
Contents

0 Introduction 1

1 Background in Logic 5

1.1 Introduction and Preliminary Definitions 5

1.2 Ordering and Arithmetic . 15

1.2.1 FO(BIT) = FO(PLUS,TIMES) 17

1.3 Isomorphism . 20

1.4 First-Order Queries . 21

2 Background in Complexity 29

2.1 Introduction . 29

2.2 Preliminary Definitions . 30

2.3 Reductions and Complete Problems 34

2.4 Alternation . 43

2.5 Simultaneous Resource Classes 51

2.6 Summary . 52

3 First-Order Reductions 57

3.1 FO ✓ L . 57

3.2 Dual of a First-Order Query . 59

3.3 Complete problems for L and NL 64

3.4 Complete Problems for P . 67

ix

x CONTENTS

4 Inductive Definitions 73

4.1 Least Fixed Point . 73

4.2 The Depth of Inductive Definitions 79

4.3 Iterating First-Order Formulas 81

5 Parallelism 89

5.1 Concurrent Random Access Machines 90

5.2 Inductive Depth Equals Parallel Time 93

5.3 Number of Variables versus Number of Processors 98

5.4 Circuit Complexity . 102

5.5 Alternating Complexity . 112

5.5.1 Alternation as Parallelism 114

6 Ehrenfeucht-Fraı̈ssé Games 119

6.1 Definition of the Games . 119

6.2 Methodology for First-Order Expressibility 129

6.3 First-Order Properties are Local 134

6.4 Bounded Variable Languages . 135

6.5 Zero-One Laws . 140

6.6 Ehrenfeucht-Fraı̈ssé Games with Ordering 143

7 Second-Order Logic and Fagin’s Theorem 147

7.1 Second-Order Logic . 147

7.2 Proof of Fagin’s Theorem . 150

7.3 NP-Complete Problems . 154

7.4 The Polynomial-Time Hierarchy 157

8 Second-Order Lower Bounds 161

8.1 Second-Order Games . 161

8.2 SO9(monadic) Lower Bound on Reachability 167

8.3 Lower Bounds Including Ordering 172

CONTENTS xi

9 Complementation and Transitive Closure 177

9.1 Normal Form Theorem for FO(LFP) 177

9.2 Transitive Closure Operators . 182

9.3 Normal Form for FO(TC) . 184

9.4 Logspace is Primitive Recursive 189

9.5 NSPACE[s(n)] = co-NSPACE[s(n)] 191

9.6 Restrictions of SO . 194

10 Polynomial Space 199

10.1 Complete Problems for PSPACE 199

10.2 Partial Fixed Points . 203

10.3 DSPACE[nk] = VAR[k + 1] . 206

10.4 Using Second-Order Logic to Capture PSPACE 210

11 Uniformity and Precomputation 215

11.1 An Unbounded Number of Variables 216

11.1.1 Tradeoffs Between Variables and Quantifier Depth 217

11.2 First-Order Projections . 218

11.3 Help Bits . 224

11.4 Generalized Quantifiers . 225

12 The Role of Ordering 229

12.1 Using Logic to Characterize Graphs 230

12.2 Characterizing Graphs Using Lk 232

12.3 Adding Counting to First-Order Logic 234

12.4 Pebble Games for Ck . 237

12.5 Vertex Refinement Corresponds to C2 239

12.6 Abiteboul-Vianu and Otto Theorems 243

12.7 Toward a Language for Order-Independent P 252

0 CONTENTS

13 Lower Bounds 257

13.1 Håstad’s Switching Lemma . 257

13.4 A Lower Bound for REACHa 281

13.5 Lower Bound for Fixed Point and Counting 288

14 Applications 281

14.1 Databases . 281

14.1.1 SQL . 282

14.1.2 Datalog . 285

14.2 Dynamic Complexity . 287

14.2.1 Dynamic Complexity Classes 289

14.3 Model Checking . 298

14.3.1 Temporal Logic . 299

14.4 Summary . 305

15 Conclusions and Future Directions 307

15.1 Languages That Capture Complexity Classes 307

15.1.1 Complexity on the Face of a Query 310

15.1.2 Stepwise Refinement . 310

15.2 Why Is Finite Model Theory Appropriate? 311

15.3 Deep Mathematical Problems: P versus NP 312

15.4 Toward Proving Lower Bounds 313

15.4.1 Role of Ordering . 314

15.4.2 Approximation and Approximability 314

15.5 Applications of Descriptive Complexity 315

15.5.1 Dynamic Complexity . 315

15.5.2 Model Checking . 316

15.5.3 Abstract State Machines 316

15.6 Software Crisis and Opportunity 317

15.6.1 How can Finite Model Theory Help? 318

Chapter 0

Introduction

In the beginning, there were two measures of computational complexity: time and
space. From an engineering standpoint, these were very natural measures, quan-
tifying the amount of physical resources needed to perform a computation. From
a mathematical viewpoint, time and space were somewhat less satisfying, since
neither appeared to be tied to the inherent mathematical complexity of the compu-
tational problem.

In 1974, Ron Fagin changed this. He showed that the complexity class NP —
those problems computable in nondeterministic polynomial time — is exactly the
set of problems describable in second-order existential logic. This was a remark-
able insight, for it demonstrated that the computational complexity of a problem
can be understood as the richness of a language needed to specify the problem.
Time and space are not model-dependent engineering concepts, they are more fun-
damental.

Although few programmers consider their work in this way, a computer pro-
gram is a completely precise description of a mapping from inputs to outputs. In
this book we follow database terminology and call such a map a query from input
structures to output structures. Typically a program describes a precise sequence of
steps that compute a given query. However, we may choose to describe the query
in some other precise way. For example, we may describe queries in variants of
first- and second-order mathematical logic.

Fagin’s Theorem gave the first such connection. Using first-order languages,
this approach, commonly called descriptive complexity, demonstrated that virtu-
ally all measures of complexity can be mirrored in logic. Furthermore, as we will
see, the most important classes have especially elegant and clean descriptive char-
acterizations.

1

2 CHAPTER 0. INTRODUCTION

Descriptive complexity provided the insight behind a proof of the Immerman-
Szelepcsényi Theorem, which states that nondeterministic space classes are closed
under complementation. This settled a question that had been open for twenty-five
years; indeed, almost everyone had conjectured the negation of this theorem.

Descriptive complexity has long had applications to database theory. A rela-
tional database is a finite logical structure, and commonly used query languages
are small extensions of first-order logic. Thus, descriptive complexity provides a
natural foundation for database theory, and many questions concerning the express-
ibility of query languages and the efficiency of their evaluation have been settled
using the methods of descriptive complexity. Another prime application area of
descriptive complexity is to the problems of Computer Aided Verification.

Since the inception of complexity theory, a fundamental question that has
bedeviled theorists is the P versus NP question. Despite almost three decades of
work, the problem of proving P different from NP remains. As we will see, P versus
NP is just a famous and dramatic example of the many open problems that remain.
Our inability to ascertain relationships between complexity classes is pervasive.
We can prove that more of a given resource, e.g., time, space, nondeterministic
time, etc., allows us to compute strictly more queries. However, the relationship
between different resources remains virtually unknown.

We believe that descriptive complexity will be useful in these and many re-
lated problems of computational complexity. Descriptive complexity is a rich edi-
fice from which to attack the tantalizing problems of complexity. It gives a mathe-
matical structure with which to view and set to work on what had previously been
engineering questions. It establishes a strong connection between mathematics and
computer science, thus enabling researchers of both backgrounds to use their vari-
ous skills to set upon the open questions. It has already led to significant successes.

The Case for Finite Models

A fundamental philosophical decision taken by the practitioners of descriptive
complexity is that computation is inherently finite. The relevant objects — in-
puts, databases, programs, specifications — are all finite objects that can be con-
veniently modeled as finite logical structures. Most mathematical theories study
infinite objects. These are considered more relevant, general, and important to the
typical mathematician. Furthermore, infinite objects are often simpler and better
behaved than their finite cousins. A typical example is the set of natural numbers,
N = {0, 1, 2, . . .}. Clearly this has a simpler and more elegant theory than the set
of natural numbers representable in 64-bit computer words. However, there is a

3

significant danger in taking the infinite approach. Namely, the models are often
wrong! Properties that we can prove about N are often false or irrelevant if we try
to apply them to the objects that computers have and hold. We find that the subject
of finite models is quite different in many respects. Different theorems hold and
different techniques apply.

Living in the world of finite structures may seem odd at first. Descriptive
complexity requires a new way of thinking for those readers who have been brought
up on infinite fare. Finite model theory is different and more combinatorial than
general model theory. In Descriptive complexity, we use finite model theory to
understand computation. We expect that the reader, after some initial effort and
doubt, will agree that the theory of computation that we develop has significant
advantages. We believe that it is more accurate and more relevant in the study of
computation.

I hope the reader has as much pleasure in discovering and using the tools of
Descriptive complexity as I have had. I look forward to new contributions in the
modeling and understanding of computation to be made by some of the readers of
this book.

4 CHAPTER 0. INTRODUCTION

