Tarski's Inductive Definition of Truth

G	Þ	$t_1 = t_2$	\Leftrightarrow	$t_1^G = t_2^G$
G	Þ	$P(t_1,\ldots,t_r)$	\Leftrightarrow	$(t_1^G, \dots, t_r^G) \in P^G$
G	Þ	$\neg \varphi$	\Leftrightarrow	G eq arphi
G	⊨	$\varphi \wedge \psi$	\Leftrightarrow	$G\models arphi ext{and} G\models \psi$
G	⊨	$\varphi \vee \psi$	\Leftrightarrow	$G\models \varphi {f or} G\models \psi$
G	Þ	$\forall x(\varphi)$	\Leftrightarrow	for all $a \in U^G$ $(G, a/x) \models \varphi$
G	Þ	$\exists x(\varphi)$	\Leftrightarrow	there exists an $a \in U^G$ $(G, a/x) \models \varphi$

Example 22.1 (25 examples of checking if $G \models \varphi$) find the unique graph, $G_{g(i)}$ that satisfies it.

S

t

2

t

2

t

2

t

$$\begin{array}{cccc} \alpha_{1} & \stackrel{\text{\tiny def}}{=} & \forall xy \left(E(x,y) \to E(y,x) \right) & & & & & & \\ \alpha_{2} & \stackrel{\text{\tiny def}}{=} & \exists x \forall y \left(E(x,y) \lor E(y,x) \to x=y \right) & & & & & \\ \alpha_{3} & \stackrel{\text{\tiny def}}{=} & \forall xy \left(E(x,y) \to & & & & \\ \neg (H(x) \land H(y)) \land \neg (V(x) \land V(y)) \right) & & & & & & \\ \alpha_{4} & \stackrel{\text{\tiny def}}{=} & \exists x \forall y \left(H(x) \land \neg E(y,x) \right) & & & & & \\ \end{array} \qquad \begin{array}{c} G_{1} & & & & \\ 0 & 1 & & \\ \end{array} \qquad \begin{array}{c} s \\ G_{2} & & & \\ 0 & 1 & & \\ \end{array} \qquad \begin{array}{c} s \\ G_{3} & & & \\ 0 & 1 & & \\ \end{array} \qquad \begin{array}{c} s \\ G_{4} & & & \\ 0 & 1 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ 0 & & \\ \end{array} \qquad \begin{array}{c} s \\ \end{array} \end{array} \qquad \begin{array}{c} s \\ \end{array} \qquad \begin{array}{c} s \end{array} \qquad \begin{array}{c} s \\ \end{array} \end{array} \qquad \begin{array}{c} s \\ \end{array} \qquad \begin{array}{c} s \\ \end{array} \end{array} \qquad \begin{array}{c} s \end{array} \qquad \begin{array}{c} s \end{array} \qquad \begin{array}{c} s \end{array} \qquad \begin{array}{c} s \\ \end{array} \end{array} \qquad \begin{array}{c} s \end{array} \qquad \begin{array}{c} s \end{array} \end{array}$$

 $\stackrel{\rm \tiny def}{=} \quad \exists !x \; \exists !y \; E(x,y)$ α_5

 G_5

First convert the formulas to equivalent formulas in **NNF**:

$$\exists ! x \exists ! y \ E(x, y) \equiv \exists x \forall x_1 (\exists ! y \ E(x, y) \land (\exists ! y \ E(x_1, y) \to x_1 = x))$$

$$\equiv \exists x \forall x_1 (\exists ! y \ E(x, y) \land (\neg \exists ! y \ E(x_1, y) \lor x_1 = x))$$

$$\equiv \exists x \forall x_1 (\exists y \ \forall y_1 (E(x, y) \land (\neg E(x, y_1) \lor y_1 = y)) \land$$

$$\neg (\exists y_2 \ \forall y_3 (E(x_1, y_2) \land (\neg E(x_1, y_3) \lor y_3 = y_2))) \lor x_1 = x)$$

$$\equiv \exists x \ \forall x_1 \ \exists y \ \forall y_1 ((E(x, y) \land (\neg E(x_1, y_3) \lor y_3 = y_2))) \lor x_1 = x)$$

$$\equiv \exists x \ \forall x_1 \ \exists y \ \forall y_1 \ \forall y_2 \ \exists y_3 ((E(x, y) \land (\neg E(x, y_1) \lor y_1 = y)) \land$$

$$(\neg E(x_1, y_2) \lor (\neg (\neg E(x_1, y_3) \lor y_3 = y_2))) \lor x_1 = x)$$

$$\equiv \exists x \ \forall x_1 \ \exists y \ \forall y_1 \ \forall y_2 \ \exists y_3 ((E(x, y) \land (\neg E(x, y_1) \lor y_1 = y)) \land$$

$$(\neg E(x_1, y_2) \lor (\neg (\neg E(x_1, y_3) \land y_3 = y_2))) \lor x_1 = x)$$

$$\equiv \exists x \ \forall x_1 \ \exists y \ \forall y_1 \ \forall y_2 \ \exists y_3 ((E(x, y) \land (\neg E(x, y_1) \lor y_1 = y)) \land$$

$$(\neg E(x_1, y_2) \lor (E(x_1, y_3) \land y_3 \neq y_2))) \lor x_1 = x)$$

$$\stackrel{\text{def}}{=} \forall xy (\neg E(x, y) \lor E(y, x))$$
$$\stackrel{\text{def}}{=} \exists x \forall y ((\neg E(x, y) \land \neg E(y, x)) \lor x = y)$$

$$\alpha_3 \stackrel{\text{\tiny def}}{=} \begin{array}{c} \forall xy \left(\neg E(x,y) \lor \lor \\ (\neg H(x) \lor \neg H(y)\right) \land \left(\neg V(x) \lor \neg V(y)\right) \end{array}$$

 G_1

 G_4

 G_5

$$\alpha_4 \stackrel{\text{\tiny def}}{=} \exists x \,\forall y \, (H(x) \land \neg E(y, x))$$

 α_1

 α_2

$$\alpha_5 \stackrel{\text{def}}{=} \frac{\exists x \forall x_1 \exists y \forall y_1 \forall y_2 \exists y_3 \left((E(x,y) \land (\neg E(x,y_1) \lor y_1 = y) \right) \land}{(\neg E(x_1,y_2) \lor (E(x_1,y_3) \land y_3 \neq y_2))) \lor x_1 = x)}$$

$$\begin{array}{c}
s \\
0 \\
1 \\
2
\end{array}$$

t

2

dof

Use Tarski's Definition of Truth to test whether $G_1 \models \alpha_1$.

$$G_1 \models \forall xy (\neg E(x,y) \lor E(y,x)) \quad G_1$$

$$\begin{array}{rcl} & \inf & \bigwedge_{a=0}^2 G_1, a/x & \models & \forall y \left(\neg E(x,y) \lor E(y,x) \right) \\ \\ \inf & & \bigwedge_{a=0}^2 \bigwedge_{b=0}^2 G_1, a/x, b/y & \models & \neg E(x,y) \lor E(y,x) \end{array}$$

9 facts to check; all true:

$$G_{1}, 0/x, 0/y \models \neg E(x, y) \lor E(y, x) \text{ because } G_{1}, 0/x, 0/y \models \neg E(x, y)$$

$$G_{1}, 0/x, 1/y \models \neg E(x, y) \lor E(y, x) \text{ because } G_{1}, 0/x, 1/y \models E(y, x)$$

$$\vdots \models \neg E(x, y) \lor E(y, x) \text{ because } \vdots$$

$$G_{1}, 2/x, 2/y \models \neg E(x, y) \lor E(y, x) \text{ because } G_{1}, 0/x, 1/y \models \neg E(x, y)$$

Thus, $G_1 \models \alpha_1$.

$$G_2$$
 0 1 2

$$G_2 \models \forall xy (\neg E(x, y) \lor E(y, x))$$

$$\inf \int_{a=0}^{2} G_{1}, a/x \models \forall y (\neg E(x,y) \lor E(y,x))$$

$$\inf \int_{a=0}^{2} \bigwedge_{b=0}^{2} G_{1}, a/x, b/y \models \neg E(x,y) \lor E(y,x)$$

9 facts to check; one of them is false, which one?

$$G_2 \models \forall xy (\neg E(x, y) \lor E(y, x))$$

$$\begin{array}{rcl} & \inf & \bigwedge_{a=0}^2 G_1, a/x & \models & \forall y \left(\neg E(x,y) \ \lor \ E(y,x)\right) \\ & \inf & \bigwedge_{a=0}^2 \bigwedge_{b=0}^2 G_1, a/x, b/y & \models & \neg E(x,y) \ \lor \ E(y,x) \end{array}$$

Which value of a gives the counterexample?

A :
$$a = 0$$
 B : $a = 1$ **C** : $a = 2$

 G_2

$$G_2 \models \forall xy (\neg E(x, y) \lor E(y, x))$$

$$\begin{array}{rcl} & \displaystyle \inf & \displaystyle \bigwedge_{a=0}^2 G_1, a/x & \models & \forall y \left(\neg E(x,y) \ \lor \ E(y,x) \right) \\ \\ & \displaystyle \inf & \displaystyle \bigwedge_{a=0}^2 \displaystyle \bigwedge_{b=0}^2 G_1, a/x, b/y & \models & \neg E(x,y) \ \lor \ E(y,x) \end{array}$$

Which value of *b* gives the counterexample?

$$A:b = 0$$
 $B:b = 1$ $C:b = 2$

 G_2

$$G_2 \models \forall xy (\neg E(x, y) \lor E(y, x))$$

$$\begin{array}{rcl} & \inf & \displaystyle \bigwedge_{a=0}^{2} G_{1}, a/x & \models & \forall y \left(\neg E(x,y) \lor E(y,x) \right) \\ \\ & \inf & \displaystyle \bigwedge_{a=0}^{2} \displaystyle \bigwedge_{b=0}^{2} G_{1}, a/x, b/y & \models & \neg E(x,y) \lor E(y,x) \end{array}$$

9 facts to check; one of them is false, which one?

$$G_2, 2/x, 0/y \not\models \neg E(x, y) \lor E(y, x)$$

Thus, $G_2 \not\models \alpha_1$.

Truth Game: a two player game that is an equivalent but more fun way to tell whether $G \models \varphi$.

Dumbledore wants to show that $G \models \varphi$.

Gandalf wants to show that $G \not\models \varphi$.

base case: if φ is a literal, then Dumbledore wins iff $G \models \varphi$.

inductive cases:

$G\models\varphi\wedge\psi$	Gandalf	chooses	$\alpha \in \{\varphi,\psi\}$	continue on:	$G \models \alpha$
$G\models\varphi\lor\psi$	Dumbledore	chooses	$\alpha \in \{\varphi,\psi\}$	continue on:	$G\models \alpha$
$G\models \forall x \; \varphi$	Gandalf	chooses	$a\in U^G$	continue on:	$G a/x \models \varphi$
$G\models \exists x \; \varphi$	Dumbledore	chooses	$a\in U^G$	continue on:	$G a/x \models \varphi$

$$G_1 \models \forall xy (\neg E(x,y) \lor E(y,x)) \quad G_1$$

i>Clicker Question 22.3
$$G_1 \models \forall xy (\neg E(x,y) \lor E(y,x)) G_1$$

Who makes the first move?

B: Gandalf

It doesn't matter what Gandalf does because all the edges are undirected.

Say, for example, that at this move Gandalf chooses x = 0 and at his next move, Gandlaf chooses y = 2.

i>Clicker Question 22.4
$$G_1 0/x, 2/y \models \neg E(x,y) \lor E(y,x) = G_1$$

Who makes the next move?

A: Dumbledore

Dumbledore makes this move, choosi	ng the second disjunct,	E(y, x)
Dumbledore wins the game because	$G_1 0/x, 2/y \models E(y, x)$	

Theorem 22.2 (Equivalence of Tarski's Definition of Truth and the Truth Game) Let Σ be any vocabulary, $\varphi \in FO[\Sigma]$ and $W \in WORLD[\Sigma]$. Then

Dumbledore wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$

Gandalf wins the truth game on W, φ iff $W \models \neg \varphi$

Proof: By induction on the structure of φ .

base case: φ is a literal. By definition of the truth game

Dumbledore wins the game $\Leftrightarrow \mathcal{W} \models \varphi$

inductive hypothesis: Tarski and Truth Game defs coincide for all smaller formulas, α and β .

 $\bullet \ \varphi = \alpha \wedge \beta$

By Tarski: $G \models \alpha \land \beta$ iff $G \models \alpha$ and $G \models \beta$.

case 1: $G \models \alpha \land \beta$. Thus $G \models \alpha$ and $G \models \beta$.

By indHyp Dumbledore wins on G, α and on G, β . Therefore no matter what Gandalf plays, Dumbledore wins!

case 2 $G \not\models \alpha \land \beta$. Thus $G \not\models \alpha$ or $G \not\models \beta$.

Gandalf choose one thats false, e.g., $G \not\models \alpha$.

By indHyp Gandalf wins the game on G, α . Therefore Gandalf wins the whole game.

• $\varphi = \exists x \; \alpha$

By Tarski: $G \models \exists x \ \alpha \text{ iff for some } a \in U^G, G, a/x \models \alpha$.

case 1: $G \models \exists x \ \alpha$. Thus $Ga/x \models \alpha$ for some $a \in U^G$. Dumbledore chooses a and they continue to play on $Ga/x, \alpha$. By indHyp, Dumbledore wins the remaining game.

case 2 $G \not\models \exists x \alpha$. Thus no matter which $a \in U^G$, Dumbledore chooses, $G, a/x \not\models \alpha$. thus, by indHyp, Gandalf wins.

The other cases: $\varphi = \alpha \lor \beta$; $\varphi = \forall x \alpha$, are similar.