
Chapter 13

Lower Bounds

The very simple problem PARITY is too hard for first-order logic, no matter what

numeric predicates we add. When we add counting, but remove ordering, PARITY

is expressible. However, a different sort of parity problem becomes inexpressible.

A related lower bound suggests that complete problems for P are inherently se-

quential.

13.1 Håstad’s Switching Lemma

Recall boolean query PARITY, which is true of boolean strings that have an odd

number of ones. Using pebble games, we have shown that PARITY is not first-

order in the absence of the numeric predicate BIT (Proposition 6.14, Proposition

6.44). This theorem is much more subtle with the inclusion of BIT.

Theorem 13.1 Query PARITY is not first-order expressible: PARITY 6∈ FO.

The known proofs of Theorem 13.1 all prove the stronger result that PARITY

is not in the non-uniform class AC0/poly or, equivalently, PARITY is not first-

order, no matter what numeric predicates are available (Proposition 11.19). The

proof we present here is via the Håstad Switching Lemma, following the treatment

in [Bea96].

Let f be a boolean function, with boolean variables Vn = {x1, . . . , xn}. A

restriction on Vn is a map ρ : Vn → {0, 1, ⋆}. The idea is that some of the variables

are set to “0” or “1” and the others — those assigned “⋆” — remain variables.

257

258 CHAPTER 13. LOWER BOUNDS

Restriction ρ applied to function f results in function f |ρ in which value ρ(xi)
is substituted for xi in f , for each xi such that ρ(xi) 6= ⋆. Thus, f |ρ is a function

of the variables that have been assigned “⋆”. Let Rr
n be the set of all restrictions

on Vn that map exactly r variables to “⋆”.

We state and prove the switching lemma using decision trees. Given a formula

F in disjunctive normal form (DNF)1 define the canonical decision tree T (F) for

F as follows: Let C1 = ℓ1 ∧ · · · ∧ ℓi be the first term of F , so F = C1 ∨ F ′.
The top of T (F) is a complete binary decision tree on the variables in C1. Each

leaf of the tree determines a restriction ρ that assigns the appropriate value to the

variables in C1 and assign “⋆” to all the other variables. There is a unique leaf that

makes C1 true and this should remain a leaf and be labeled “1”. To each other leaf,

determining restriction ρ, we attach the canonical decision tree T (F ′|ρ).

Let h(T) be the height of tree T . We now show that for any formula F in

DNF, if F has only small terms, then when randomly choosing a restriction ρ from

Rr
n, with high probability the height of the canonical decision tree of the resulting

formula, h(T (F |ρ)), is small.

It then follows that the negation of F |ρ can also be written in DNF — as the

disjunction of the conjunction of each branch in the tree that leads to “0”. Thus,

with high probability, a random restriction switches a DNF formula that has only

small terms to a conjunctive normal form (CNF) formula.

Lemma 13.2 (Håstad Switching Lemma) Let F be a DNF formula on n vari-

ables, such that each of its terms has length at most k. Let p ≤ 1/7, r = pn, and

s ≥ 0. Then,

|{ρ ∈ Rr
n |h(T (F |ρ)) ≥ s}|

|Rr
n|

< (7pk)s .

Proof The proof of Lemma 13.2 is a somewhat intricate counting argument. Let

Stars(k, s) be the set of all sequences w = (S1, S2, . . . , St) where each Si is a

nonempty subset of {1, 2, . . . , k} and the sum of the cardinalities of the Si’s equals

s. We use the following upper bound on the size of Stars(k, s).

Lemma 13.3 For k, s > 0, |Stars(k, s)| ≤ (k/ ln 2)s .

1A DNF formula is an “or” of “and”s. This is the dual of CNF.

13.1. HÅSTAD’S SWITCHING LEMMA 259

Proof We show by induction on s that |Stars(k, s)| ≤ γs, where γ is such that

(1+ 1/γ)k = 2. Since (1+ 1/γ) < e1/γ , we have γ < k/ ln 2 and thus the lemma

will follow.

Suppose that the lemma holds for any s′ < s. Let β ∈ Stars(k, s). Then

β = (S1, β
′), where β′ ∈ Stars(k, s− i) and i = |S1|. Thus,

|Stars(k, s)| =

min(k,s)
∑

i=1

(

k

i

)

|Stars(k, s − i)|

Thus, by the induction hypothesis,

|Stars(k, s)| ≤
k

∑

i=1

(

k

i

)

γs−i

= γs
k

∑

i=1

(

k

i

)

(1/γ)i

= γs[(1 + 1/γ)k − 1] = γs .

�

Let R ⊆ Rr
n be the set of restrictions ρ such that h(T (F |ρ)) ≥ s. We will

define a 1:1 map,

α : R → Rr−s
n × Stars(k, x) × 2s . (13.4)

Once we show that α is one to one, it will follow that

|R|
|Rr

n|
≤ |Rr−s

n |
|Rr

n|
· |Stars(k, s)| · 2s . (13.5)

Observe that |Rr
n| =

(n
r

)

2n−r, so,

|Rr−s
n |

|Rr
n|

=
(r)(r − 1) · · · (r − s+ 1)

(n− r + s)(n− r + s− 1) · · · (n− r + 1)
· 2s ≤

(

2r

n− r

)s

.

Substituting this into Equation (13.5) and using Lemma 13.3, we have,

|R|
|Rr

n|
≤

(

2r

n− r

)s

· (k/ ln 2)s · 2s

=

(

4rk

(n− r) ln 2

)s

=

(

4pk

(1− p) ln 2

)s

260 CHAPTER 13. LOWER BOUNDS

when r = pn. This is less than (7pk)s when p < 1/7.

It thus suffices to construct 1:1 map α (Equation (13.4)). Let F = C1 ∨ C2 ∨
· · · . Let ρ ∈ R, and let Ci1 be the first term of F that is not set to “0” in F |ρ.

Let b be the first s steps of the lexicographically first branch in T (F |ρ) that has

length at least s. Let V1 be the set of variables in Ci1 |ρ. Let a1 be the assignment

to V1 that makes Ci1 |ρ true. Let b1 be the initial segment of b that assigns values to

V1. If b ends before all the values of V1 are defined, then let b1 = b, and shorten a1
so that it assigns values only to the variables that b1 does. See Figure 13.6.

Define the set S1 ⊆ {1, 2, . . . , k} to include those j such that the jth variable

in Ci1 is set by a1. S1 is nonempty. Note that from Ci1 and S1 we can reconstruct

a1.

If b 6= b1, then (b − b1) is a path in T (F |ρb1). Let Ci2 be the first term of F
not set to “0” by ρb1. As above, we generate b2, a2, and S2. Repeat this until the

whole branch b is used up. We have b = b1b2 · · · bt, and let a = a1a2 · · · at. Define

the map δ : {1, . . . , s} → {0, 1} such that δ(j) = 1 if a and b assign the same

value at their step j, and δ(j) = 0 if a and b assign different values to variable j.

We finally define the map α as,

α(ρ) = 〈ρa, (S1, S2, . . . , St), δ〉 .

From α(ρ) we can reconstruct ρ as follows: Ci1 is the first clause that evalu-

ates to “1” using ρa. From Ci1 and S1 we reconstruct a1. Then, using δ, we can

compute the restriction ρ′ = ρb1a2 · · · at. Next, Ci2 is the first clause evaluating to

“1” using ρ′. From this and S2, we can compute a2, and so on. Thus α is 1:1. This

completes the proof of Håstad’s Switching Lemma. �

A striking consequence of the switching lemma is that AC0 circuits have re-

strictions on which they are constant even though many variables are assigned to

“⋆”:

Theorem 13.7 Let C be an unbounded fan-in circuit with n inputs, having size s
and depth d. Let r ≤ n/(14d(log s)d−1)− (log(s)− 1). Then there is a restriction

ρ ∈ Rr
n for which C|ρ is constant.

Proof We show inductively from the leaves up, that there is a restriction that turns

all the gates into DNF or CNF formulas all of whose terms have length at most

log s.

13.1. HÅSTAD’S SWITCHING LEMMA 261

1

1

1

a
b

a b

a b

a b

s

1
1

2
2

3 3

t
t

Figure 13.6: Decision tree T (F |ρ) with path of length s, b = b1b2 · · · bt.

262 CHAPTER 13. LOWER BOUNDS

Assume that level one of the circuit — the nodes sitting above the inputs and

their negations — consists of “or” gates. Thus, each of these gates g is a DNF

formula whose maximum term size is one. By Lemma 13.2, with p = 1/14, n1 =
n/14, k = 1, we have,

|{ρ ∈ Rn1

n |h(T (g|ρ)) ≥ log s}| < (2)− log s · |Rn1

n | .

Since there are at most s gates at level one, the number of restrictions ρ such

that h(T (g|ρ)) ≥ log s for some g is less than,

s · (2)− log s · |Rn1

n | = |Rn1

n | .

Thus, there is at least one restriction ρ1 ∈ Rn1

n under which all the gates at level

one are CNF formulas with terms of size less than log s. It follows that the “and”

gates at level two are CNF formulas with terms of size less than log s.

Let g2 = g|ρ1 be any such gate. Using Lemma 13.2, with k = log s, p =
1/(14 log s), n2 = n1/(14 log s), we have,

|{ρ ∈ Rn2

n1
|h(T (g2|ρ)) ≥ log s}| < (2)− log s · |Rn2

n1
| .

Thus, there is a restriction ρ2 ∈ Rn2

n1
under which every gate at level two is a

DNF formula all of whose terms have length less than log s.

Repeating this argument through all d levels, we have a restriction ρ = ρ1ρ2 · · · ρd
∈ Rn

nd
such that the height T (C|ρ) of the decision tree of the root of the circuit

is less than log s. Observe that nd = n/(14d(log s)d−1). Let b be the restriction

corresponding to any branch of the decision tree. It follows that C|ρb is constant

and has at least r = nd − (log(s)− 1) inputs. �

Suppose that circuit C in Theorem 13.7 computes the parity of its n inputs.

Then any restriction of C also computes the parity of its remaining inputs. Thus,

if 1 ≤ r in Theorem 13.7, then C must not compute PARITY. It follows that

if C is a size s, depth d circuit computing parity on n inputs, then the following

inequalities hold,

1 > n/(14d(log s)d−1)− (log(s)− 1)

log s > n/(14d(log s)d−1)

(log s)d > n/(14d)

s > 2
1

14
n

1

d .

13.2. A LOWER BOUND FOR REACHA 263

We thus have the following lower bound on the number of iterations of a first-

order quantifier block needed to compute PARITY. This corollary is optimal by

Exercise 4.19.

We use the “big omega” notation for lower bounds. The “equation” f(n) =
Ω(g(n)) is equivalent to g(n) = O(f(n)). It means that for almost all values of n,

f(n) is at least some constant multiple of g(n).

Corollary 13.8 If PARITY ∈ FO[s(n)], then s(n) = Ω(log n/ log log n), and

this holds even in the presence of arbitrary numeric predicates.

Exercise 13.9 Show that PARITY is first-order reducible to REACH. Conclude

that the same lower bound as in Corollary 13.8 holds for REACH. �

13.2 A Lower Bound for REACHa

In this section, we prove a lower bound (Theorem 13.11) on the quantifier-rank

needed to express the P-complete problem REACHa (Definition 3.23), when or-

dering and the other numeric predicates are not available. If the same result were

proved for the language with ordering, it would imply that NC is strictly contained

in P, and in fact that
⋃

k DSPACE[(log n)k] does not contain P.

Exercise 13.10 Show that REACHa is expressible in FO-VAR(wo≤)[n, 2]. [Hint:

just write down the natural inductive definition of the alternating path relation.] �

In the remainder of this section, we prove the following lower bound:

Theorem 13.11 Boolean query REACHa is not expressible in quantifier rank

2
√
logn−1 in the language without ordering.

To prove Theorem 13.11, we construct graphs Gm and Hm with the following

properties:

1. ||Gm|| = ||Hm|| < m1+logm

2. Gm ∼m Hm

3. Gm ∈ REACHa; Hm 6∈ REACHa .
(13.12)

264 CHAPTER 13. LOWER BOUNDS

b2
a 2 a3 b3

a1 b1

A

Figure 13.13: The Directed Switch Xd

Note that condition (1) implies that for n = ||Gm||, log n < (1+logm)(logm),
so

√
log n < 1 + logm, so 2

√
logn−1 < m. Thus, Equation (13.12) implies Theo-

rem 13.11.

The first step in producing Gm and Hm is to introduce the building block out

of which they will be constructed.

Lemma 13.14 Let Xd be the alternating graph pictured in Figure 13.13. Then Xd

has automorphisms that switch any two of the pairs (a1, b1), (a2, b2), and (a3, b3),
leaving the other pair fixed.

Proof The idea is that when Xd is placed in a graph, each of the pairs will consist

of one point that can reach d and one point that cannot. Note that the four points at

the middle of Xd are “and”-nodes and the other points are “or”-nodes. The boolean

formulas corresponding to alternating graph Xd are the following:

a1 ≡ (a2 ∧ a3) ∨ (b2 ∧ b3) ,

b1 ≡ (a2 ∧ b3) ∨ (b2 ∧ a3) .

The proof of the lemma is an easy computation. �

13.2. A LOWER BOUND FOR REACHA 265

Level

0

2

1

m. . .

s

t

Figure 13.15: The graph D̃d(Tm).

Before we construct the graphs Gm and Hm satisfying Equation (13.12), we

build exponential size graphs as a warm-up.

Let Tm be a complete binary tree of height m, with root r and edges di-

rected from root to leaves. Define Xd(Tm) to be the graph obtained by replac-

ing each vertex v from Tm by a copy Xd(v) of the switch Xd. Let y and z be

the left and right children of v, respectively. Then Xd(Tm) contains the edges

(a2(v), a1(y)), (b2(v), b1(y)) and (a3(v), a1(z)), (b3(v), b1(z)). Furthermore, add

an additional vertex t and draw the edges (a2(ℓ), t) and (a3(ℓ), t) for each leaf ℓ of

Tm. Finally, interpret constant symbol s as a1(r). Define X̃d(Tm) to be the same

as Xd(Tm) except that s is interpreted as b1(r). Thus Xd(Tm) ∈ REACHa, but

X̃d(Tm) 6∈ REACHa. See Figure 13.15 for a diagram of X̃d(Tm).

The following observation about Xd(Tm) and X̃d(Tm) leads to D’s winning

strategy in Gm(Xd(Tm), X̃d(Tm)):

266 CHAPTER 13. LOWER BOUNDS

Observation 13.16 Suppose that in X̃d(Tm), we take any pair of edges, (ai(v), ai(w)),
(bi(v), bi(w)), and switch them, i.e., replace them by (ai(v), bi(w)), (bi(v), ai(w)).
Then the resulting graph is isomorphic to Xd(Tm). In fact, switching any odd

number of edge pairs in Xd(Tm) (X̃d(Tm)) yields a graph that is isomorphic to

X̃d(Tm) (Xd(Tm)).

Proof The proof follows from Lemma 13.14. First, take any single edge-pair-

switch in X̃d(Tm). By Lemma 13.14 there is an automorphism of the graph that

flips the pairs ai(v), bi(v) and a1(v), b1(v). The result thus pushes the edge switch

up one level in the tree. When the top is reached, a1(r) and b1(r) have been

switched i.e., X̃d(Tm) has been changed to Xd(Tm). If there is more than one pair

of switched edges, then in this way they can be pushed to the root one by one. Each

time X̃d(Tm) is changed to Xd(Tm) or vice-versa. �

Lemma 13.17 For m = 1, 2, . . . , Xd(Tm) ∼m X̃d(Tm) .

Proof By induction on m. This is clear for m = 0. Assume the lemma for m
and consider the game Gm+1(Xd(Tm+1), X̃d(Tm+1)). Suppose that Samson’s first

move is to place a pebble on a vertex a in Xd(v) for some v ∈ Tm. It does not

matter whether a is in Xd(Tm+1) or X̃d(Tm+1). Either v = r is the root of Tm+1

or it is in the left or right subtree of r. If v is in the left subtree, then Delilah

should answer according to the isomorphism σ provided by Observation 13.16 be-

tween Xd(Tm+1) and X̃d(Tm+1) with the edge pair (a3(r), a1(w)), (b3(r), b3(w))
switched, where w is the right child of r. Notice that w is now the root of a copy

of X̃d(Tm). Any further moves in the right subtree should be answered according

to Delilah’s inductive winning strategy in the game Gm(Xd(Tm), X̃d(Tm)). Any

further moves in the other part of the tree should be answered by the isomorphism

σ. Thus, this strategy is always a win for Delilah. If the first move was in the right

subtree, then Delilah’s answer is similar. If v is the root of Tm+1, then Delilah

may arbitrarily place the imaginary edge switch in the right subtree and answer

according to the isomorphism σ. �

Exercise 13.18 Show that Samson wins the game G3
m+2(Xd(Tm), X̃d(Tm)).

[Hint: Suppose that Samson places his first two pebbles on a1(v1) and a2(v2),
where v1 and v2 are the children of the root of Tm. Delilah cannot answer with

a1(v) and a2(v) on the other side or she will lose in two more moves. Thus, in two

moves and three pebbles, Samson can push the difference between the two graphs

one level down the tree.] �

13.2. A LOWER BOUND FOR REACHA 267

1

2

3

4

5

01 11 21

01 11 21 02 12 22

00 10 20

00 10

0

20

00

1000

Row

01 11

10

00

00

10 30 01 11 21 31 2202 12 3220

Figure 13.19: The graph D2.

We continue with the proof of Theorem 13.11. The last step of the proof

is the introduction of graphs Dk. Dlogm will replace the binary tree Tm in the

construction. Dlogm has about mlogm vertices but it has essentially logm degrees

of freedom — enough to let Delilah win the m-move game.

The graph Dk = (Vk, Ek) is defined as follows. See Figure 13.19 for the

graph D2. The vertices Vk consist of k+1-tuples, 〈x1, . . . , xk, r〉 where x1, . . . , xk
can be thought of as coordinates and r is the row number. As we move from each

row to the one below, one of the coordinates is expanded by one. Call a block of

Dk, k consecutive rows. So from the top of one block to the top of the next, each

coordinate is expanded by one.

Vk =
{

〈x1, . . . , xk, r〉
∣

∣ r = ak + j, a < 2k, 0 ≤ xi ≤ a+ 1, xi ≤ a for i > j
}

Ek =
{

(〈x̄, r − 1〉, 〈x̄, r〉)
∣

∣ for all r < k2k
}

∪
{

(〈x1, . . . , xk, r − 1〉, 〈x1, . . . xi, xi + 1, xi+1 . . . xk, r〉)
∣

∣ i ≡ r (mod k)
}

Let Gm = Xd(Dlogm) and Hm = X̃d(Dlogm). See Figure 13.20 for a draw-

ing of part of Xd(D2). Notice that in the directed tree, all internal nodes have

in-degree one, but in Dk, some vertices have in-degree two. For such vertices v,

there are several incoming edges to a1(v) and b1(v).

We show that the three conditions of Equation 13.12 hold. Conditions 1.

and 3. are immediate. We must show that Delilah wins the m-move game on

Xd(Dlogm) and X̃d(Dlogm).

268 CHAPTER 13. LOWER BOUNDS

L
ev

el

0 1 2 3 7

s

t

Figure 13.20: The graph Xd(D2).

13.2. A LOWER BOUND FOR REACHA 269

111011

000 100 010 110

000 100 010 110 001 101

P
0

Row
r

r+1

r+k

P
1

Figure 13.21: Proof of Claim 13.22, k = 3, r = 2, i = 3.

Think of a round of the game as labeling a vertex v in Dlogm: it is labeled “0”

if Delilah answers with the same point as Samson, e.g., they both choose a1(v).
It is labeled “1” if Delilah answers with the opposite point. The labeling rule is

that if the two children of v are labeled, then v must be labeled with the “exclusive

or” of its children’s labels. Delilah wins the game as long as she never breaks the

labeling rule and never labels a bottom vertex “1” or the root “0”.

The crucial property of Dk is stated in the following claim. It says that it does

Samson no good in the 2k-move game, to choose a vertex more than k levels below

where he has forced a vertex to be labeled “1”. Thus, in m moves, Samson cannot

force a vertex at the bottom level to be labeled “1”.

Claim 13.22 Suppose row r of Dk is entirely labeled and let any 2k − 1 vertices

on or below row r + k be chosen. If the chosen vertices are all labeled “0”, then

there is still a labeling of the rest of Dk that is consistent with row r.

Proof By induction on k. For k = 1, let v be the chosen vertex on or below row

r + 1. Suppose v is on row r + 1 of D1. Let ℓ be a labeling of row r + 1 that

generates the required labeling of row r. Observe that ℓ̄ — the complement of ℓ —

generates the same labeling of row r. Clearly one of ℓ and ℓ̄ labels v “0” as desired.

If v is below row r + 1, then take an arbitrary labeling of row r + 1 and proceed

down to the row above v and then use the same argument.

270 CHAPTER 13. LOWER BOUNDS

Inductively, assume the claim is true for all k′ < k. Let row r be fixed and

suppose that 2k − 1 vertices of Dk have been chosen on or below row r + k.

Let i be the coordinate that is expanded as we pass from row r to row r + 1.

That is, i ≡ r + 1 (mod k). Let t be the maximum coordinate i occurring in row

r + k. Let P0, P1, . . . , Pt be the subsets of Dk+1 below row r, projected onto

values 0, 1, . . . , t of coordinate i,

Pj =
{

〈x1, . . . , xk+1, s〉
∣

∣ s > r, xi = j
}

.

(See Figure 13.21.)

Observe that each of the Pj’s is a copy of Dk−1 except that each row k − 1 is

repeated. There can be at most one of the Pj’s — call it Pj0 — that contain at least

2k−1 chosen vertices. Assume that all the vertices in Pj0 have been labeled “0”.

By induction, we can label row r+1 of the rest of the Pj’s as we please. Thus, we

can label row r of Dk as we please. �

This completes the proof of Theorem 13.11. Observe that Delilah’s winning

strategy in the game Gm(Xd(Dlogm), X̃d(Dlogm)) is in fact a winning strategy in

the bijection game, Gk
B,m(Xd(Dlogm), X̃d(Dlogm)) (Definition 12.22). At each

move, for each vertex v ∈ Dk, Delilah decides whether she would label this vertex

“0” or “1”. In the former case, she maps every vertex in X(v) ⊂ Xd(Xlogm)) to

the same vertex in X̃d(Dlogm). In the latter case, she maps the vertices according

to one of the automorphisms that switch a1(v) and a2(v) as given in Lemma 13.14.

Thus, we have proved,

Corollary 13.23 Boolean query REACHa is not expressible in quantifier rank

2
√
logn−1 even in language FO(COUNT).

For large n, the function 2
√
logn dominates (log n)k, for any value of k. Recall

that class NC is equal to FO[(log n)O(1)] (Corollary 5.26). Thus, if Theorem 13.11

went through with ordering, we would have proved that NC is strictly contained

in P. This would mean that polynomial-time complete problems are inherently

sequential in that they cannot be computed in parallel time (log n)O(1) using poly-

nomially many processors.

Of course, problem REACHa is expressible in FO(wo≤)(LFP). In the next

section, we present a different use of switch X (Figure 13.13). We prove that the

language FO(wo≤)(LFP,COUNT) is strictly contained in order-independent P.

13.3. LOWER BOUND FOR FIXED POINT AND COUNTING 271

13.3 Lower Bound for Fixed Point and Counting

We now prove that the language with fixed point and counting, FO(wo≤)(LFP,COUNT),
falls far short of capturing order-independent polynomial-time.

The argument is similar to the lower bound on REACHa (Theorem 13.11).

Let switch X be the graph shown in Figure 13.24. This is the undirected version

of switch Xd of Figure 13.13. Notice that the a vertices are circled in Figure 13.24
to distinguish them in the drawing from their companion b vertices. Note that the

four central vertices have the property that each of them is connected to an even

number of circled vertices. Just as in Lemma 13.14, we have that,

Lemma 13.25 Let X be the graph pictured in Figure 13.24. Then X has auto-

morphisms that switch any two of the pairs of a and b vertices, leaving the other

pair fixed.

Using switch X, we construct a sequence of pairs of graphs that are computa-

tionally simple to distinguish but require a linear number of variables to distinguish,

even in the presence of counting:

Theorem 13.26 There exists a sequence of pairs of graphs {An, Ãn}, n ∈ N,

admitting a linear time canonical labeling algorithm and having the following ad-

ditional properties:

1. An and Ãn have O(n) vertices.

2. An and Ãn have degree three and color class size four.

3. An ≡Cn Ãn.

4. An is not isomorphic to Ãn.

Before we prove Theorem 13.26 note a few of its consequences:

Corollary 13.27 FO(wo≤)(LFP,COUNT) is strictly included in order-independent

polynomial-time.

Proof By Theorem 13.26, the problem of distinguishing An from Ãn is in order-

independent P. Suppose that there were a sentence ϕ ∈ FO(wo≤)(LFP,COUNT)
that distinguished An from Ãn. Let k be the number of variables in ϕ.

272 CHAPTER 13. LOWER BOUNDS

Figure 13.24: Switch X drawn with the a-vertices circled.

13.3. LOWER BOUND FOR FIXED POINT AND COUNTING 273

Thus there is a sentence ϕ′ ∈ Ck such that 〈An, Ãn〉 |= ϕ and 〈An, An〉 |=
¬ϕ. However, we know that An ∼Cn Ãn, sot 〈An, An〉 ∼Cn 〈An, Ãn〉 because

Delilah’s winning strategy in the first game carries over to the second by using her

strategy in the second components and the identity map in the first components.

This is a contradiction when n ≥ k. �

The following corollary of Theorem 13.26 is in sharp contrast to Proposition

12.9, which says that three variables suffice to identify graphs of color class size

three.

Corollary 13.28 A linear number of variables is required to identify graphs of

color class size 4, even in the presence of counting. In symbols, var(CC4) = Ω(n)
and vc(CC4) = Ω(n).

Proof of Theorem 13.26: Let G be an undirected graph that is regular of de-

gree three. Define X(G) to be the graph in which each vertex of G is replaced

by X(v), a copy of the switch X. For each edge (u, v) of G, a pair of ver-

tices denoted by a(u, v), b(u, v) is selected from X(u), and similarly, the pair

of vertices a(v, u), b(v, u) is selected from X(v). Edges (a(u, v), a(v, u)) and

(b(u, v), b(v, u)) are drawn. See Figures 13.29 and 13.30 for a sample degree-

three graph H and the corresponding X(H).

If G has an ordering on its vertices, then X(G) inherits a partial ordering. Call

the four central vertices of X(v), ci(v), 1 ≤ i ≤ 4. Then vertices a(u, v), b(u, v),
and ci(v) are partially ordered according to the lexicographic ordering of 〈u, v〉,
and 〈v, v〉. Observe that if G is ordered, then X(G) has color class size 4 in the

sense that the partial ordering distinguishes all vertices except the pairs a(u, v), b(u, v)
and the quadruples c1(v), . . . , c4(v).

From now on in this section, G will be a regular, degree-three graph with

an ordering on its vertices. Define X̃(G) to be the graph X(G) except that the

edges are flipped between X(v1) and X(v2), for (v1, v2) the lexicographically first

edge in G. By “flipped” we mean that instead of the edges (a(v1, v2), a(v2, v1)),
(b(v1, v2), b(v2, v1)), X̃(G) has the edges, (a(v1, v2), b(v2, v1)), (b(v1, v2), a(v2, v1)).

Compare the drawing of X̃(H) in Figure 13.31 with the drawing of X(H) in

Figure 13.30.

The following observation is similar to Observation 13.16,

Observation 13.32 Let G be any regular, degree-three, connected graph. Let

X̂(G) be like X(G) except that exactly t pairs of edges are flipped. Then X̂(G) is

isomorphic to X(G) iff t is even and X̂(G) is isomorphic to X̃(G) iff t is odd.

274 CHAPTER 13. LOWER BOUNDS

3 4

2

1 5

6
Figure 13.29: H is a regular, degree-three graph.

13.3. LOWER BOUND FOR FIXED POINT AND COUNTING 275

3

1

2 6

5

4

Figure 13.30: The graph X(H).

276 CHAPTER 13. LOWER BOUNDS

3

1

2 6

5

4

Figure 13.31: The graph X̃(H).

13.3. LOWER BOUND FOR FIXED POINT AND COUNTING 277

The following are amusing and useful exercises.

Exercise 13.33 Prove Observation 13.32. The main subtlety is in proving that

X(G) is not isomorphic to X̃(G). �

Let STRAIGHT be the set of graphs Z such that Z is equal to X(G) for

some ordered, regular, degree-three graph G. Similarly, let FLIP be the set of such

graphs equal to X̃(G) for such a G. In the next exercise you are asked to show that

mutually exclusive boolean queries STRAIGHT and FLIP are each computable

in linear time. Let ⊕ be the counting-mod-2 quantifier:

(⊕x)ϕ(x) ≡ “there are an odd number of x’s satisfying ϕ.

In fact, STRAIGHT and FLIP are expressible — over ordered graphs — in

FO(⊕). The class FO(⊕) is equivalent to circuit class AC0 extended by counting-

mod-two gates in addition to the usual “and”, “or” and “not” gates. This very small

complexity class is strictly contained in ThC0 = FO(M) (Fact 13.37).

Exercise 13.34 Prove that STRAIGHT and FLIP are computable in linear time

on a RAM. Prove also that they are expressible in the language FO(⊕).

[Hint: if Z is equal to X(G) or X̃(G) for an ordered graph G, then its ordering

relation groups together each pair a(u, v), b(u, v). Using the ordering of Z , we can

label the first element in this pair a and the second b. This is the key point: the

ordering gives us a global labeling of all these pairs. Now, each pair of edges

between a, b-pairs is straight if the edge is from a to a and b to b and flipped

otherwise. Similarly, each X(v) is straight if the ci’s are each connected to an even

number of a’s and flipped if they are each connected to an odd number of a’s. (If

neither, then Z is not in FLIP or STRAIGHT.) The algorithm has only to count

the number of flips mod two.] �

Let G = (V,E) be a connected graph. Define a separator of G to be a subset

S ⊂ V such that the induced subgraph on V − S has no connected component

with more than |V |/2 vertices. A probabilistic construction shows that there exist

regular, degree-three graphs whose separators all have size Ω(n) [Ajt87].

Let T1, T2, . . . be a sequence of regular, degree-three graphs such that Tn has

O(n) vertices and its smallest separator has size at least n + 1. The fact that Tn

has only large separators means that it is “very connected”. For this reason, the

flip in X̃(Tn) can be almost anywhere. Even after we have pinned down a set of n
vertices, S, the largest connected component of Tn − S still includes over half the

vertices of Tn. The flip can hide inside this largest connected component and never

278 CHAPTER 13. LOWER BOUNDS

be pinned down by Samson if he has only n pebbles. The following is the key idea

in the proof of Theorem 13.26.

Lemma 13.35 As above, let Tk be a regular, degree-three graph whose smallest

separator has size at least k + 1. Then,

X(Tk) ∼k
C X̃(Tk) .

Proof We show that Delilah wins bijection game Gk
B(X(Tk)X̃(Tk)) (Definition

12.22).

We know by Observation 13.32 that if we flip any edge pair in X(Tk), then

the resulting graph is isomorphic to X̃(Tk). After move r, let Qr be the largest

connected component in Tk − Pr, where Pr is the set of all vertices v ∈ Tk such

that just after move r, some pebble is placed on a vertex in X(v). Since Tk has no

separator of size less than k + 1, Qr contains over half of the vertices of Tk.

Delilah’s winning strategy is to maintain the following invariant,

For each vertex v ∈ Qr, let Xv(Tk) be X(Tk)
with an edge pair adjacent to X(v) flipped.

There is an isomorphism ηr,v from Xv(Tk) to X̃(Tk), such that

for all xi ∈ dom(αr), ηr,v(αr(x1)) = βr(xi) .

(13.36)

Clearly Invariant 13.36 holds before the first move. Suppose that it holds just

after move r, and in move r+1, let Samson pick up pebble pair i. Delilah responds

with the bijection ρr+1 defined as follows:

For each v ∈ Tk, let Sv consist of v together with all vertices w from Tk such

that a pebble — not including xi — is currently on a vertex in X(w). Let Cv be the

largest connected component of Tk − Sv. Since Sv consists of at most k vertices,

Cv contains more than half of the vertices in Tk as does Qr. Let z be a vertex in

Qr ∩ Cv. Define ρr+1 to be equal to ηr,z on X(v).

At the end of move r+1, Samson places the xi pebbles on a vertex g in some

X(v), and ρr+1(g) = ηr,z(g). Delilah has not lost because ηr,z is an isomorphism

that maps the currently pebbled points to pebbled points.

After move r + 1, the new Qr+1 is equal to Sv. Define ηr+1,z = ηr,z. For

all other vertices w ∈ Qr+1, consider a path from z to w that stays within Qr+1.

Define ηr+1,w to be the modification of ηr,z that arises by pushing the flip from z
to w. This affects no points outside Qr+1.

13.3. LOWER BOUND FOR FIXED POINT AND COUNTING 279

Thus, Invariant 13.36 holds after move r + 1. �

Finally, choosing An = X(Tn), and Ãn = X̃(Tn) we have proved Theorem

13.26. �

Historical Notes and Suggestions for Further Reading

Theorem 13.1 was originally proved by Ajtai [Ajt83] and independently by Furst,

Saxe, and Sipser [FSS84]. The paper [Ajt83] is very rich. It also proves, among

other things, that there is a strict arity hierarchy in SO∃. Sipser also proved that

there is a strict depth hierarchy for AC0, [Sip83]. That is, there are first-order

boolean queries of alternation depth k + 1 that are not in non-uniform, alternation

depth k first-order.

Yao improved the bounds of Theorem 13.1, showing that a bounded depth

AC0 type circuit must have exponential size to express parity [Yao85]. Håstad

simplified Yao’s proof and strengthened the bounds, thus proving Lemma 13.2 and

Corollary 13.8 [Has86].

Finally, Razborov used an algebraic argument to show that PARITY 6∈ FO(⊕3),
where ⊕3 is the counting mod 3 quantifier [Raz87]. This was extended by Smolen-

sky to show the following [Smo87]:

Fact 13.37 For distinct primes p and q, FO(⊕p) is not contained in FO(⊕q), and

these are thus both strictly contained in FO(M) = ThC0.

Theorem 13.26 was proved by Cai, Fürer and Immerman [CFI92]. It provides

an Ω(n) lower bound on the number of variables needed to identify graphs on n
vertices (Corollary 13.28). Before this theorem was proved, it was believed that a

constant number of variables might suffice. This would have led to a polynomial-

time algorithm for general graph isomorphism. There had been considerable work

in this direction by Weisfeiler, Lehman, and others [Wei76].

Hella introduced the Bijection Game (Definition 12.22) and proved that it is

equivalent to the counting game (Theorem 12.23). He used this result to show that

the lower bound of Theorem 13.26 proves something much stronger: adding unary

generalized quantifiers to FO(LFP,COUNT) never captures order-independent P

[He96].

There are many other descriptive lower bounds without ordering that are worth

noting. Grädel and McColm proved lower bounds on logics with transitive closure

280 CHAPTER 13. LOWER BOUNDS

operators [Grä92a, GM96, GM95]. Etessami and Immerman proved upper and

lower bounds on transitive closure logics concerning tree isomorphism and canon-

ization [EI95a]. This was part of Etessami’s thesis on the power of local orderings

[Ete95a, Ete95].

Grohe proved the following very strong theorem that there is a strict arity

hierarchy for transitive closure, least fixed point, and partial fixed point logics

[Gro96a]:

Fact 13.38 (Arity Hierarchy Theorem) For every k > 1, there is a formula

ϕk(x1, . . . , xk, x
′
1, . . . , x

′
k) that is expressible in FO(TC(arity k)) but is not ex-

pressible in FO(PFP(arity k − 1)), and thus not in FO(LFP(arity k − 1)) or

FO(TC(arity k − 1)).

	Introduction
	Background in Logic
	Introduction and Preliminary Definitions
	Ordering and Arithmetic
	FO(BIT) = FO(PLUS,TIMES)

	Isomorphism
	First-Order Queries

	Background in Complexity
	Introduction
	Preliminary Definitions
	Reductions and Complete Problems
	Alternation
	Simultaneous Resource Classes
	Summary

	First-Order Reductions
	FO L
	Dual of a First-Order Query
	Complete problems for L and NL
	Complete Problems for P

	Inductive Definitions
	Least Fixed Point
	The Depth of Inductive Definitions
	Iterating First-Order Formulas

	Parallelism
	Concurrent Random Access Machines
	Inductive Depth Equals Parallel Time
	Number of Variables versus Number of Processors
	Circuit Complexity
	Alternating Complexity
	Alternation as Parallelism

	Ehrenfeucht-Fraïssé Games
	Definition of the Games
	Methodology for First-Order Expressibility
	First-Order Properties are Local
	Bounded Variable Languages
	Zero-One Laws
	Ehrenfeucht-Fraïssé Games with Ordering

	Second-Order Logic and Fagin's Theorem
	Second-Order Logic
	Proof of Fagin's Theorem
	NP-Complete Problems
	The Polynomial-Time Hierarchy

	Second-Order Lower Bounds
	Second-Order Games
	SO(monadic) Lower Bound on Reachability
	Lower Bounds Including Ordering

	Complementation and Transitive Closure
	Normal Form Theorem for FO(LFP)
	Transitive Closure Operators
	Normal Form for FO(TC)
	Logspace is Primitive Recursive
	NSPACE[s(n)] = co-NSPACE[s(n)]
	Restrictions of SO

	Polynomial Space
	Complete Problems for PSPACE
	Partial Fixed Points
	DSPACE[nk] = VAR[k+1]
	Using Second-Order Logic to Capture PSPACE

	Uniformity and Precomputation
	An Unbounded Number of Variables
	Tradeoffs Between Variables and Quantifier Depth

	First-Order Projections
	Help Bits
	Generalized Quantifiers

	The Role of Ordering
	Using Logic to Characterize Graphs
	Characterizing Graphs Using Lk
	Adding Counting to First-Order Logic
	Pebble Games for Ck
	Vertex Refinement Corresponds to C2
	Abiteboul-Vianu and Otto Theorems
	Toward a Language for Order-Independent P

	Lower Bounds
	Håstad's Switching Lemma
	A Lower Bound for REACHa
	Lower Bound for Fixed Point and Counting

	Applications
	Databases
	SQL
	Datalog

	Dynamic Complexity
	Dynamic Complexity Classes

	Model Checking
	Temporal Logic

	Summary

	Conclusions and Future Directions
	Languages That Capture Complexity Classes
	Complexity on the Face of a Query
	Stepwise Refinement

	Why Is Finite Model Theory Appropriate?
	Deep Mathematical Problems: P versus NP
	Toward Proving Lower Bounds
	Role of Ordering
	Approximation and Approximability

	Applications of Descriptive Complexity
	Dynamic Complexity
	Model Checking
	Abstract State Machines

	Software Crisis and Opportunity
	How can Finite Model Theory Help?

