
Chapter 5

Parallelism

Descriptive complexity is inherently parallel in nature. This is a particularly de-

lightful dividend of applying this form of logic to computer science. The time to

compute a query on a certain parallel computer corresponds exactly to the depth

of a first-order induction needed to describe the query. There is also a close rela-

tionship between the amount of hardware used — memory and processors — and

the number of variables in the inductive definition.

Quantification is a parallel operation. The query (∃x)S(x) can be executed

using n processors in constant parallel time. Processor pi checks whether S(i)
holds for i = 0, 1, . . . , n − 1. Any pi for which S(i) does hold should write a one

into a specified location in global memory that was originally zero.

The real world is inherently parallel. There are many atoms, molecules, cells,

organisms, computers, factories, towns, countries, all working on their own. For a

long time, however, computers were sequential devices having a single processor

and thus executing one instruction at a time. Over recent years, we have vastly in-

creased our ability to produce small, fast, inexpensive processors. It is thus possible

to build large parallel computers as well as a large number of personal computers

that can interact. One of the fundamental problems in computer science is how to

make efficient and effective use of this dramatic proliferation of computing power,

including many processors that we may use at once.

As researchers and practitioners struggle with the question of how to use many

processors at once, numerous models of parallel computation have been developed.

The main axis along which these models vary is how tightly coupled the processors

are. One extreme is the parallel random access machine (PRAM) in which the

89

90 CHAPTER 5. PARALLELISM

inter-connection pattern is essentially a complete graph. In this model, a word of

memory can be sent from any processor to any other processor in the time it takes

to perform a single instruction. The other extreme is distributed computation, in

which many personal computers or work stations are connected via a network,

which might be fairly fast and local — or it might be the Internet.

Both of these models are important, and neither is well enough understood.

For general applications, it is still very difficult to effectively use a tightly coupled

parallel computer or a distributed network of computers and gain a large speed

up compared to doing the computation at a single uni-processor. Of course there

have been great successes. Some problems, such as linear algebra, are very easy

to parallelize. Other problems may be inherently sequential, but this remains to be

seen.

In this chapter we study highly coupled parallelism, that is, parallelism as

on a PRAM. We show that this model corresponds very closely and nicely with

descriptive complexity. We see in particular that the optimal depth of inductive

definitions of a query corresponds exactly to the optimal parallel time needed to

compute the query on a PRAM. There is also a close relationship between the

number of processors needed by the PRAM and the number of variables used in

the inductive definition.

This connection between parallelism and descriptive complexity sheds a great

deal of light on the parallel nature of computation. It is very natural to describe our

queries via inductive definitions. It is enlightening that inductive depth corresponds

exactly to parallel time.

Later in this chapter we also study other models of parallel computation namely

circuit complexity and alternating Turing machines. We tie these other two parallel

models together with PRAMs and descriptive complexity.

The net result of this approach is that we can see what is basic about paral-

lel computation and what is merely model dependent; and, if we choose, we can

understand the main issues via the quantifier depth and the number of variables

needed for first-order descriptions of the queries of interest.

5.1 Concurrent Random Access Machines

In this section we define a precise model of PRAMs called Concurrent Random

Access Machines. This model is synchronous, that is the processors work in lock

step, and it is concurrent, that is, several processors may read from the same loca-

5.1. CONCURRENT RANDOM ACCESS MACHINES 91

tion at the same time step and several processors may try to write the same location

at the same time step.

A concurrent random access machine (CRAM) consists of a large number

of processors, all connected to a common, global memory. See Figure 5.1. The

processors are identical except that they each contain a unique processor number.

At each step, any number of processors may read or write any word of global

memory. If several processors try to write the same word at the same time, then the

lowest numbered processor succeeds.

This is the “priority write” model. The results in this chapter remain true if

instead we use the “common write” model, in which the program guarantees that

different values will never be written to the same location at the same time. The

common write model is the more natural model for logic: a formula such as (∀x)ϕ
specifies a parallel program using n processors — one for each possible value of

x. Any processor finding that ϕ is false for its value of x will write a zero into a

location in global memory that was initially one. See Corollary 5.8.

The CRAM is a special case of the concurrent read, concurrent write, parallel

random access machine (CRCW-PRAM). We now describe the precise instruc-

tion set for the CRAM. This model will be familiar to anyone who has ever pro-

grammed a computer using assembly language, and it may seem strange to anyone

who has not. Whether or not it seems strange, we must describe our model in a

level that is detailed enough so that we may prove its equivalence to the descriptive

model. Once we have done this, we can from then on write our parallel programs

using first-order logic.

In addition to assignments, the CRAM instruction set includes addition, sub-

traction, and branch-on-less. The CRAM instruction set also includes a Shift in-

struction. Shift(x, y) causes the word x to be shifted y bits to the right.

Some of our choices for the instruction set correspond to the choices we have

made earlier concerning which numeric relations to include in our first-order lan-

guage. The Shift operation for the CRAM allows each bit of global memory to be

available to every processor in constant time. Without Shift, CRAM[t(n)] would

be too weak to simulate FO[t(n)] for t(n) < log n. It was in working to prove

Theorem 5.2 that we originally realized that BIT should be added as a numeric

predicate to first-order logic. Without BIT, a first-order formula cannot access the

individual bits in a given variable. In more powerful logics such as FO(LFP), or

even IND[log n], BIT is definable from ordering and does not need to be explicitly

added (Exercise 4.18).

Each processor has a finite set of registers, including the following, Processor:

containing the number between 1 and p(n) of the processor; Address: containing

92 CHAPTER 5. PARALLELISM

PP

PP

PP

PP

PP PP

Memory

Global

r

2

3

1

4

5

Figure 5.1: A concurrent random access machine (CRAM)

5.2. INDUCTIVE DEPTH EQUALS PARALLEL TIME 93

an address of global memory; Contents: containing a word to be written or read

from global memory; and ProgramCounter: containing the line number of the in-

struction to be executed next. The instructions of a CRAM consist of the following:

READ: Read the word of global memory specified by Address into Contents.

WRITE: Write the Contents register into the global memory location specified

by Address.

OP RaRb: Perform OP on Ra and Rb and leave the result in Rb. Here OP may

be Add, Subtract, or Shift.

MOVE RaRb: Move Ra to Rb.

BLT RL: Branch to line L if the contents of R is less than zero.

The above instructions each increment the ProgramCounter, with the excep-

tion of BLT which replaces it by L, when R is less than 0.

We assume initially that the contents of the first |bin(A)| words of global

memory contain one bit each of the input string bin(A). We will see in Corollary

5.8 that any other plausible setting of the input will work as well. We assume that

a section of global memory is specified as the output. One of the bits of the output

may serve as a flag indicating that the output is available.

Our measure of parallel time complexity will be time on a CRAM. De-

fine CRAM[t(n)] to be the set of boolean queries computable in parallel time

t(n) on a CRAM that has at most polynomially many processors. When we

want to measure how many processors are needed, we use the complexity classes

CRAM-PROC[t(n), p(n)]. This is the set of boolean queries computable by a

CRAM using at most p(n) processors and time O(t(n)). Thus, CRAM[t(n)] =

CRAM-PROC[t(n), nO(1)].

We will see in Theorem 5.2 and Corollary 5.8 that the complexity class

CRAM[t(n)] is quite robust. In particular, it is not affected by exactly how we

place the input in the CRAM, by the size of the global memory word size, or by

the size of the local registers, as long as these are both polynomially bounded.

5.2 Inductive Depth Equals Parallel Time

The following theorem says that parallel time is identical to inductive depth. In

other words, a depth-optimal first-order inductive description of a query is a parallel-

94 CHAPTER 5. PARALLELISM

time-optimal algorithm to compute the query. The theorem also completes the cir-

cle and shows that number of quantifier-block iterations and inductive depth are

equal.

This is a very basic theorem, and its proof is not difficult. There are, however,

many details to combine in showing that these rather different looking models are

identical. For this reason, the proof is longer than it is deep.

Theorem 5.2 Let S be a boolean query. For all polynomially bounded, parallel

time constructible t(n), the following are equivalent:

1. S is computable by a CRAM in parallel time t(n) using polynomially many

processors and registers of polynomially bounded word size.

2. S is definable as a first-order induction whose depth, for structures of size

n, is at most t(n).

3. There exists a first-order quantifier-block [QB], a quantifier-free formula

M0 and a tuple c̄ of constants such that the query S for structures of size at most

n is expressed as [QB]t(n)M0(c̄/x̄), i.e., the quantifier-block repeated t(n) times

followed by M0.

In symbols, the equivalence of these three conditions can be written,

CRAM[t(n)] = IND[t(n)] = FO[t(n)]

Theorem 5.2 follows immediately from three containments: Lemmas 4.25,

5.3 and 5.4. The first of these — IND[t(n)] ⊆ FO[t(n)] — has already been

proved. We state and prove the remaining two now.

Lemma 5.3 For any polynomially bounded t(n) we have,

CRAM[t(n)] ⊆ IND[t(n)]

Proof We want to simulate the computation of a CRAMM . On input A, a structure

of size n, M runs in t(n) synchronous steps, using p(n) processors, for some

polynomial p(n). Since the number of processors, the time and the memory word

size are all polynomially bounded, we need only a constant number of variables

x1, . . . , xk, each ranging over the n element universe of A, to name any bit in any

register belonging to any processor at any step of the computation. We can thus

define the contents of all the relevant registers for any processor of M by induction

on the time step.

5.2. INDUCTIVE DEPTH EQUALS PARALLEL TIME 95

We now write a first-order inductive definition for the relation VALUE(p, t, x, r, b)
meaning that bit x in register r of processor p just after step t is equal to b.

The base case is that if t̄ = 0, then memory is correctly loaded with bin(A).
This is first-order expressible (Exercise 2.3). We also need to say that the initial

contents of each processor’s register Processor is its processor number. This is

easy, since we are given the processor number as the argument p.

The inductive definition of the relation VALUE(p, t, x, r, b) is a disjunction

depending on the value of p’s program counter at time t− 1. The most interesting

case is when the instruction to be executed is READ. Here we simply find the most

recent time t′ < t at which the word specified by p’s register Address at time t was

written into, and the lowest numbered processor p′ that wrote into this address at

time t′. In this way we can access the answer, namely bit x of p′ s register Contents

at time t′. If there exists no such time t′ then this memory location contains its

input value. This is bit i of the input bin(A) if i < |bin(A)|, and zero otherwise.

It remains to check that Addition, Subtraction, BLT, and Shift are first-order

expressible. Addition was handled in Proposition 1.9. In a similar way we can

express Subtraction and Less Than.

Relation BIT allows our first-order formulas to examine any of the log n bits

of a domain variable. It follows that the addition relation on such variables is

first-order expressible (Theorem 1.17). Using addition, we can specify the Shift

operation.

Thus we have described an inductive definition of relation VALUE, coding

M ’s entire computation. Furthermore, one iteration of the definition occurs for

each step of M . �

Notice that the above proof is simple because first-order inductive definitions

are very general and easy to use. Notice also that we did not write out the definition

in its entirety. This would be a complete formal definition of the CRAM which we

do not need. All that we needed to show is that the contents of all the bits of all the

registers at time t+ 1 is first-order definable from this same information at time t
or earlier.

Lemma 5.4 For polynomially bounded and parallel time constructible t(n),

FO[t(n)] ⊆ CRAM[t(n)]

Proof Let the FO[t(n)] problem be determined by the following quantifier free

formulas, quantifier block, and tuple of constants,

M0,M1, . . . ,Mk, QB = (Q1x1.M1) . . . (Qkxk.Mk), c̄, .

96 CHAPTER 5. PARALLELISM

Our CRAM must test whether an input structure A satisfies the sentence,

ϕn ≡ [QB]t(n)M0(c̄/x̄)

where n = ||A||. The CRAM will use nk processors and nk−1 bits of global

memory. Note that each processor has a number a1 . . . ak with 0 ≤ ai < n. Using

the Shift operation it can retrieve each of the ai’s in constant time.1

The CRAM will evaluate ϕn from right to left, simultaneously for all values

of the variables x1, . . . , xk. At its final step, it will output the bit ϕn(c̄/x̄).

For 0 ≤ r ≤ t(n) · k, let,

ϕr ≡ (Qixi.Mi) . . . (Qkxk.Mk)[QB]qM0 (5.5)

where r = k · (q + 1) + 1 − i. Let x1 . . . x̂i . . . xk be the k − 1-tuple resulting

from x1 . . . xk by removing xi. We will now give a program for the CRAM which

is broken into rounds each consisting of three processor steps such that:

Just after round r, the contents of memory location a1 . . . âi . . . ak
is 1 or 0 according as whether A |= ϕr(a1, . . . , ak) or not.

(5.6)

Note that xi does not occur free in ϕr. At round r, processor number a1 . . . ak
executes the following three instructions according to whether Qi is ∃ or Qi is ∀:

{Qi is ∃}

1. b := loc(a1 . . . âi+1 . . . ak);

2. loc(a1 . . . âi . . . ak) := 0;

3. if Mi(a1, . . . , ak) and b then loc(a1 . . . âi . . . ak) := 1;

{Qi is ∀}

1. b := loc(a1 . . . âi+1 . . . ak);

2. loc(a1 . . . âi . . . ak) := 1;

3. if Mi(a1, . . . , ak) and ¬b then loc(a1 . . . âi . . . ak) := 0;

1This is obvious if n is a power of 2. If not, we can just let each processor break its processor

number into k ⌈log n⌉-tuples of bits. If any of these is greater than or equal to n, then the processor

should do nothing during the entire computation.

5.2. INDUCTIVE DEPTH EQUALS PARALLEL TIME 97

It is not hard to prove by induction that Equation (5.6) holds and thus that the

CRAM simulates the formula. The bit fetched into b tells us whether A satisfies

the formula,

ϕr−1 ≡ (Qi+1xi+1.Mi+1) · · · [QB]qM0 .

The effect of lines 2 and 3 is that in parallel for all values of xi, the truth of ϕr

(Equation (5.5)) is tested and recorded. This completes the inductive step.

In the base case, at step 1, processor (a1 . . . ak) must set b = 1 iff A |=
M0(a1, . . . , ak). Note that M0(x1, . . . , xk) is a quantifier-free formula. Observe

that in constant time using its processor number, the shift operation, and addition,

processor (a1 . . . ak) can access the appropriate bits of bin(A), for example the bit

corresponding to R3(a2, a1), cf. Exercise 2.3. Furthermore, in constant time it can

compute the boolean combination of these bits indicated by M0. �

Remark 5.7 The proof of Lemma 5.4 provides a very simple network for simulat-

ing an FO[t(n)] property. The network has nk−1 bits of global memory and knk

gates, where k is the number of distinct variables in the quantifier block. Each gate

of the network is connected to two bits of global memory in a simple connection

pattern. The blowup of processors going from CRAM to FO to CRAM seems large

(cf. Corollary 5.10). However, it is plausible to build first-order networks with

billions of processing elements, i.e. gates, thus accommodating fairly large n. It is

crucial that k is kept small.

An immediate corollary of Theorem 5.2 is that the complexity class CRAM[t(n)]
is not affected by minor changes in how the input is arranged, nor in the global

memory word size, nor even by a change in the convention on how write conflicts

are resolved.

Corollary 5.8 For any function t(n), the complexity class CRAM[t(n)] is not

changed if the definition of a CRAM is modified in any consistent combination

of the following ways. (By consistent, we mean that input words larger than the

global word size or larger than the allowable length of applications of Shift are not

allowed.)

1. Change the input distribution so that either

(a) The entire input is placed in the first word of global memory.

(b) The Iτ (n) bits of input are placed log n bits at a time in the first

Iτ (n)/ log n words of global memory.

98 CHAPTER 5. PARALLELISM

2. Change the global memory word size so that either

(a) The global word size is 1, i.e. words are single bits. (Local registers do

not have this restriction so that the processor’s number may be stored

and manipulated.)

(b) The global word size is bounded by O(log n).

3. Modify the Shift operation so that shifts are limited to the maximum of the

input word size and of the log base two of the number of processors.

4. Remove the polynomial bound on the number of memory locations, thus al-

lowing an unbounded global memory.

5. Instead of the priority rule for the resolution of write conflicts, adopt the

“common write” rule in which different processors never write different val-

ues into the same memory location at a given time step.

Proof The proof is that Lemmas 5.3 and 5.4 still hold with any consistent set

of these modifications. This is immediate for Lemma 5.3. For Lemma 5.4, we

must only show that processor number a1 . . . ak still has the power to evaluate the

quantifier free formula Mi(a1, . . . , ak) and to name the global memory location

a1 . . . âi . . . ak, for 1 ≤ i ≤ k, in constant time. Recall that we are assuming that

the input structure A = 〈{0, 1, . . . , n − 1}, RA
1 ...R

A
p , c

A
1 ...c

A
q 〉 is coded as a bit

string of length Iτ (n) = nr1 + · · · + nrp + q⌈log n⌉. It is clear that all of the

consistent modifications above allow processor a1 . . . ak to test in constant time

whether the relation R(t1, . . . , tr) holds, where R is an input or numeric relation,

and tj ∈ {a1, . . . , ak} ∪ {cj |1 ≤ j ≤ q}. �

Exercise 5.9 Show that Corollary 4.11 holds for IND[t(n)], for any t(n). That is,

show that any problem S ∈ IND[t(n)] may be expressed as a single, depth t(n)
first-order induction. [Hint: Use Theorem 5.2.] �

5.3 Number of Variables versus Number of Processors

We now show that the number of variables in an inductive definition determines

the number of processors needed in the corresponding CRAM computation. The

intuitive idea is that using k log n-bit variables, we can name approximately nk

different parts of the CRAM. Thus, very roughly, k variables corresponds to nk

5.3. NUMBER OF VARIABLES VERSUS NUMBER OF PROCESSORS 99

processors. The correspondence is not exact because the CRAM has a somewhat

different pattern of interconnection between its processors and memory than the

first-order inductive definition “model of parallelism”. Later, we prove a tight re-

lationship between number of variables and deterministic space (Theorem 10.16).

We now carefully analyze the proof of Theorem 5.2 to give processor-versus-

variable bounds for translating between CRAM and IND. The proofs in this section

consist of rather detailed variable counting. This whole section may be omitted.

Corollary 5.10 Let CRAM-PROC[t(n), p(n)] be the complexity class CRAM[t(n)]
restricted to machines using at mostO(p(n)) processors. Let IND-VAR[t(n), v(n)]
be the complexity class IND[t(n)] restricted to inductive definitions using at most

v(n) distinct variables. Assume for simplicity that the maximum size of a register

word and t(n) are both o[
√
n] and that π ≥ 1 is a natural number. Then,

CRAM-PROC[t(n), nπ]
⊆ IND-VAR[t(n), 2π + 2]

⊆ CRAM-PROC[t(n), n2π+2]

Proof We prove these bounds using the following two lemmas. For the first lemma,

recall that Lemma 5.3 simulated a CRAM using an inductive definition. We induc-

tively defined relation VALUE, which encoded the entire CRAM computation.

Lemma 5.11 If the maximum size of a register word and of t(n) are both o[
√
n],

and if M is a CRAM-PROC[t(n), nπ] machine, then the inductive definition of

VALUE may be written using 2π + 2 variables.

Proof We write out the inductive definition of VALUE in enough detail to count

the number of variables used:

VALUE(p, t, x, r, b) ≡ Z ∨W ∨ S ∨R ∨M ∨B ∨A ,

where the disjuncts have the following intuitive meanings:

Z: t = 0 and the initial value of r is correct.

W : t 6= 0, the instruction just executed is WRITE, and the value of r is

correct, i.e., unchanged, unless r is Program-Counter.

100 CHAPTER 5. PARALLELISM

S,R,M,B,A: Similarly for SHIFT, READ, MOVE, BLT, and, ADD or SUB-

TRACT, respectively.

It suffices to show that each disjunct can be written using the number of vari-

ables claimed. First we consider the disjunct Z . The only interesting part of Z is

the case where r is “Processor”. In this case we use relation BIT to say that b = 1
iff bit x of p is 1. No extra variables are needed. Note that the number of free

variables in the relation is π+ 1 because the values t, x, r, and b may be combined

into a single variable.

Next we consider the case of Addition. Recall that the main work is to express

the carry bit:

C[A,B](x) ≡ (∃y < x)[A(y) ∧B(y) ∧ (∀z.y < z < x)A(z) ∨B(z)] .

This definition uses two extra variables. Thus π + 3 ≤ 2π + 2 variables

certainly suffice. The cases S,M, and B are simpler.

The last and most interesting case is R. Here we must say,

1. The instruction just executed is READ,

2. Register r is register Contents,

3. There exists a processor p′ and a time t′ such that:

(a) t′ < t,

(b) Address(p′, t′) =Address(p, t),

(c) VALUE(p′, t′, x, r, b),

(d) Processor p′ wrote at time t′,

(e) For all p′′ < p′, if p′′ wrote at time t′, then Address(p′′, t′) 6=Address(p′, t′),

(f) For all t′′ such that t′ < t′′ < t and for all p′′, if p′′ wrote at time t′′,
then Address(p′′, t′′) 6=Address(p′, t′).

We count variables. On its face, this formula uses three p′s and three t’s.

However, we show that two copies of each suffice. Observe that where we quantify

p′′ in lines 3e and 3f, we no longer need p, so we may use these variables instead.

The most subtle case is 3f. We use the fact that t is o[
√
n], so t′ and t′′ can be

coded into a single variable. We use a variable from p̄ to encode t and t′. Then we

can use t to universally quantify t = 〈t′, t′′〉. Now we can universally quantify p to

act as p′′. To say that Address(p′′, t′′) 6=Address(p′, t′), we use the extra variable

5.3. NUMBER OF VARIABLES VERSUS NUMBER OF PROCESSORS 101

(t′) to assert that there exists a bit position i and a bit b such that b is the bit at

position i of Address(p′′, t′′), and 1− b is the bit at position i of Address(p′, t′). To

help with expressing the first conjunct, we may use a variable from p′ and to help

in the second conjunct, we may use a variable from p.

Thus 2π + 2 variables suffice as claimed. �

The second lemma we need (Lemma 5.12) is a refinement of Lemma 5.4.

Lemma 5.12 Let ϕ(R,x) be an inductive definition of depth d(n). Let k be the

number of distinct variables, including x, occurring in ϕ. Then the relation defined

by ϕ is also computable in CRAM-PROC[d(n), O(nk)].

Proof This is very similar to the proof of Lemma 5.4. Let T be the parse tree of ϕ.

The CRAM will have nk|T | processors: one for each value of the k variables and

each node in T . Let δ be the depth of T . As in the proof of Lemma 5.4, in rounds

consisting of 3δ steps, the CRAM will evaluate an iteration of ϕ. Let r = arity(R)
= the number of variables in x; so r ≤ k. The CRAM will have nr bits of global

memory to hold the truth value of Rt = ϕt(∅). It will use an additional nk|T | bits

of memory to store the truth values corresponding to nodes of T . Thus Rd(n), the

least fixed point of ϕ, is computed in time O(d(n)) using O(nk) processors, as

claimed. �

This completes the proof of Corollary 5.10. �

The above proofs give us some information concerning the efficiency of our

simulation of CRAM s with first-order inductive definitions. After these results,

the questions is, “Why is the number of variables needed to express a computation

of nπ processors 2π + 2, instead of π?” We discuss the multiplicative factor of

two, and the additional two variables, respectively in the next two paragraphs.

We need the term 2π for two reasons: we must specify p and p′ at the same

time in order to say that their address registers are equal; and we need to say that no

lower numbered processor p′′ wrote into the same address as p′. This term points

out a difference between the CRAM model and the network described in Remark

5.7 that was used to simulate a FO[t(n)] property.

The factor of two would be eliminated if we adopted a weaker parallel ma-

chine model allowing only common writes and such that the memory location ac-

cessed by a processor at a given time could be determined by a very simple com-

putation on the processor number and the time.

102 CHAPTER 5. PARALLELISM

The additional two variables arise for various bookkeeping reasons. This term

can be reduced if we make the following two changes:

1. Rather than keeping track of all previous times, we can assume that every

bit of global memory is written into at least every T time steps for some constant

T .

2. The register size can be restricted toO(log n), so we need onlyO(log log n)
bits to name a bit of a word.

Remark 5.13 The above observations show that the relation between the number

of variables needed to give an inductive definition of a relation and the logarithm

to the base n of the number of processors needed to quickly compute the relation

are nearly identical. The cost of programming with first-order inductive definitions

rather than CRAMs is theoretically very small.

The number of variables needed to describe a query is not a perfect measure

of the amount of hardware needed in the parallel computation of the query. This

is due to the difference in connection patterns of the parallel models CRAM[t(n)]
and FO[t(n)]. For example, in the proof of Lemma 5.4, processor ā at round t
accesses only a fixed pair of bits of global memory: bits loc(a1 . . . âi . . . ak) and

loc(a1 . . . âi+1 . . . ak). Thus a “first-order parallel machine” has a more restrictive

pattern of connections between processors and global memory than a CRAM (cf.

Remark 5.7).

Compare this to Theorem 10.16 where the set of queries describable using k+
1 variables is proved identical to the set of queries computable using deterministic

space nk.

5.4 Circuit Complexity

Real computers are built from many copies of small and simple components. Cir-

cuit complexity is the branch of computational complexity that uses circuits of

boolean logic gates as its model of computation. The circuits that we consider are

directed acyclic graphs, in which inputs are placed at the leaves and signals pro-

ceed up the circuit toward the root r. Thus, in this idealized model, a gate is never

reused during a computation.

This simple and basic model admits many beautiful and deep combinatorial

arguments, some of which we will see in Chapter 13. In this section, we define

the major circuit complexity classes. It should be intuitively clear that the depth

5.4. CIRCUIT COMPLEXITY 103

of a circuit, that is, the length of a longest path from root to leaf, corresponds to

parallel time. We demonstrate this and the related connections between circuits

and the other models of parallel computation, i.e., CRAMs, alternating machines,

and first-order inductive definitions.

Let S ⊆ STRUC[τs] be a boolean query on binary strings. In circuit complex-

ity, S would be computed by an infinite sequence of circuits

C = {Ci | i = 1, 2, . . .} , (5.14)

where Cn is a circuit with n input bits and a single output bit r. For w ∈ {0, 1}n,

let Cn(w) be the value at Cn’s output gate, when the bits of w are placed in its n
input gates. We say that C computes S iff for all n and for all w ∈ {0, 1}n,

w ∈ S ⇔ Cn(w) = 1 .

In this section we present an introduction to circuit complexity and relate com-

plexity classes defined via uniform sequences of circuits to descriptive complexity.

We also derive a completely syntactic definition for circuit uniformity. This defini-

tion is equivalent to the usual Turing machine-based definition in the range where

the latter exists.

As seen in Definition 2.27, a circuit is a directed, acyclic graph. The leaves of

the circuit are the input nodes. Every other vertex is an “and”, “or”, or “not” gate.

The edges of the circuit indicate connections between nodes. Edge (a, b) would

indicate that the output of gate a is an input to gate b.

It is convenient to assume that all the “not” gates in our circuits have been

pushed down to the bottom. We can do this using De Morgan laws (¬(α ∧ β) ≡
(¬α ∨ ¬β); ¬(α ∨ β) ≡ (¬α ∧ ¬β)) without increasing the depth and without

significantly increasing the size of the circuit.

Furthermore, we can assume that the levels alternate, with the top level being

all “or” gates, the next level all “and” gates and so on. Such a normalized circuit is

called a layered circuit. See Figure 5.15, in which a layered circuit of depth t(n) is

drawn.

Below, we define three families of circuit complexity classes. They vary de-

pending on whether all gates have bounded fan-in (NC), the “and” and “or” gates

may have unbounded fan-in (AC), or there are threshold gates (ThC). A threshold

gate with threshold value i has output one iff at least i of its inputs have value one.

Note that threshold gates include as special cases “or” gates in which the threshold

is one and “and” gates in which the threshold is equal to the number of inputs.

104 CHAPTER 5. PARALLELISM

t(n)

b
1b

1

or
r

b b
bb

2
2

n
n

and

or

not

and

or

Figure 5.15: A layered circuit of depth t(n).

Recall from Definition 2.27 the vocabulary of circuits, τc = 〈E2, G1
∧, G

1
∨, G

1
¬, I

1, r〉.
Constant r refers to the root node, or output of the circuit. The gates that have no

incoming edges are the leaves of the circuit. We use the following abbreviation,

L(x) ≡ (∀y)(¬E(y, x))

The leaves need to be ordered 1, 2, . . . so that we know where to place input bits

b1, b2, . . . , bn. We assume for simplicity that the leaves of a circuit are the initial

elements of the universe of a circuit. That is, we assume that every circuit C satisfies

the following formula:

Leaves-Come-First ≡ (∀xy)(L(x) ∧ ¬L(y) → x < y)

Input relation I(v) represents the fact that leaf v contains value 1. Internal

node w is an and-gate if G∧(w) holds, an or-gate if G∨(w) holds, and a not-gate if

G¬(w) holds.

We generalize the vocabulary of circuits to the vocabulary of threshold cir-

cuits, τthc = τc ∪ {G2
t }. Relation Gt(g, v) means that g is a threshold gate with

threshold value v. Thus, g would take value 1 in a circuit iff at least v of its inputs

have value one.

5.4. CIRCUIT COMPLEXITY 105

Let A ∈ STRUC[τ] and let n = ||A||. A circuit Cn with n̂τ (n) leaves can take

A as input by placing the binary string bin(A) into its leaves. We write C(w) to

denote the output of circuit C on input w, i.e., the value of the root node when w is

placed at the leaves and C is then evaluated. We say that circuit C accepts structure

A iff C(bin(A)) = 1.

In proving lower bounds on circuit complexity, one considers the size and

structure of the circuits Cn, but one rarely needs to consider how the sequence of

circuits relate for different values of n. To relate circuit complexity to machine

or descriptive complexity, however, we must explain where these infinitely many

circuits come from. The idea is that the circuits all come from unwindings of a

particular program and architecture.

Formally we assume that there is a query of low complexity that on input 0n

produces Cn. We insist upon first-order uniformity. This means that there is a

first-order query I : STRUC[τs] → STRUC[τc] with Cn = I(0n), n = 1, 2,
Here 0n ∈ STRUC[τs] is the string consisting of n zeros. Note that this uniformity

condition implies that Cn has polynomially bounded size.

Definition 5.16 (Uniform) Let C be a sequence of circuits as in Equation (5.14).

Let τ ∈ {τc, τthc} be the vocabulary of circuits or threshold circuits. Let I :
STRUC[τs] → STRUC[τ] be a query such that for all n ∈ N, I(0n) = Cn. That

is, on input a string of n zero’s the query produces circuit n. If I ∈ FO, then C is

a first-order uniform sequence of circuits. Similarly, if I ∈ L, then C is logspace

uniform. If I ∈ P, then C is polynomial-time uniform, and so on. �

We now define the standard circuit complexity classes. The notion of uni-

formity that we use is first-order uniformity. Observe that whether we use first-

order, logspace, or polynomial-time uniformity, any uniform sequence of circuits

is polynomial-size. That is, there is a function p(n) such that circuit Cn has size at

most p(n).

Definition 5.17 (Circuit Complexity) Let t(n) be a polynomially bounded func-

tion and let S ⊆ STRUC[τ] be a boolean query. Then S is in the (first-order

uniform) circuit complexity class NC[t(n)], AC[t(n)], ThC[t(n)], respectively iff

there exists a first-order query I : STRUC[τs] → STRUC[τthc] defining a uniform

class of circuits Cn = I(0n) with the following properties:

1. For all A ∈ STRUC[τ], A ∈ S ⇔ C||A|| accepts A.

2. The depth of Cn is O(t(n)).

106 CHAPTER 5. PARALLELISM

3. The gates ofCn consist of binary “and” and “or” gates (NC), unbounded fan-

in “and” and “or” gates (AC), and unbounded fan-in threshold gates (ThC),

respectively.

For i ∈ N, let NCi = NC[(log n)i], ACi = AC[(log n)i], and ThCi =
ThC[(log n)i]. Finally, let

NC =

∞⋃

i=0

NCi
�

The NC circuits correspond reasonably well to standard silicon-based hard-

ware. The AC circuits are idealized hardware in that it is not known how to connect

n inputs to a single gate with constant delay time. The practical way to do this is to

connect them in a binary tree, causing an O(log n) time delay. On the other hand,

once we have such a binary tree, we can also compute threshold functions. This

explains what we rigorously prove below, namely:

AC[t(n)] ⊆ ThC[t(n)] ⊆ NC[t(n) log n] .

We also see below that the unbounded fan-in gates in AC circuits correspond ex-

actly to concurrent writing in the CRAM model. Similarly, threshold gates corre-

spond to the tree connections in the NYU ultracomputer and to the “scan” operation

on the connection machine, cf. Theorem 5.27, Exercises 5.28, 5.29.

Recall that a regular language is a set of strings S ⊆ Σ⋆ accepted by a finite

automaton. A finite automaton is essentially a Turing machine with no work tapes.

See [LP81] or [HU79] for details. As an example of computing with circuits, we

prove the following,

Proposition 5.18 Every regular language is in NC1.

Proof We are given a deterministic finite automaton D = 〈Σ, Q, δ, s, F 〉. We must

construct a first-order query ID : STRUC[τs] → STRUC[τc] such that, letting

Cn = ID(0
n), for all strings w ∈ Σ⋆,

w ∈ L(D) ⇔ C|w| accepts w

Circuit Cn is a complete binary tree with n leaves. The input to leaf L(i) is

wi, character i of the input string. Each such leaf contains the finite hardware to

5.4. CIRCUIT COMPLEXITY 107

produce as output the transition function of D on reading input symbol wi. That

is, we store a table for fL(i) = δ(·, wi) : Q→ Q.

Each internal node v of the tree takes as input the transition functions flc and

frc of its left child and right child, and computes their composition fv = frc ◦ flc.
Thus, inductively, the output of every node v is the function fv = δ⋆(·, wv) where

wv is the subword of w that is sitting below v’s subtree. In particular, w is in L(D)
iff fr(s) ∈ F , where fr is the mapping stored at the root.

Since D is a fixed, finite state automaton, the hardware at the leaves and at

each internal node is a fixed, bounded size NC circuit. The first-order query ID
need only describe a complete binary tree with n leaves with these two fixed cir-

cuits placed at each leaf and each internal node, respectively. The height of the

resulting circuits is O(log n) as desired. �

Exercise 5.19 Prove that the boolean majority query MAJ is in NC1.

MAJ =
{
A ∈ STRUC[τs]

∣∣ string A contains more than ||A||/2 “1”s
}

[Hint: The obvious way to try to build an NC1 circuit for majority is to add

the n input bits via a full binary tree of height log n. The problem with this is

that while the sums being added have more and more bits, they must be added in

constant depth.

A solution to this problem uses ambiguous arithmetic notation. Consider a

representation of natural numbers in binary, except that digits 0, 1, 2, 3 may be

used. For example 3213 and 3221 are different representations of the decimal

number 37 in this ambiguous notation,

3213 = 3·23+2·22+1·21+3·20 = 37 = 3221 = 3·23+2·22+2·21+1·20 .

Show that adding two n bit numbers in ambiguous notation can be done via an

NC0 circuit, i.e., with bounded depth.

See the following sample addition problem.

carries: 3 2 2 3

3 2 1 3

+ 3 2 1 3

3 2 2 1 0

108 CHAPTER 5. PARALLELISM

This is doable in NC0 because the carry from column i can be computed by

looking only at columns i and i+ 1.

Translating from ambiguous notation back to binary, which must be done only

once at the end, is just an addition problem. This is first-order, and thus AC0, and

thus NC1.] �

Exercise 5.20 A good way to become familiar with circuit complexity classes is

to prove the following containments. For all i ∈ N,

NCi ⊆ ACi ⊆ ThCi ⊆ NCi+1 (5.21)

[Hint: the only subtle containment is the the last. For this, you should use

Exercise 5.19.] �

The following theorem summarizes the relationships between all the parallel

models that we have seen. Note that the equivalence of FO[t(n)] and AC[t(n)]
shows that the uniformity of AC circuits can be defined in a completely syntactic

way: circuit Cn is constructed by writing down a quantifier block t(n) times.

Theorem 5.22 For all polynomially bounded and first-order constructible t(n),
the following classes are equal:

CRAM[t(n)] = IND[t(n)] = FO[t(n)] = AC[t(n)]

Proof The equality of the first three classes was already proved in Theorem

5.2. The proof of FO[t(n)] ⊆ AC[t(n)] is similar to the proof of Lemma

5.4. Let S be a FO[t(n)] boolean query given by the quantifier block, QB =
[(Q1x1.M1) . . . (Qkxk.Mk)], initial formula, M0, and tuple of constants, c̄ . We

must write a first-order query, I , to generate circuit Cn = I(0n), so that for all

A ∈ STRUC[τ],

A |= (QBt(||A||)M0)(c̄/x̄) ⇔ C||A|| accepts A (5.23)

Initially the circuit evaluates the quantifier-free formulas Mi, i = 0, 1, . . . , k.

The nodes 〈Mi, b1, . . . , bk〉 will be the gates that have evaluated these formulas,

i.e.,

〈Mi, b1, . . . , bk〉(bin(A)) = 1 ⇔ A |=Mi(b1, . . . , bk)

5.4. CIRCUIT COMPLEXITY 109

〈2r, b1, . . . , b̂i, . . . , bk〉

〈2r−1, b1, . . . , 0, . . . , bk〉

〈2r−1, b1, . . . , 0, b̂i+1, . . . , bk〉

〈Mi, b1, . . . , 0, bi+1, . . . , bk〉

〈2r−1, b1, . . . , n−1, . . . , bk〉

〈2r−1, b1, . . . , n−1, b̂i+1, . . . , bk〉

〈Mi, b1, . . . , n−1, bi+1, . . . , bk〉

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔✻ PPPPPP✐

✟✟✟✟✟✟✟✟✟✟✟✟✟✯

❆
❆
❆

❆
❆❑

✻ PPPPPP✐

❍❍❍❍❍❍❍❍❍❍❍❍❍❨

❍❍❍❍❍❍❨

✻

∧ · · · ∧ · · · ∧

Figure 5.24: An AC[t(n)] circuit simulating an FO[t(n)] formula

As in Equation (5.5), let ϕr be the inside r quantifiers of QBt(||A||)M0. The first of

these quantifiers is Qi, where i ≡ 1− r (mod k).

We construct the gate 〈2r, b1, . . . , b̂i, . . . , bk〉 so that

〈2r, b1, . . . , b̂i, . . . , bk〉(bin(A)) = 1 ⇔ A |= ϕr(b1, . . . , bk)

This is achieved inductively by letting gate 〈2r, b1, . . . , b̂i, . . . , bk〉 be an

“and”-gate, or “or”-gate according as Qi = ∀ or ∃. This gate has in-

puts gates 〈2r − 1, b1, . . . , bi, b̂i+1, . . . , bk〉 for bi ranging over |A|. Each

〈2r − 1, b1, . . . , bi, b̂i+1, . . . , bk〉 is a binary “and”-gate whoses inputs are

〈Mi, b1, . . . , bk〉 and 〈2r − 2, b1, . . . , bi, b̂i+1, . . . , bk〉. See Figure 5.24 for a di-

agram of this construction.

The circuit we have described may be constructed via a first-order query I ,

and it satisfies Equation (5.23).

To prove that AC[t(n)] ⊆ IND[t(n)], let Cn = I(0n), n = 1, 2, . . ., be a

uniform sequence of AC[t(n)] circuits, with I : STRUC[τs] → STRUC[τc] a first-

110 CHAPTER 5. PARALLELISM

order query. We must write an inductive formula,

Φ ≡ (LFPϕ)(c̄)

so that for all A ∈ STRUC[τ],

A |= Φ ⇔ C||A|| accepts A .

From A we can get the circuit C||A|| = 〈E,G∧, G∨, G¬, bin(A), r〉 via the

first-order query I . Note that, the input string I = bin(A) is first-order describable

from A (Exercise 2.3). The following is a first-order inductive definition of the

relation V (x, b) meaning that gate x has boolean value b,

V (x, b) ≡ DEFINED(x) ∧
[
L(x) ∧ (I(x) ↔ b) ∨

G∧(x) ∧ (C(x) ↔ b) ∨ G∨(x) ∧ (D(x) ↔ b)
∨ G¬(x) ∧ (N(x) ↔ b)

] (5.25)

Here, DEFINED(x), meaning that x is ready to be defined, is an abbreviation

for (∀y)(∃c)(E(y, x) → V (y, c)).

Predicates C(x) says that all of x’s inputs are true, D(x) says that some of

x’s inputs are true, and N(x) says that its input is false:

C(x) ≡ (∀y)(E(y, x) → V (y, 1))
D(x) ≡ (∃y)(E(y, x) ∧ V (y, 1))
N(x) ≡ (∃!y)(E(y, x)) ∧ (∃y)(E(y, x) ∧ V (y, 0))

The inductive definition of V closes in exactly the depth of Cn, which is

O(t(n)) iterations. Once it closes, Φ ≡ V (r, 1) expresses the acceptance condition

in IND[t(n)], as desired. �

A corollary of Theorem 5.22 is the following characterization of the class NC,

Corollary 5.26

NC =
∞⋃

k=1

FO[(log n)k] =
∞⋃

k=1

CRAM[(log n)k]

In the NYU ultracomputer, processors are connected using a complete binary

tree. At each node v of this tree, there is enough logic to compute the sum of the

5.4. CIRCUIT COMPLEXITY 111

words at v’s children and send this value to v’s parent. Thus, very quickly — and

it is convenient to call this unit time — we can compute the “or” or the sum of n
locations.

Thus, an ultracomputer is an extension of a CRAM in which when several

processors try to write into the same location of global memory at the same time,

that location contains at the next time step the sum of all the values written. Define

the complexity class ULTRA[t(n)] to be the set of boolean queries computable on

an ultracomputer using polynomially much hardware and parallel time t(n). The

Connection Machine has an operation called “scan”, which is equivalent to this

n-ary sum. Thus, the Connection Machine is another example of an ultracomputer.

The following generalization of Theorem 5.22 is not difficult to prove. The

main subtlety is in working with the first-order analogue of the circuit class ThC0.

Define the majority quantifier (Mx)ϕ(x) to mean that more than half of the ele-

ments of the universe satisfy ϕ. Let FO(M), be first-order logic extended by the

majority quantifier. It is shown in [BIS88] that FO(M) = ThC0. Later, we de-

fine FO(COUNT) — a robust way to add counting to first-order logic (Definition

12.11). It is also shown in [BIS88] that FO(M) = FO(COUNT).

Theorem 5.27 For all polynomially bounded and constructible t(n), the following

classes are equal:

ULTRA[t(n)] = FO(M)[t(n)] = ThC[t(n)]

The following exercises give some sense of the complexity class ThC0 =

FO(M) = FO(COUNT).

Exercise 5.28 Let A be an ordered structure with n = ||A||. As usual, we can think

of any element i ∈ |A| as being a number from 0 to n − 1. Let the formula Cϕ(i)
mean that the number of a ∈ |A| such that A |= ϕ(a) is at least i. Show that if

ϕ(x) is expressible in FO(M), then so is Cϕ.

[Hint: use the ordering relation. Split the problem into showing that there are

j a’s no greater than n/2 satisfying ϕ and that there are i− j a’s greater than n/2.

These statements can be written with one majority quantifier each.] �

Exercise 5.29 The class ThC0 = FO(M) is a rather interesting complexity class.

Show that the following arithmetic operations are computable in ThC0:

1. The sum of n-bit natural numbers.

112 CHAPTER 5. PARALLELISM

2. Multiplication of two n-bit integers.

3. Multiplication of two n × n integer matrices, each of whose entries is an

integer of at most n bits.

[Hint: (3) follows easily from (2) which follows easily from (1). To do (1), let

S =
∑n−1

i=0 Ai be the sum we are trying to compute. Observe that we can count

the number of 1s in each column. Thus, we just have to add the relevant column-

counts, i.e., we have to add n log n-bit numbers. To make this easier still, split each

Ai into two parts: Ai = Bi + Ci, where the bits of Bi and Ci are split into blocks

of size log n, and Bi is zero on the even blocks and Ci is zero on the odd blocks.

Thus S =
∑
Bi +

∑
Ci, and we have reduced the problem to computing

∑
Bi

and
∑
Ci. You have to figure out why this is easier than the original problem! (For

a similar argument, see the part of the proof of Theorem 1.17 in which it is shown

that TIMES is first-order definable using BIT.)] �

5.5 Alternating Complexity

Alternating Turing machines are very closely tied with quantifiers. In this section

we establish the precise relationship between descriptive and alternating complex-

ity. We begin by examining the relationship at the lowest level. Let the logarithmic-

time hierarchy (LH) be ATIME-ALT[log n,O(1)], i.e., the set of boolean queries

computed by alternating Turing machines in O[log n] time, making a bounded

number of alternations. The following theorem says that LH = FO.2

Theorem 5.30 The logarithmic-time hierarchy is exactly the set of first-order ex-

pressible boolean queries.

Proof The most delicate part of the proof is the following:

Lemma 5.31 DTIME[log n] ⊆ FO .

Proof Let T be a DTIME[log n] machine. We must write a first-order sentence ϕ
such that for all inputs A,

T (bin(A))↓ ⇔ A |= ϕ

2This is analogous to a result we will see later: The polynomial-time hierarchy (PH) is equal to

the set of boolean queries expressible in second-order logic (SO), (Corollary 7.22).

5.5. ALTERNATING COMPLEXITY 113

The sentence ϕ will begin with existential quantifiers, ϕ ≡ (∃x1 . . . xc)ψ(x̄).
The variables x̄ will code the log n steps of T ’s computation including, for each

time step t, the values qt, wt, dt, It representing T ’s state, the symbol it writes, the

direction its head moves, and the value of the input being scanned by the index-

tape-controlled input head at time t, respectively. (It is important to remember that

each variable is a ⌈log n⌉ bit number and that the numeric predicate BIT allows

these bits to be specified.)

The formula ψ must now assert that the information in x̄ meshes together to

form a valid accepting computation of T . The work we must do to accomplish

this is to define the first-order relations C(p, t, a) and P (p, t) meaning that for the

computation determined by x̄, the contents of cell p at time t is a; and the work

head is at position p at time t. GivenC and P we can assert that x̄ is self-consistent.

Note, for example, that we can guess the contents y of the index tape, and then use

C to verify that y is correct. Next, using y we can verify that the input symbol It
is correct.

Next, note that using P we can write C because the contents of cell p at time

t is just wt1 where t1 is the most recent time that the head was at position p.

Finally observe that to write the relation P it suffices to take the sum of

O[log n] values each of which is either −1, or 1. We can do this in FO by Lemma

1.18. �

To prove LH ⊆ FO, we need only note that an alternating logarithmic-time

machine may be assumed to write its guesses on a work tape and then determinis-

tically check for acceptance. Since there are a bounded number of alternations and

the total time is O(log n), these guesses may be simulated by a bounded number

of first-order quantifiers. The remaining work is in DTIME[log n] and thus in FO

by Lemma 5.31.

The other direction of Theorem 5.30 is fairly easy. We have to show that for

every first-order sentence,

ϕ ≡ (∃x1)(∀x2) . . . (Qkxk)M(x̄)

there exists an ATIME-ALT[log n,O(1)] machine T such that for all input strings

A,

T (bin(A))↓ ⇔ A |= ϕ

Since M is a constant size quantifier-free formula, it is easy to build a

DTIME[log n] Turing machine which on input A and with values a1, . . . , ak on

its tape, tests whether or not A |= M(ā). (The most complicated part of this is

114 CHAPTER 5. PARALLELISM

to verify the BIT predicate, which requires counting in binary up to O(log n) on a

work tape — this is straightforward.) Thus using k − 1 alternations between ex-

istential and universal states, a Σk logarithmic-time machine can guess a1, . . . , ak
and then deterministically verify M(ā).

�

Notice that from Theorems 5.2, 5.22 and 5.30, we now have three interesting

characterizations of the class FO.

Corollary 5.32

FO = AC0 = CRAM[1] = LH

Notice that the truth of Corollary 5.32 depends on our choice of including BIT

as a numeric predicate, and the SHIFT operation in the CRAM, and our definition

of uniformity for AC0. In Chapter 11 we will obtain a non-uniform version of

Corollary 5.32 in which we allow arbitrary numeric relations (Proposition 11.19).

5.5.1 Alternation as Parallelism

AC and NC circuits also have elegant characterizations via alternating machines.

Theorem 5.33 For t(n) ≥ log n,

ASPACE-ALT[log n, t(n)] = AC[t(n)] = FO[t(n)] .

Proof We have already seen the second equality in Theorem 5.22.

(ASPACE-ALT[log n, t(n)] ⊇ AC[t(n)]): Let t(n) ≥ log n and consider

the same AC[t(n)] boolean query as in the proof that AC[t(n)] ⊆ IND[t(n)] in

Theorem 5.22. Since ASPACE-ALT[log n, t(n)] ⊇ ATIME-ALT[log n, 1] = LH,

we know from Theorem 5.30 that ASPACE-ALT[log n, t(n)] ⊇ FO. Thus, the

circuit Cn is available in ASPACE-ALT[log n, t(n)].

Recall that Equation (5.25) simulates an AC[t(n)] circuit via an IND[t(n)]
definition. Looking at Equation (5.25) we see that it makes at most O(t(n)) alter-

nations between existential and universal quantifiers. This inductive definition can

thus be directly simulated by an ASPACE-ALT[log n, t(n)] machine: Each univer-

sal quantifier is simulated by log n universal moves and each existential quantifier

5.5. ALTERNATING COMPLEXITY 115

is simulated by log n existential moves. The space needed to hold the variables

is O(log n). Furthermore, there are only a bounded number of alternations per

iteration of the inductive definition.

(ASPACE-ALT[log n, t(n)] ⊆ AC[t(n)]): Conversely, let M be an ASPACE-

ALT[logn, t(n)] machine. As in Theorem 3.16, an ID of M can be coded us-

ing a bounded number of variables. The acceptance condition of M can then

be expressed via an inductive definition of depth log n + t(n) as follows. Let

EPATHM(ID1, ID2) mean that there is a computation path of M from ID1 to ID2

all of whose states except perhaps the last is existential. Let APATH mean the same

thing for universal paths. It is easy to see that EPATH and APATH are expressible

in IND[log n] (cf. Proposition 4.17). Thus, the following simultaneous induction

has depth O(log n+t(n)) and expresses the acceptance condition forM as desired.

ACCEPTM (ID1) ≡ ID1 is the accept ID ∨ (∃ID2)[ACCEPTM (ID2) ∧
(EPATH(ID1, ID2) ∨ APATH(ID1, ID2))]

�

We leave a similar characterization of NC[t(n)] to the reader:

Exercise 5.34 Prove that for t(n) ≥ log n,

NC[t(n)] = ASPACE-TIME[log n, t(n)]

[Hint: this is similar to the proof of Theorem 5.33, the difference being that the

definitions of C and D in Equation (5.25) now involve binary “and”s and “or”s

rather than universal and existential quantifiers.] �

For i ≥ 1, the bound NCi ⊆ ACi in Equation (5.21) is not optimal. The

following improvement is known to be optimal because the NC1 query PARITY

requires depth log n/ log log n (Corollary 13.8).

Theorem 5.35 For t(n) ≥ log n, the following containment holds,

NC[t(n)] ⊆ AC[t(n)/ log log n]

Proof We prove the equivalent containment,

ASPACE-TIME[log n, t(n)] ⊆ IND[t(n)/ log log n]

116 CHAPTER 5. PARALLELISM

Suppose that we are given an ASPACE-TIME[log n, t(n)] machine M . As in

Theorem 5.33, we can write an inductive definition for ACCEPTM — the accep-

tance condition of M . The straightforward way to do this is in IND[t(n)] with one

alternation of quantifiers per move of M .

As usual, we assume that M alternates at each step between existential and

universal states. To improve this simulation by a log log n factor, observe that a

list of which existential moves to make in the event of each possible sequence of

(log log n)/2 universal moves can be given in log n bits.

Let e be such a log n-bit table of which existential move to make in the event

of any sequence of (log log n)/2 universal moves, and let a be such a sequence of

universal moves. Then we can inductively define the relation MOVESM(e, u, ID1, ID2)
meaning that ID2 follows from ID1 in the log log n moves of M determined by the

universal moves u and the existential moves given by e indexed by u. It is easy to

write such an inductive definition in depth log log n.

Our definition of ACCEPTM is then a simultaneous inductive definition with

MOVESM ,

ACCEPTM (ID1) ≡ ID1 is the accept ID ∨ (∃e)(∀u)(∃ID2)

(MOVESM (e, u, ID1, ID2) ∧ ACCEPTM (ID2))

The depth of this simultaneous induction is t(n)/ log log n as desired. �

Historical Notes and Suggestions for Further Reading

Cook has written a useful survey of parallel complexity classes and problems,

[Coo85]. Stockmeyer and Vishkin proved the equality of non-uniform versions of

CRAM[t(n)] and AC[t(n)] in [SV84]. Most of the uniform results in this chapter

appeared first in [I89a]. There was much previous work comparing different ver-

sions of PRAM’s. See for example [FW78] for an early treatment of PRAM’s and

[FRW84] for the first proof that a common write machine can simulate a CRAM

with a linear increase in time and a squaring of the number of processors.

Theorem 5.33 is due to Ruzzo and Tompa in [SV84]. The equality NC[t(n)] =
ASPACE-TIME[log n, t(n)] in Exercise 5.34 is due to Ruzzo [Ruz81].

Lindell has made some interesting observations about the definition FO =
uniform AC0, [L92]. The non-uniform version of Theorem 5.35 is due to Chandra,

Stockmeyer, and Vishkin, [CSV84]. The uniform version appears in [I89a].

5.5. ALTERNATING COMPLEXITY 117

The ambiguous arithmetic notation used in Exercise 5.19 is from Borodin,

Cook, and Pippenger, [BCP83].

More information about the NYU Ultracomputer and the Connection Machine

may be found in [AG94, Hil85].

118 CHAPTER 5. PARALLELISM

	Introduction
	Background in Logic
	Introduction and Preliminary Definitions
	Ordering and Arithmetic
	FO(BIT) = FO(PLUS,TIMES)

	Isomorphism
	First-Order Queries

	Background in Complexity
	Introduction
	Preliminary Definitions
	Reductions and Complete Problems
	Alternation
	Simultaneous Resource Classes
	Summary

	First-Order Reductions
	FO L
	Dual of a First-Order Query
	Complete problems for L and NL
	Complete Problems for P

	Inductive Definitions
	Least Fixed Point
	The Depth of Inductive Definitions
	Iterating First-Order Formulas

	Parallelism
	Concurrent Random Access Machines
	Inductive Depth Equals Parallel Time
	Number of Variables versus Number of Processors
	Circuit Complexity
	Alternating Complexity
	Alternation as Parallelism

	Ehrenfeucht-Fraïssé Games
	Definition of the Games
	Methodology for First-Order Expressibility
	First-Order Properties are Local
	Bounded Variable Languages
	Zero-One Laws
	Ehrenfeucht-Fraïssé Games with Ordering

	Second-Order Logic and Fagin's Theorem
	Second-Order Logic
	Proof of Fagin's Theorem
	NP-Complete Problems
	The Polynomial-Time Hierarchy

	Second-Order Lower Bounds
	Second-Order Games
	SO(monadic) Lower Bound on Reachability
	Lower Bounds Including Ordering

	Complementation and Transitive Closure
	Normal Form Theorem for FO(LFP)
	Transitive Closure Operators
	Normal Form for FO(TC)
	Logspace is Primitive Recursive
	NSPACE[s(n)] = co-NSPACE[s(n)]
	Restrictions of SO

	Polynomial Space
	Complete Problems for PSPACE
	Partial Fixed Points
	DSPACE[nk] = VAR[k+1]
	Using Second-Order Logic to Capture PSPACE

	Uniformity and Precomputation
	An Unbounded Number of Variables
	Tradeoffs Between Variables and Quantifier Depth

	First-Order Projections
	Help Bits
	Generalized Quantifiers

	The Role of Ordering
	Using Logic to Characterize Graphs
	Characterizing Graphs Using Lk
	Adding Counting to First-Order Logic
	Pebble Games for Ck
	Vertex Refinement Corresponds to C2
	Abiteboul-Vianu and Otto Theorems
	Toward a Language for Order-Independent P

	Lower Bounds
	Håstad's Switching Lemma
	A Lower Bound for REACHa
	Lower Bound for Fixed Point and Counting

	Applications
	Databases
	SQL
	Datalog

	Dynamic Complexity
	Dynamic Complexity Classes

	Model Checking
	Temporal Logic

	Summary

	Conclusions and Future Directions
	Languages That Capture Complexity Classes
	Complexity on the Face of a Query
	Stepwise Refinement

	Why Is Finite Model Theory Appropriate?
	Deep Mathematical Problems: P versus NP
	Toward Proving Lower Bounds
	Role of Ordering
	Approximation and Approximability

	Applications of Descriptive Complexity
	Dynamic Complexity
	Model Checking
	Abstract State Machines

	Software Crisis and Opportunity
	How can Finite Model Theory Help?

