Note: In order to get us back to homeworks due on Tuesdays, this homework will be graded, thought of as maximum grade $75+25$ points extra credit. Think of 10 points of the second question as extra credit and 15 points of the third question as extra credit.

1. [25 pts.] Question 3.18, page 98: linear-time preprocessing of a tree so that the ancestor query can be executed in constant time.
2. [35 pts.] Question 4.13, p. 121: looking for paths minimizing the maximum edge length along the path.
3. [40 pts.] An undirected graph, $G=(V, E)$, is called bi-partite if V can be partitioned into two disjoint sets, $V=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\emptyset$, such that every edge goes between the two parts, i.e., $E \subseteq V_{1} \times V_{2}$.
An undirected graph, $G=(V, E)$ is k-colorable, iff there exists a coloring map, $c: V \rightarrow\{1, \ldots, k\}$ that colors each vertex one of k colors in such a way that no two adjacent vertices are the same color, i.e., $E(i, j) \rightarrow(c(i) \neq c(j))$.
(a) Prove that a graph is bipartite iff it is two colorable
(b) Give a linear-time algorithm to test if a graph is 2-colorable. If the answer is "yes", the algorithm should produce the 2 -coloring. If the answer is "no", the algorithm should produce an odd length cycle.
(c) Prove that a graph is 2-colorable iff it has no odd length cycle.
