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This paper investigates the structural properties of sets in NP-P and shows that 
the computational difficulty of lower density sets in NP depends explicitly on the 
relations between higher deterministic and nondeterministic time-bounded com- 
plexity classes. The paper exploits the recently discovered upward separation 
method, which shows for example that there exist sparse sets in NP-P if and only if 
EXPTIMECNEXPTIME. In addition, the paper uses relativization techniques to 
determine logical possibilities, limitations of these proof techniques, and exhibits 
one of the first natural structural differences between relativized NP and CoNP. 
© 1985 Academic Press, Inc. 

INTRODUCTION AND OUTLINE OF RESULTS 

It is well known that if higher deterministic and nondeterministic com- 
plexity classes do not collapse then the corresponding lower classes are also 
distinct. This downward separation is easily obtained by padding arguments 
and it yields, for example, that EXPTIME # NEXPTIME implies P ~ NP. 
In this paper we prove that for some important complexity classes there 
also exists an upward separation method which reveals that certain struc- 
tural properties of P, NP, and PSPACE would imply the separation of 
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higher (exponential) deterministic and nondeterministic complexity 
classes.We investigate this strong and unexpected coupling of the structural 
properties of lower and higher complexity classes by the upward separation 
method and use relativization techniques to explore possible structural 
properties of NP sets as well as limitations of these proof techniques. 

The original motivation for this work was the desire to understand better 
what makes the computational solution of problems in NP hard, provided 
P ¢ N P .  It is generally conjectured that P C N P  (Aho, Hopcroft, and 
Ullman, 1974; Garey and Johnson, 1979) and therefore, for example, it is 
thought to be very difficult to determine whether Boolean formulas in con- 
junctive normal form have satisfying assignments. Furthermore, there is a 
more explicit belief that the computational difficulty of finding satisfying 
assignments for Boolean formulas does not depend only on the existence of 
the aggregate of satisfiable Boolean formulas, SAT, but that there are 
"individual" instances of formulas for which it is hard to find satisfying 
assignments. In particular, we conjecture that there are syntactically simple, 
sparse subsets of Boolean formulas for which it cannot be decided in 
polynomial time whether they are satisfiable. 

In this paper we show that lower density sets in NP and P S P A C E  (but 
apparently not in CoNP) can be coded more compactly to yield denser sets 
in the correspondingly higher complexity classes. Therefore, lower density 
sets can exist in NP-P if and only if the higher complexity classes do not 
collapse. 

More precisely, a set A is sais to be sparse if and only if it contains only 
a polynomial-in-n number elements up to size n (Berman and Hartmanis, 
1977; Hartmanis, 1983) 

Some of the following results were first outlined in (Hartmanis, 1983; 
Hartmanis, Immerman, and Sewelson, 1983). 

THEOREM. There exists a sparse set in NP-P, PSPACE-NP,  or 
PSPACE-P if and only if, respectively, N E X P T I M E  ~ EXPTIME,  
E X P S P A C E  ~ NEXPTIME,  and E X P S P A C E  ~ EXPTIME.  

This result has the interesting implication that if P ~ N P  but 
E X P T I M E =  N E X P T I M E  then any sparse set in NP is already in P. 
Furthermore, since A E N E X P T I M E -  E X P T I M E  implies that T A L L Y ( A )  
is in NP-P (Book, 1974; Book, Wrathall, Selman, and Dobkin, 1978), we 
conclude that there exist sparse sets in NP-P if and only if there exist tally 
sets in NP-P. Later in this paper we will see that this property does not 
necessarily hold for CoNP-P. 

It is interesting to note that it has been shown by Wilson (1980; Book, 
Wilson, and Xu, 1981) that there exist oracle sets A such that 

pA V~ Npa but E X P T I M E  A = N E X P T I M E  A. 
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Furthermore, it has been shown more recently by Kurtz (1985) that there 
are oracle sets B such that P ~  NP ~ and NPB-P B contains no sparse sets. 
Since our results hold for relativized computations as well, we now know 
that EXPTIME A= NEXPTIME A if and only if there are no sparse sets in 
NpA-p A. This shows that the two relativization results mentioned above 
are equivalent. 

The above results can be generalized to show that the collapse of deter- 
ministic and nondeterministic classes below exponential time forces the 
corresponding sets of higher density from NP into P and that the collapse 
starts bounding the computation time of SAT. 

THEOREM. There are no 6(n)= n l°gn uniformly distributed dense sets in 
NP-P if and only if  

U NTIME[2C'/~] = U TIME[ 2c'/~] 
c>O c>O 

and if this happens then S A T e  TIME[2C'f~]. 

An interesting question is whether the assumption that S A T  can be com- 
puted in less than exponential time has direct structural implications on the 
higher complexity classes. We show that at least for relativized com- 
putations the computation speed of NP problems can be decoupled from 
structural properties of the exponential complexity classes. 

THEOREM. There exists an oracle A such that 

NPA ~-- U TIMEA[nc*°g"] 
c?~O 

and 

EXPTIME A ~ NEXPTIME A. 

These upward separation results have other implications about the 
relations between complexity classes based on the fact that standard 
diagonalization methods can be "slowed down" to yield sparse sets which 
separate complexity classes. We state one such result. 

COROLLARY. I f  TIME[n l°g"] ~ NP then 

P ~ NP, EXPTIME ~ NEXPTIME, 

EEXPTIME ~ NEEXPTIME, etc., 
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as well as 

P ~ P S P A C E  and E X P T I M E  ~ EXPSPACE,  

where E E X P T I M E  = U c > o T IME [ 2C2"]. 

Conversely, if we could separate P from NP by a sparse set then we 
would have shown that P ~ NP as well as E X P T I M E #  NEXPTIME,  
which may be a much harder task than just showing that P CNP.  
Therefore, we conjecture that the separation of P and NP will be first 
acheived by an indirect proof or a constructive proof yielding a set in NP-P 
which is not sparse. For related ideas see (Kozen, 1978; Kozen and 
Machtey, 1980). 

In this connection it is interesting to observe that until now the 
separations of nondeterministic complexity classes have been obtained with 
proofs by contradiction (translation lemmas), not by explicitly yielding the 
sets which separate the complexity classes (Cook, 1973; Ibarra, 1972; 
Seiferas, 1977). Furthermore, our results show that Ladner's (1975) delayed 
diagonalization construction of an incomplete set in NP-P, under the 
assumption that P ~ NP, cannot be modified, even by techniques that do 
not relativize, to yield a sparse set unless E X P T I M E  ¢ NEXPTIME.  

A very interesting open problem is the existence of sparse sets in the 
polynomial-time hierachy, P H  (Garey and Johnson, 1979; Stockmeyer, 
1976), under the assumption that E X P T I M E  = NEXPTIME.  Or equivalen- 
tly, if there are no sparse sets in NP-P can there exist sparse sets in PH-P? 
Quite surprisingly, we show that for some relativized computations the 
collapse E X P T I M E =  N E X P T I M E  does not imply the collapse of the 
exponential-time hierarchy, EXPH, and therefore even though there are no 
sparse sets in NP-P there can be sparse sets in PH-P. 

THEOREM. There exists an oracle A such that E X P T I M E  "~ = 
N E X P T I M E  A and ~,~,A ¢ N E X P T I M E  A. Therefore there are no sparse sets 
in NP A -  pA but there are sparse sets in S~'  A _  pA. 

In spite of this oracle, we still conjecture that the collapse of 
E X P T I M E =  N E X P T I M E  implies the collapse of the entire exponential- 
time hierarchy. However, the existence of the oracle gives evidence that the 
proof of such a result would be difficult. 

Another relativization result reveals a limitation of the upward 
separation method and shows an early structural difference between 
relativized NP and CoNP sets. 

We first observe that the upward separation results for NP relativize and 
we get the following generalization. 



162 HARTMANIS, IMMERMAN, AND SEWELSON 

COROLLARY. For any A, there are sparse sets in N p A - p  A i f  and only if  
there are tally sets in NPa-P A and this happens if  and only i f  
E X P T I M E  A ~ N E X P T I M E  A. 

Quite surprisingly this is not the case for relativized CoNP computations 
from which we can force out tally sets without forcing out all sparse sets 

THEOREM. There exists an oracle B such that CoNpB-p 8 contains sparse 
sets but C o N E X P T I M E  B = E X P T I M E  '~ and therefore there are no tally sets 
in CoNPB-P B. 

SPARSENESS RESULTS 

In this section we introduce the upward separation method and derive 
necessary and sufficient conditions for the existence of sparse sets in NP-P, 
PSPACE-NP,  and PSPACE-P,  respectively. We assume that the reader is 
familiar with the standard results and notation about deterministic and 
nondeterministic polynomial-time computations (Aho et al., 1974; Garey 
and Johnson, 1979). We say that a set S, So_S*, is sparse if and only if 
there exists a constant k such that 

I S ~  (~ + Z')" I <~nk+k 

i.e., the number of elements in S up to size n is polynomially bounded in n. 
Let P and NP denote the deterministic and nondeterministic polynomial 
time acceptable languages, respectively. Let 

E X P T I M E =  ~ TIME[2C"], 
c>0 

N E X P T I M E =  U NTIME[2Cn], 
c>O 

E E X P T I M E =  [,_) TIME[2C2"], 
c>O 

and 

N E E X P T I M E =  U NTIME[2"2"] • 
c>0 

It is interesting to note that the location of the constant in the exponent is 
required by the upward separation method. 

Intuitively, a sparse set has so few elements that it seems reasonable that 
there should be some compact way of naming its members such that we 
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can recover the original string from this short name in nondeterministic 
exponential time. In fact, there is such a way and it is that property on 
which the following proof depends. We would like to be able to name a 
string by its position in the sparse set, e.g., the 15th string, but it would 
take double exponential time to recover the original string from this 
encoding. Hence, we shall use nondeterminism to be able to simulate 
knowing a string's position in S and hence be able to recover the string in 
nondeterministic exponential time. 

THEOREM 1. There exists a sparse set S in NP-P if  and only if  

E X P T I M E  ¢- NEXPTIME.  

Proof If E X P T I M E ¢  NEJ(PTIME then we may assume that there 
exists a set A, A_c {0, 1}*, 

A ~ N E X P T I M E -  EXPTIME.  

If we prefix each string in A by a 1 and interpret these strings as binary 
representations of integers, then we can convert A to tally notation: 

T A L L Y ( A )  = { l " l n ~  1A}. 

Since A is in N E X P T I M E  and not in E X P T I M E  

TALL Y(A ) e NP-P. 

Thus we see that under this assumption there exists a sparse set in NP-P 
(Book, 1974; Book et al., 1978). 

Conversely, suppose that E X P T I M E  = NEXPTIME.  We shall then show 
that every sparse NP set is in P. If we let S be a sparse set in NP, as stated 
above, we will encode S into a new set S' that we shall show to be in 
NEJ(PTIME and hence in EXPTIME.  From this we shall be able to con- 
clude that S ~ P .  Let p(n) be a polynomial such that I s n n s L  <<.p(n). 
Assume that the elements of S are lexicographically ordered. We define S' 
as follows. 

S ' = { n # i # j # k # d [ 3 x  1 < x  2 <  "'" < x i < ~ x < y t  <Y2 < " " y j ~ S  

and Ixll = lyjI = n  and the kth digit o f x i s d } .  

So, given x of length n in S, x corresponds to five-tuples n # i #  
j # k # d, where i and j encode lower bounds on the position in S of x and 
where k and d encode the characters that make up x. It is important to 
note three things at this point: 

643/65/2-3-6 
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1. Given x ~ S of length n the n # i # j # k # d's that correspond to x 
are of length O(log n) due to the sparseness of S. 

2. Given a five-tuple n # i # j # k # d  we need to guess only a 
polynomial in n number of strings of length n to verify that n # i # 
j # k # d E S ' .  

3. Verification of membership in S is a nondeterministic polynomial- 
in-n process--so requires an existential quantifier. 

From these we see that S 'eNEXPTIME.  Since we assumed that 
EXPTIME = NEXPTIME, we now know that S' ~ EXPTIME. We shall 
use this fact to show that S e P. 

Given x of length n, we first find the exact census of S, i.e., we find cn = 
[Xnn S[. We run our exponential time algorithm for membership in S' on 
thep(n)  pai rsofs t r ings  

n # 1 # 0 # 1 # 0  and 

n # 2 # 0 # 1 # 0  and 

n # 3 # 0 # 1 # 0  and 

n # 1 # 0 # 1 # 1 ,  

n # 2 # 0 # 1 # 1 ,  

n # 3 # 0 # 1 # 1 ,  

n #  p ( n ) # O # 1 # O  and n #  p ( n ) # O # 1 # 1 .  

c, will be the i - l ,  where i is the least integer such that both 
n # i # 0 # 1 # 0 ¢ S' and n # i # 0 # 1 # 1 ¢ S'. This is because asking if a 
pair of strings n # i # 0 # 1 # 0 and n # i # 0 # 1 # 1 is in S' is simply ask- 
ing if there are at least i strings of length n in S. Since we run an exponen- 
tial in log n algorithm at most a polynomial in n number of times, we can 
find c, in polynomial time. 

Knowing the census cn we observe that there is some pair of integers io 
and Jo whose sum is cn such that there are exactly io strings in S of lengh 
less than or equal to n that are smaller than x and exactly J0 strings in S of 
length n that are greater than x. By noting that all of the 
n # io # Jo # k # d in S' will describe x, we simply run our exponential 
time algorithm for S' on 

{ n #  i #  j # k  # d l i +  j = c ~ , k =  l, 2,...,n 

with d the appropriate character of x }. 

x will be in S if and only if for some pair i 0 and Jo all of the appropriate 
n # i o  # J o  # k # d  are in S'. Again we run an exponential in log n 
algorithm at most a polynomial in n number of times and hence we can 
determine whether x is in S in polynomial time. | 

By similar reasoning we can derive related results for PSPACE. 
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COROLLARY 2. There are sparse sets in PSPACE-NP and PSPACE-P  if 
and only if  E X P S P A C E #  N E X P T I M E  and E X P S P A C E v  a EXPTIME,  
respectively. 

Quite surprisingly, we will show later that related results do not hold for 
relativized CoNP computations, whereas all above results hold for 
relativized computations. 

It is interesting to note that it is possible to relativize computations so 
that NPA v a pA and E X P T I M E A = N E X P T I M E  A (Wilson, 1980). Since 
Theorem 1 relativizes, this is equivalent to the case in which there are no 
sparse sets in NPA-P A but yet E X P T I M E  A= N E X P T I M E  ~ (Kurtz, 1985). 

Next we show that the previous result can be sharpened considerably. 
We say that a set S is polynomial-time printable if and only if there is a k0 
such that all the elements of S, up to size n, can be printed by a deter- 
ministic machine in time nk°+ ko. Clearly, every polynomial-time printable 
set is sparse and is in P. 

COROLLARY 3. There ex&ts a polynomial-time printable set S such that 
S n S A T  ~ NP-P if  and only i f  E X P T I M E  ~ NEXPTIME.  

Proof. From the previous result we know that if there exists a sparse 
set in NP-P then E X P T I M E  ~ NEXPTIME.  Therefore, we just have to 
show that 

E X P T I M E  ¢ N E X P T I M E  

implies that the desired set S exists and that 

S n S A T ~ N P - P .  

Let A ~ N E X P T I M E -  E X P T I M E  then T A L L Y ( A )  ~ NP-P. Since 
T A L L Y ( A )  is in NP it can be reduced to S A T  by a one-to-one, length 
increasing polynomial time reduction g (Berman and Harmanis, 1977; 
Cook, 1971; Aho et al., 1974). This guarantees that 

g E T A L L Y ( A ) ]  and g(l*) 

are sparse sets and furthermore that g(l*) is polynomial-time printable. 
Since g is a reduction of T A L L Y ( A )  to S A T  we know that 

x ~ TALLY(A).~. ,  g(x) e SAT. 

Therefore g [ T A L L Y ( A ) ] ~ _ S A T n g ( I * )  and if g ( l t ) ~ S A T  then 
l t~  TALLY(A) ,  yielding g [ T A L L Y ( A ) ]  = S A T n  g(l*). Finally, 
g [ T A L L Y ( A ) ] ~ N P - P  since T A L L Y ( A ) c N P - P .  This completes the 
proof. | 
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The existence of sparse polynomial-time recognizable sets S such that 
S n S A T e N P - P  was conjectured by D. Joseph (1982). The above results 
show that sparse sets exist in NP-P if and only if there exist polynomial- 
time printable sets S such that S n SATe NP-P. 

COROLLARY 4. There ex&t sparse sets in NP-P if and only if there exist 
tally sets in NP-P. 

Finally, it is easily seen that we have actually shown that 
EXPTIME=NEXPTIME if and only if every sparse set in NP is 
polynomial-time printable. Therefore if one could show that there are 
sparse sets in P which are not polynomial-time printable it would follow 
not only that P ~ NP but also that EXPTIME # NEXPTIME. 

We have seen that there are polynomially sparse sets in NP-P if and only 
there is a separation of complexity classes at the exponential level. It is 
interesting to ask whether something happens to other classes besides 
polynomial ones if EXPTIME= NEXPTIME, or whether there is some 
special relationship between exponential and polynomial classes. In the 
next result, we see that not only does the collapse of EXPTIME and 
NEXPTIME push all sparse from NP into P but it pushes sets of density 
~(n) from NTIME[6(n)] into TIME[6(n)]. 

We say that the set A has density 6(n) if 

]An(~+X)" i<~f (n ) .  

COROLLARY 5. For n < 6(n) <~ 2" with log(f(n)) computable in time 6(n) c 
for some constant e, there is a set of density 6(n) in 

U NTIME[6(n)C]- U TIME[6(n) c] 
e > 0  c > 0  

if and only if EXPTIME ~ NEXPTIME. 

Proof The proof is very similar to that of Theorem 1. If EXPTIME ¢ 
NEXPTIME and A e N E X P T I M E -  EXPTIME then 

{x# la-kzIxb-lXllxeA}e U NTIME[g(n)C] - U TIME[g(n)C], 
c > 0  c > 0  

and has density 6(n). 
Conversely, if S has density 6(n) and 

Se  U NTIME[6(n ) ' ] -  U TIME[6(n)C], 
c > 0  c>O 
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then the same S' as in Theorem 1 will be in N E X P T I M E - E X P T I M E .  
One has only to note that in this case the length of a five-tuple, n # i # 
j # k # d ,  in S' has length O(log(f(n))). | 

O T H E R  DENSITIES 

From the above, we see that in order to separate EXPTIME and 
NEXPTIME it is enough to have a sparse set in NP-P. We looked at 
sparse sets in order to formalize the notion of an "individual" instance of a 
satisfiable Boolean formula. Therefore, it seems that the choice of sets of 
polynomial density was rather arbitrary. We shall now investigate the con- 
sequences of the existence in NP-P of sets of various densities. We divide 
this investigation into two parts, one for sets whose density is greater than 
polynomial and one for sets whose density is smaller. The reason behind 
this division is that the technique of Theorem 1, in order for the original 
restricted density set S to be in P, requires that we guess and verify the 
membership of at most polynomially many strings. To do this, given a 
string x of length n, we need to find an interval around x that contains at 
most a polynomial in n number of strings of S. If S is of density greater 
than polynomial, it is not clear how to do this. And this seeming inability 
to trap polynomially many elements of S leads to the "uniformity conjec- 
ture" below. However, if S has density less than polynomial, then we can 
trap polynomially many elements of S around x by simply taking all 
strings in S up to length n. 

For  sets with density lower than polynomial in NP-P we are able to 
prove the separation of deterministic and nondeterministic complexity 
classes higher than exponential. 

THEOREM 6. For any monotonically increasing, time-constructible T(n), 
where T ( n ) > 2  n and where 27"-~/n) is computable in time bounded by a 
polynomial in n, 

U NTIME[T(n) c] ~ U TIME[T(n) c] 
c > 0  c > 0  

if and only there b a set of density 2 r l(n) in NP-P. 

Proof Let T ( n ) > 2  n be monotonically increasing and time-construc- 
tible and suppose that 

~) NTIME[T(n)"] ¢ U TIME[T(n)C] • 
c>O c>O 



168 H A R T M A N I S ,  IMMERMAN,  A N D  SEWELSON 

Let A ~ Uc>oNTIME[T(n) c] -Uc>oTIME[T(n)C]. It is easy to see that 
A ' ~ N P - P ,  where A ' = { x #  lr(rxl)-ixilx~A}. To see that A' has the 
correct density, note that up to length n there are at most 2 r-'~n) strings of 
the form x #  1T<I~t) jxl, since for these strings Ixl = T l(n). 

Conversely, if we assume that 

NTIMEET(n) c'] = U TIME[T(n) ('] 
c > 0  c > 0  

and let S~ NP and suppose S has density 2 r-l("), we shall show that S~ P. 
Let S be in NTIME [nk+ k] for some k. Define S' to be 

{ t #  ilup to length T(log t) there are at least i strings in S}. 

Note that for t # i  to be in S', the density of S ensures that i < t .  
S'~NTIME[T(n) c] for some c, since on input t # i  of length at most 
2 log t we guess i < t strings of length T(log t) and verify that they are in S. 
This takes time 

iT(log t)[ T(log t) k + k] ~< tT(log t)[T(log t) k + k]. 

Since T(n)> 2", this takes time at most 

T(log t)T(log t)[ T(log t) k + k] ~< T(2 log t)T(2 log t)[T(2 log t) k + k],  

which is polynomial in T of the input length, as desired. 
Since we assumed that 

U NTIME[T(n)(] = U TIME[T(n)C] , 
c > 0  c > 0  

then S'eTIME[T(n) a] for some d. Hence, on input t # i  we can deter- 
ministically compute the maximal i, such that t # i, E S'. But then, in 
TIME[T(n) f] we can compute for input t # 1 the sequence of i, stings in S 
up to size T(log t), x, # x2 # ""  #xi,.  Thus, for any x of length n, a deter- 
ministic polynomial time machine can compute the same string from input 
2 r-'~") # 1 and check if x~  S. Hence, if 

U NTIME[T(ny] = U TIME[T(n)"] 
c > 0  c > O  

then S e  P. l 

In particular, if we let T(n)= 2 2n in Theorem 6 we get the following 
corollary. Recall that a set A, A _~ _r*, is super sparse if there exists a con- 
stant k such that 

iA r~ ( e+x)n l  ~<klog n. 
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COROLLARY 7. There exist super-spare sets in NP-P if  and only i f  

E E T I M E =  U T IM E [  2r2" ] ¢ L) N T I M E [  2r2"] = NEETIME.  
r > O  r > O  

The sparseness results can also be generalized to sets of greater than 
polynomial density and the corresponding collapse of deterministic and 
nondeterministic classes below exponential time. Furthermore, the collapse 
of these classes starts bounding the computation time of SAT. We illustrate 
these possible generalizations with the next result. 

Recall that the set A has density 6(n) if 

]A (~ ( e+Z) ' ]  ~< 6(n). 

To prove the following result we need the assumption that the 6(n)-dense 
sets are uniformly distributed. We conjecture that this assumption is not 
needed, but so far have not been able to eliminate it from the proof: 

A set A of density 6(n) is uniformly distributed if and only if any 
interval of length 2"/6(n) contains at most polynomially many 
elements of A up to size n, where an interval is any set of strings 
consecutive in the lexicographic ordering of X*. 

Note that for A to be uniformly distributed, it is enough for each of the 
6(n) canonical intervals that divide X" equally to have only polynomially 
many elements of A. A canonical interval consists of all strings of length n 
that have the same log (6(n)) leading bits. 

THEOREM 8. There are no 6(n)= n l°gn uniformly distributed dense sets in 
NP-P if  and only i f  

N T I M E [ 2  c'/~] = [9 T IME[2  ~'/~] 
e > O  ¢ > 0  

and i f  this happens then S A T e  TIME[2C'/~]. 

Proof. To prove one direction, suppose that 

U NTIME[ 2c'/~] ~ ~ TIME[2C'/~], 
e > O  c > O  

and let A_~ {0, 1}* and 

A e U N T I M E [  2c'/~] - [9 TIME[2C'G] • 
c > O  c > O  
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Define 

A ' =  { x #  12"/W-lxl ]x6A}.  

Clearly A' ~ NP-P. Given 

w = x #  12"/~xl - rxl 

of length n, Ix I=  log 2 n. Therefore, there are at m o s t  2 l°g2n s u c h  w, and so 
A' must have density ~<n l°g'. Each of the canonical intervals has at most 
one element of A', since A' has at most one string of length n beginning 
with any sequence of logZn bits. Thus A' is uniformly distributed. 

Conversely, suppose S~NP has density 6(n)=n ~°g" and that each 
canonical interval has fewer than n k' + k' elements of S. Then the set 

C =  (t  # l #  i lin the lth interval of strings of length t there are at least i 
elements in S} 

is in NTIME [-2~'f~], for some k. Since for x of length t, the representation 
of t, i, and l is bounded by log 2 t, and in time t k = 2 k l°g2t, we can guess the 
i ~< t~'+ k' strings and verify that they are in the /th interval and in S. A 
string x is in t he / th  interval if and only if its first log(6(n)) bits are l, hence 
it is easy to verify. 

If NTIME[2 k'/~] ~_ TIME[2 e'/~] then in TIME[2 d'~/~] we can compute 
the maximal it.l such that t # l # i,.z ~ C. This gives the number of strings of 
S of length t in the /th interval. But then, a TIMEE2 a''/~] machine can 
compute, for input t # l, the i,,t strings in S in t h e / t h  interval. Hence, for 
any x of length t, a deterministic polynomial time machine can compute 
the strings of S of length n in the same interval as x and check if x e S. 
Thus S ~ P. To see how the computation time of SA T is affected, observe 
that NP~_ U,.>oNTIME[2C~/~]. | 

The crucial points that make the above technique work are that when we 
encode the 6(n) dense set into shorter strings, we encode strings of length n 
into strings of length log(6(n)) and that to verify the encoded set, we guess 
no more than nk+ k strings for some k. This is where the uniformity was 
required. 

In the above proof we used the number of the canonical interval for the 
log(6(n)) bits. However this can be generalized to any log(6(n)) bits which 
somehow encode the endpoints of an interval with only'polynomially many 
elements of the set in question. From this we propose the following weaker 
notion of uniform distribution. A 6(n) dense NP set S is uniformly dis- 
tributed if given a string x of length n, we can guess log(6(n)) bits of infor- 
mation from which in time n ~ + k, we can nondeterministically compute an 
interval that contains only polynomially many elements of S, including x, if 
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x ~ S. It is our belief and we conjecture that any 6(n) dense N P  set S is 
uniformly distributed. The reason for this conjecture is that an NP set is 
computationally fairly simple. It would seem incongruous for this simplicity 
to be coupled with a complex distribution. If this uniformity conjecture is 
true, not only may we drop the uniformity condition from the above 
theorem, but we have an interesting connection between NP sets and 
Kolmogorov complexity with bounded computation time. 

In the last theorem, we saw how structural properties of N P  sets affect 
the deterministic computation of SAT. This leads us to wonder if the com- 
putation time of S A T  has any structural effect on NP. A negative answer to 
this question is suggested by the following theorem. As with all 
relativization arguments, this does not imply that this holds for regular 
(not relativized) computations, but it shows that there are "worlds" for 
which this result holds and indicates that the result is most likely very hard 
to prove or disprove for regular computations. 

THEOREM 9. There exists an oracle A such that 

NP A ~_ TIMEA[n l°g~ ] and E X P T I M E  A ~ N E X P T I M E  A. 

Proof  Sketch (For details see Sewelson, 1983). This oracle is construc- 
ted as the disjoint union of two sets. The strings of A that start with a 0 
encode a N E X P T I M E  A set into A that can not be decoded in exponential 
time using the oracle A thus ensuring that N E X P T I M E A ¢  E X P T I M E  A. 
The strings of A that start with 1 encode an NPA-complete set into A such 
that this complete set can be recovered in n c log n.tim e using the oracle A 
thus ensuring that N P  A ~  _ Uc>oTIMEA[nc~°gn]. More precisely, 

1. L = { l " t 3 y ( [ y [ = 2  n and 0 y e A ) }  will be constructed by 
diagonalization so that it is not in E X P T I M E  A. 

2. L ( N  A) = {x[ 1 # x # 0 hI°g" e A }, where L ( N  ~) is complete for N P  8 
for any oracle B and where N B runs in time n~+ k. 

A is constructed in stages so that the above two requirements are 
met. | 

SEPARATION RESULTS 

Next we show that the upward separation results have very strong 
implications under the assumption that NP contains a deterministic, time 
bounded complexity class above polynomial. If this happens, then standard 
diagonalization arguments, when they are slowed down, can produce 
sparse and super-sparse sets in NP-P. As we have seen, this forces the 
higher complexity classes not to collapse. 
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THEOREM 10. Let R(n) be real-time computable and for all k >~ 1 let 

n k 

lim~ R - ~  = O. 

Then TIME[R(n)] c_NP implies that for any monotonically increasing, 
time-constructible T(n), where T(n)> 2 ~ and where 2 r-~(') is computable in 
time polynomial in n, 

NTIME[T(n)  c]¢  ~ TIME[T(n)C]. 
c>0 c>0 

Proof Since R(n) is real-time computable the limit condition permits 
us to diagonalize over all deterministic polynomial time machines. Since 
this diagonalization process can be stretched out by rejecting large num- 
bers of elements before diagonalizing over the next machine, we see that 
deterministic diagonalization can yield sets of any computable density in 
TIME[ R(n) ] - P. Therefore, if 

TIME [ R(n ) ] ~_ NP, 

we know that NP ¢ P and because of the arbitrarily sparse sets in NP-P an 
application of Theorem 6 separates deterministic and nondeterministic 
classes at the T(n) c level. ] 

Taking particular values of R(n) and T(n) yields 

COROLLARY 11. I f  TIME[n ~°gn] c__NP then 

P ~ NP, EXPTIME ¢ NEXPTIME, EEXPTIME ~ NEEXPTIME, 

etc., as well as 

P ~ PSPACE, EXPTIME ¢ EXPSPACE, etc. 

Theorem 10 can easily be generalized to other complexity classes. 

COROLLARY 12. I f  TIME[n l°g'] ~_ PSPACE then 

P v ~ PSPACE, EXPTIME ~ EXPSPACE, etc. 

It is interesting to note that if we could show that P ¢ NP by any process 
which can be "stretched" to yield sparse and super sparse sets, then we 
would not only have shown that P ~ NP, but also that 

EXPTIME ~ NEXPTIME 
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and 

EEXPTIME 4= NEEXPTIME. 

Clearly, one possibility of showing that not only P :/: NP but that the 
higher deterministic and nondeterministic time computations are different, 
is suggested by Theorem 10. This would require showing that NP contains 
some (properly defined) deterministic time classes above polynomial. 
Unfortunately, at this time we do not believe that this is true. We conjec- 
ture that NP contains P properly and that furthermore NP contains no 
deterministic time classes above P. We conjecture that the corresponding 
relations hold between P and PSPACE and NP and PSPACE. 

In spite of this belief, we are able to find a relativized world where, 
indeed, NP contains a deterministic-time class higher than polynomial and 
hence one where all classes are distinct. It is interesting to contrast this 
oracle with the long standing unsuccessful search for a single oracle A such 
that A simultaneously separates every level of the polynomial time 
hierarchy, ie. 

(Baker and Selman, 1979). 

THEOREM 13. There is an oracle B such that 

U TIMEB[ ncl°gÈ] ~- NPB 
c > O  

Proof Sketch (For details see Sewelson, 1983). We construct B to con- 
tain an encoded [)c>oTIMEB[ncl°gn]-complete set. Let M A be an n kl°g- 
time bounded oracle Turing machine such that L(M A) is complete for 
U~>0 TIMEA [ ncl°gn] under polynomial-time many-one reductions for all 
oracles A. If we create B such that 

MB(x) accepts ~=~ 3 y(ly[ = [x] 2, x # y ~ B) 

then L(M B) ~ NP B. Hence we shall have 

Q) TIMEB[n cl°g'] ~ Np B, 
c > O  

as desired. | 
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SPARSE SETS IN THE POLYNOMIAL-TIME HIERARCHY 

A fascinating and important open problem in this research area is the 
relation between the nonexistence of sparse sets in NP-P and in other parts 
of the polynomial-time hierarchy. The main problem is whether the 
collapse E X P T I M E =  N E X P T I M E  which forces all sparse sets from NP 
into P also forces all sparse sets from the polynomial-time hierarchy 
(Garey and Johnson, 1979; Stockmeyer, 1976) into P. 

The importance of this problem is emphasized by the fact that many 
interesting sparse sets are in the polynomial hierarchy if and only if the 
hierarchy is finite. For example, it has been observed by A. R. Meyer that 
there exist polynomial size circuits for S A T  if and only if there exists a 
sparse oracle set S such that SATe_ pS (Berman and Hartmanis, 1977). 
Furthermore, from (Karp and Lipton, 1980) we know that if such an 
oracle S exists then S is in the polynomial-time hierarchy and the hierarchy 
is therefore finite. If E X P T I M E =  NEJ(PTIME would also force all sparse 
sets from the polynomial-time hierarchy into P, then the existence of 
polynomial-size circuits for S A T  or, equivalently, the existence of a sparse 
complete-set for NP under polynomial-time Turing-reducibility, would 
imply that P =  NP. The equivalence comes from the assumption that all 
sparse sets in the polynomial-time hierarchy are in P. For under this 
assumption when the polynomial-size circuits for S A T  give us a sparse set 
S in the polynomial-time hierarchy such that NP c_ pS, S is in P hence in 
NP. 

We recall that the existence of sparse complete-sets under many-one 
polynomial-time reductions implies that P = NP (Mahaney, 1980). 

Another interesting open problem is whether E X P T I M E  = N E X P T I M E  
implies that for every sparse subset S ~ SAT, which we know is in P, we 
can find in polynomial time a satisfying assignment for F in S. If 
E X P T I M E  = N E X P T I M E  forces all sparse sets from the polynomial time 
hierarchy into P, then we can easily determine the minimal satisfying 
assignment of F in S in polynomial time from a sparse set in A S, which by 
assumption is in P. 

To define the exponential hierarchy, EXPH, let 

Z ~  = N E X P T I M E  and I1~ = CoNEXPTIME.  

525 consists of all languages C such that there exist a constant c and a 
polynomial time predicate Rc for which 

c =  (xl(3y, lyl ~< 2'lxl)(¥z, ]zt ~< 2ct-k)ERcEx, y, z]]};  

the other classes are defined analogously. 
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Equivalently, we can define the exponential hierarchy as follows: 

52~ = EXPTIME and Vk > 0 Z ~ =  NEXPTIME ~-1. 

Thus, for example, ~ P = N P  sAT and Z~ '=NEXPT1ME sat. Note that 
52~+ 1~ a 52~ if and only if )2ke+ l - ~ ; o  contains a sparse set. From this 
definition it is clear that a collapse of the polynomial hierarchy will imply a 
collapse of the exponential hierarchy. Since there is an oracle A such that 
pA # N p A  but E X P T I M E A = N E X P T I M E  A (Wilson, 1980), it becomes 
equally clear that it is possible for E X P T I M E =  NEXPTI ME but yet to 
have the exponential hierarchy exist at higher levels. The reason a collapse 
at the base of the polynomial hierarchy topples the entire structure is the 
close coupling of the oracle and the underlying machine, e.g., ~P = NP uP. 
In light of this, it is the behavior of the polynomial hierarchy that is 
peculiar, and not that of the exponential hierarchy. We expect the exponen- 
tial hierarchy to collapse if E X P T I M E =  NEXPTIME only because the 
hierarchy with which we have the most familiarity has the accident of being 
a special case. 

As the next result shows, there are oracles for which 
E X P T I M E A = N E X P T I M E  A but the exponential hierarchy does not 
collapse, thus not all the sparse sets in the polynomial hierarchy are forced 
into pA. For related results see (Heller, to appear). 

THEOREM 14. There is an oracle A such that 

EXPTIME A = NEXPTIME A but ~ , A  ¢ NEXPTIME A. 

Proof This oracle is constructed as the disjoint union of two sets. The 
strings of A that start with a 0 encode a Z~ ,'~ set into A that can not be 
decoded in exponential time using the oracle A thus ensuring that ~2~ :,A ¢ 
EXPTIME A. The strings of A that start with a 1 encode an NEXPTIME A- 
complete set into A such that this complete set can be recovered in 
exponential time using the oracle A thus ensuring that EXPTIMEA= 
N E X P T IME A. More precisely, 

1. L =  {x l~ygz ( [y l  = 2  IXI and [z[ = [y[ ~ O x y z ~ A ) }  will be con- 
structed by diagonalization so that it is not in EXPTIME A. 

2. L (N A) = {x[ 1 # x # 0 2k~~l ~A}, where L(N ~) is complete for 
NE X P T IME ~ for any oracle B and where N B runs in time 2 k". 

We construct A in stages so that the above two requirements are met. 
Before stage n, the membership in A of no strings of length greater than kn 
has been determined. We let {Mg- } be an enumeration of all exponential 
time bounded oracle machines, where M~- runs in time 2 l°g(i)n. We can get 
such an enumeration by simply taking a standard enumeration of all deter- 



176 HARTMANIS~ IMMERMAN, AND SEWELSON 

ministic Turing machines and putting a 2 ~n clock on the k th machine. 
Since each machine appears infinitely often, it will appear as some Mk 
where 2 l°g(~)n is greater than its actual running time. Such an enumeration 
is needed since we wish to diagonalize over these machines and need the 
nth machine to query fewer than 2 2" strings on an input of length n. 

Initially, A ~ ~b. Stage n, Part  1. To guarantee condition 1, we find some 
string Xo of length n such that for each y of length 2 n there is a z of length 
2 n such that the membership in A or .,t of 0x0 yz has not been determined. 
For such an Xo to exist, we must have determined the membership of fewer 
that 2 2" strings so far. 

To diagonalize over EXPTIME A, we run M2(xo) adding to -d the strings 
that M~ queries whose membership had not yet been determined. This will 
guarantee that A remains consistent throughout the construction. Note 
that this determines at most 2 ~ log n strings. If M~ accepted x0 we want to 
put xo into .,~. Hence, for each y of length 2" we add Oxo yz to A for some z 
of length 2 ~. This can be done because there are fewer than 2 2" strings in ,4 
so far. If M~ rejected xo we want to add x0 to A. Hence, we must find some 
Y0 of length 2 ~ such that for no z of length 2 ~ has OxoYoZ been put into A. 
We then add all OXoYoZ to A where Izl--2 ~. Such ayo exists since we have 
added fewer than 2 2" strings to A so far. 

It is important  to note that: 

1. We queried strings of length up to 2 n log 

2. We put into A at most 2" tog, queried strings. 

3. We add to A strings of length 2 ~ ÷ t + n + 1. 

Part 2. To guarantee condition 2, we run N A on strings x of length 
between (n - 1 )log(n - 1 ) and n log n. We try to make N A accept to prevent 
us from having to determine the membership of too many strings. To do 
this, we see what strings we can consistently add to A to make N A accept. 
If this is possible, we add to A or A the queried strings along an accepting 
computation path. If we can not make N A accept, then it does not matter 
what happens to A in the future, so we do nothing. We add 1 # x # 02k~x~ to 
A if NA(x) accepted and to A if it rejected. 

It is important to note that: 

1. We queried strings of length up to 2 k" tog,. 

2. We add to A or A at most 2 k" tog, 2 ~ log n strings. 

3. We add strings of length 2 k" tog, + n log n + 1, which is longer than 
any strings put into A or A by any previous process so that there are no 
conflicts. | 

The above results, as well as other earlier work, seem to indicate that 
there may be a fundamental difference between many-one  and Turing 
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polynomial time reducibilities on sets in NP. For example, the existence of 
polynomial-size circuits for NP may not necessarily imply that P = N P  as 
does the existence of sparse many-one complete NP set (Mahaney, 1980). 

In response to this question, very recently, Kurtz (1985) and, 
simultaneously, Immerman and Mahaney (1982), have shown that there 
exists an oracle A and a sparse oracle S such that 

NpA ~ pA but Np,~ ~ (pA)S. 

This shows that for these oracles the Karp-Lipton result is indeed different 
from Mahaney's result (Mahaney, 1980; Karp and Lipton, 1980). 

Clearly the strong assumption that the exponential hierarchy collapses to 
E X P T I M E  or the even stronger assumption that E X P T I M E  = 
EXPSPA  CE has interesting implications since if forces all sparse sets from 
P H  into P. 

COROLLARY 15. I f  E X P H =  E X P T I M E  then the existence of  
polynomial-size circuits for  N P  and P S P A C E  implies, respectively, that 
NP = P and PSPA CE = P. 

Proof  From (Karp and Lipton, 1980) we know that the polynomial- 
size circuits for NP and P S P A C E  are in P H  and since their descriptions 
form sparse sets, the hypotheses guarantees that they are in P and therefore 
N P  = P and PSPA CE = P, respectively. | 

The upward separation method works well for N P  and P S P A C E  com- 
putations for which we can code down sparse sets based on guessing, 
verifying, and counting. At the same time, CoNP computations do not have 
explicitly the ability to guess as do NP computations and therefore the 
upward separation method does not seem to apply to sparse sets in CoNP. 
Our next result shows that at least for some relativized computations this is 
indeed the case. 

THEOREM 16. There is an oracle A such that there are sparse sets in 
CoNPA-P A but there are no sparse sets in NpA-p  a. 

Proof  We first set up some notation. Let { M  i } be an enumeration of 
all polynonial time oracle machines where M; runs in time n ~°g i + log i. We 
need this enumeration for a diagonalization which will require the running 
time of the nth machine to be less than 2". N is a nondeterministic 
exponential time oracle machine running in time 2 k", where k is a constant, 
such that L ( N  A) is complete for N E X P T 1 M E  A for all oracles A. 

This oracle is constructed as the disjoint union of two sets. The strings of 
A that begin with a 1 encode a sparse CoNP A set that is not in pA. The 
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strings of A that begin with a 0 encode an NEXPTIME A complete set that 
can be recovered in exponential time, thus ensuring that EXPTIMEA= 
NEXPTIME A, i.e., that there are no sparse sets in NpA-p A. More precisely, 
we will construct A in stages so that 

1. S =  {xlVy[y]  = I xl ~ l x y C A }  ~ CoNPA-P A and is sparse. 

2. 0 # x # 12~lxl E A iff NA(x) accepts. 

Condition 1 will be achieved by diagonalization over polynomial time 
oracle machines. 

We add elements to A in stages. Each stage has two parts, one for each 
condition. No elements are to be in A except those explicitly mentioned. 
Initially, A is empty. 

Stage n, Part 1. To achieve condition 1, we diagonalize o v e r  p A  

machines and put at most one string of each length into S, ensuring spar- 
seness. 

If 2 kl°g2(n) 2 l°g2(n) log2(n)n + n l°g" + log n < 2 n (which is true almost 

everywhere) then find some Xo of length n such that for no y of length n has 
the membership of lxoy been determined. Since the left-hand side of the 
above inequality is the number of strings of length 2n + 1 whose mem- 
bership in A or J is determined (this will become clear after reading part 2 
of this construction) and since there are 2nx's of length n, we can find such 
an Xo. 

Run M~ on input xo reserving for 7 all strings queried whose mem- 
bership has not yet been determined--this will ensure that as we change A 
in future stages it will not affect this particular computation. The number 
of strings queried is at most the running time of M~ on Xo, rtl°g n ..]_ log n. If 
it accepts we want Xo ¢ S. So we add some lxoy to A. Since we put into 
at most nl°gn + log  n < 2 n strings, we can find a free lxoy. If it rejects we 
want Xo ~ S. So we put into A all lxoy. 

Whether or not M n accepted Xo, if 2 ~ l°g2(")21°g2~") log2(n)n < 2 n we want 
S to remain sparse in spite of strings put into A in future stages. So, we 
shall make sure that the only strings in S are those put in by the above 
diagonalization. To do this, for each x ¢ Xo of length n add one lxy  to An 
guaranteeing that x ¢ S. Please note that for every x ¢ xo of length n there 
is some y of length n such that the membership of lxy  has not been deter- 
mined, since the left-hand side of the above inequality is the number of 
strings of length 2n + 1 whose membership in A or A is already determined 
and we have 2" choices for lxy. S will be sparse since the above inequality 
is true almost everywhere. 

It is important to note that in the part l's of the first n stages: 

1. We queried strings of length up to n l°gn+log n, the running time 
of M2 on an input of length n. 
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2. We put into/1 at most n(n l°gn + log n) queried strings, the number 
of stages times the running time of M~. 

3. We add to A strings of length up to 2n + 1. 

Part  2. Run N A on inputs x such that log2(n)~< I xl <logZ(n+ 1). If 
NA(x )  accepts, add 0 # x # 12kl~l to A and put into A all strings queried on 
some accepting computation path whose membership in A had not yet 
been determined (again to preserve this computation even as we change A 
in future stages). If N ~ ( x )  rejects then to preserve this rejection we would 
have to add to A strings on all computation paths. This would be too 
many for our counting arguments so instead we see if we can, by adding to 
A, make it accept. If so, add those strings on one accepting computation 
path and 0 # x # 12klxl to A and put into _~ those strings queried along one 
accepting path whose membership in A had not yet been determined. If we 
can not make N A accept, we need do nothing to A since nothing will 
change this acceptance. 

It is important to note that in all part 2's so far: 

1. We queried strings of lengths between 2 k log2(,)and 2 k log2(, + 1), the 
running time of N A. 

2. We determine the membership of at most 2kl°gln+l)21°g2(n+l) 
log2(n + 1 )n strings, the running time of N A times the number of strings of 
length between log2(n) and log2(n+ 1) (the number of strings of length 
log2(n + 1) times an upper bound on log2(n + 1)-log2(n))  times the num- 
ber of stages. 

3. We add to A strings of length 2kl°g2('+~)+log2(n+ 1)+3.  

Observe that in Part 1 we query strings shorter than those to be added 
in Part2 so Part 2 does not interfere. In addition, part 2 adds strings as it 
goes along that are larger that N A could query so Part 2 does not interfere 
with itself. Since we put into .~ the strings we queried, the strings added in 
future Part l's can not affect what is done here. | 

COROLLARY 17. There is an oracle A such that C o N p A - p  A has sparse 

sets, but no tally sets. 

Proo f  The oracle A of Theorem 16 suffices because CoNPA-P  A con- 
tains sparse sets, but because N E X P T I M E A =  E X P T I M E  A all tally sets in 
N P  a are in pA. This also forces all tally sets from C o N P  A into pA, since if 
T is a tally set in CoNPA-P  A then the tally set 1" • T is in N P  A and hence 
in pA. But now T is in pA, since x ~ T if and only if x of the form 1 k and x 
is not in l*c~T. | 

This theorem has many interesting implications. It is one of the first 
oracles, A, to display a structural difference between N P  A and C o N P  A. Not 

643/65/2-3-7 
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only does it show that NP A and CoNP A can be distinguished by the 
existence of sparse sets, but that only for CoNP A can we decouple sparse 
sets from tally sets. Note that by the same methods we can show structural 
differences for relativized CoNP and PSPACE, since the upward separation 
method works for PSPACE (see Corollary 2). It also demonstrates that the 
proof technique of the first theorem is in some sense tight, since when the 
technique is applied to CoNP, we must go to Z~, not CoNEXPTIME to 
decode the encoded sparse set. And since E X P T I M E =  NEXPTIME does 
not necessarily imply that Z~ = EXPTIME the CoNP analogue of the first 
theorem fails. 
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