also demonstrates that the
proof technique of the first theorem is in some sense tight, since when the
technique is applied to CoNP, we must go to Z~, not CoNEXPTIME to
decode the encoded sparse set. And since E X P T I M E = NEXPTIME does
not necessarily imply that Z~ = EXPTIME the CoNP analogue of the first
theorem fails.

ACKNOWLEDGMENTS

The authors would like to thank Ron Book, Deborah Joseph, Stuart Kurtz, Steve
Mahaney, and Yaacov Yesha for helpful discussions and suggestions. The original search for
the upward separation method was stimulated by Kurtz's relativization result (Kurtz, 1985)
obtaining during the AMS Summer Institute on Recursive Function Theory at Cornell
University in 1982.

RECEIVED March 6, 1984; ACCEPTED May 9, 1985

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN, J. D. (1974), "The design and Analysis of Com-
puter Algorithms," Addison-Wesley, Reading, Mass.

BAKER, T., GILL, J., AND SOLOVAY, R. (1975), Relativizations of the PN= ?NP question,
SIAM J. Comput. 4, 431--442.

BOOK, R. V., WRATHALL, C., SELMAN, A., AND DOBKIN, D. (1978), Inclusion Complete Tally
Languages and the Hartmanis-Berman Conjecture, Math. Systems Theory 11, 1-8.

BERMAN, L., AND HARTMANIS, J. (1977), On isomorphisms and density of NP and other com-
plete sets, SIAM J. Comput. 6, 305-327.

BOOK, R.V. (1974), Tally languages and complexity classes, Infor. and Control 26, 186-193.
BAKER, T., AND SELMAN, A. (1979), A second step towards the polynomial hierarchy, Theoret.

Comput. Sci. 8, 177-187.
BOOK, R. V., WILSON, C., AND XU, M. (1981), Relativizing time and space in "IEEE Found.

Comput. Sci. Symposium," 254-259.
COOK, S. A. (May 1971), The complexity of theorem-proving procedures in "Proceedings of

the 3rd Annual ACM Symposium on the Theory of Computation," 151-158.
COOK, S. A. (1973), A hierarchy of nondeterministic time complexity, J. Comput. System Sci.

7, 343-353.
GAREY, M. R., AND JOHNSON, D. S. (1979), "Computers and Intractability, A Guide to the

Theory of NP-Completeness," Freeman, San Francisco.
HARTMANIS, J. (1983), On sparse sets in NP-P, Inform. Process. Lett. 16 (1983), 55-60.

EXPTIME VERSUS NEXPTIME 181

HARTMANIS, J., 1MMERMAN, N. AND SEWELSON, V. (1983), Sparse sets in NP-P: EXPTIME
versus NEXPTIME in "Proceedings 15th ACM Symposium on the Theory of Com-
putation," 382-391.

HEELER, H., On relativized exponential and probabilistic complexity classes, Inform. and Con-
trol, to appear.

IBARRA, O. (1972), A note concerning nondeterministic tape complexities, J. Assoc. Comput.
Mach. 19, 608-612.

IMMERMAN, N., AND MAHANEY, S., Oracles for which NP has polynomial size circuits, draft,
September 1982.

JOSEPH, D. (1982), Private communication.
KARP, R. M., AND LIPTON, R. J., Some connections between nonuniform and uniform com-

plexity classes, in "Proceedings 12th Annual ACM Symposium on Theory of Com-
putation," April 1980, 302-309.

KOZEN, D., AND MACHTEY, M., "On Relative Diagonals," IBM Research Report RC 8184,
April 1980.

KOZEN, D. C. (1978), Indexings of subrecursive classes, in "Proceedings 10th Annual ACM
Symposium on Theory of Computing," 287-295.

KURTZ, S. A. (1985), Sparse sets in NP-P: Relativizations, SIAM J. Comput. 14 (1985),
113-119.

LADNER, R. E. (1975), On the structure of polynomial time reducibility, J. Assoc. Comput.
Mach. 22, 155-171.

MAHANEY, S. (1980), Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis in "Proceedings 21st IEEE Foundations of Computer Science Symposium,"
42-49; J. Comput. System Sci. 25 (1982), 130-143.

SEIFERAS, J. (1977), Techniques for separating space complexity classes, J. Comput. System
Sci. 14, 73-99.

SEWELSON, V. (1983), "A Study of the Structure of NP," Ph.D. thesis, Technical Report 83-
575, Department of Computer Science, Cornell University.

STOCKMEYER, L. J. (1976), The polynomial time hierarchy, Theoret. Comput. Sci. 3, 1-22.
WILSON, C. B. (1980), "Relativization, Reducibilities, and the Exponential Hierarchy,"

Technical Report No. 140/80, Department of Computer Science, University of Toronto,
Toronto, Ontario.

