Some of you asked for some notes about induction. This relates to Problem 1 on HW 2, where I suggest that you prove the correctness of the text's division algorithm by induction on $n=\lfloor\log (x+1)\rfloor$.

Principle of Mathematical Induction Let $P(n)$ be a proposition that is true or false for each given natural number, $n \in \mathbf{N}$. Suppose that the following two facts hold:
base case: $P(0)$
inductive case: $\forall r \in \mathbf{N}(P(r) \rightarrow P(r+1))$

Then, we can conclude that for all $n \in \mathbf{N}, P(n)$ holds.
Example 1 A simple use of Mathematical Induction is to prove that for all postive reals, $a \neq 1$, and for all $n \in \mathbf{N}$, the formula $\sum_{i=0}^{n} a^{i}=\frac{\left(a^{n+1}-1\right)}{(a-1)}$ always holds.

Proof: Let $G(n)$ be the statement $\sum_{i=0}^{n} a^{i}=\frac{\left(a^{n+1}-1\right)}{(a-1)}$. We prove by induction that $G(n)$ holds for all $n \in \mathbf{N}$.
base case: $G(0)$ says that $\sum_{i=0}^{0} a^{i}=\frac{\left(a^{0+1}-1\right)}{(a-1)}$. The summation on the left has one term namely $a^{0}=1$. The term on the right is $\frac{(a-1)}{(a-1)}=1$, so $G(0)$ is true.
inductive case: We may assume inductively that $G(r)$ holds, where r is a fixed, arbitrary natural number, i.e, $\sum_{i=0}^{r} a^{i}=\frac{\left(a^{r+1}-1\right)}{(a-1)}$.
We want to prove that $G(r+1)$ holds.
Note that $\sum_{i=0}^{r+1} a^{i}=\sum_{i=0}^{r} a^{i}+a^{r+1}$.
By our inductive hypothesis, we thus have that $\sum_{i=0}^{r+1} a^{i}=\frac{\left(a^{r+1}-1\right)}{(a-1)}+a^{r+1}$.
But note that,

$$
\begin{aligned}
\frac{\left(a^{r+1}-1\right)}{(a-1)}+a^{r+1} & =\frac{\left(a^{r+1}-1+(a-1) a^{r+1}\right)}{(a-1)} \\
& =\frac{\left(a^{(r+1)+1}-1\right)}{(a-1)}
\end{aligned}
$$

Thus, as desired, $G(r+1)$ holds.

Since we have proved the base case and the inductive case, it follows by the principle of mathematical induction that $G(n)$ holds for all $n \in \mathbf{N}$

Hope this helps. I'm off to a wedding in Seattle, back Sunday night. Please feel free to use Creidieki's office hours on Friday and mine on Monday.

