Tarski's Inductive Definition of Truth

$$
\begin{array}{rll}
G & \models t_{1}=t_{2} & \Leftrightarrow t_{1}^{G}=t_{2}^{G} \\
G & \models P\left(t_{1}, \ldots, t_{r}\right) & \Leftrightarrow\left(t_{1}^{G}, \ldots, t_{r}^{G}\right) \in P^{G} \\
G & \models \neg \varphi & \Leftrightarrow G \not \models \varphi \\
G & \models \varphi \wedge \psi & \Leftrightarrow G \models \varphi \text { and } G \models \psi \\
G & \models \varphi \vee \psi & \Leftrightarrow G \models \varphi \text { or } \quad G \models \psi \\
G & \models \forall x(\varphi) & \Leftrightarrow \text { for all } a \in U^{G} \quad(G, a / x) \models \varphi \\
G & \models \exists x(\varphi) & \Leftrightarrow \text { there exists an } a \in U^{G} \quad(G, a / x) \models \varphi
\end{array}
$$

Example 22.1 (25 examples of checking if $G \models \varphi$) find the unique graph, $G_{g(i)}$ that satisfies it.
$\alpha_{1} \stackrel{\text { def }}{=} \forall x y(E(x, y) \rightarrow E(y, x))$
$\alpha_{2} \stackrel{\text { def }}{=} \exists x \forall y(E(x, y) \vee E(y, x) \rightarrow x=y)$
$\alpha_{3} \stackrel{\text { def }}{=} \quad \forall x y(E(x, y) \quad \rightarrow \quad . \quad \neg(H(x) \wedge H(y)) \wedge \neg(V(x) \wedge V(y)))$.
$\alpha_{4} \stackrel{\text { def }}{=} \exists x \forall y(H(x) \wedge \neg E(y, x))$
$\alpha_{5} \stackrel{\text { def }}{=} \exists!x \exists!y E(x, y)$

For each of the following FO formulas, $\alpha_{1}, 1 \leq i \leq 5$,
G_{1}

G_{2}

G_{3}

G_{4}

First convert the formulas to equivalent formulas in NNF:

$$
\begin{aligned}
\exists!x \exists!y E(x, y) \equiv & \exists x \forall x_{1}\left(\exists!y E(x, y) \wedge\left(\exists!y E\left(x_{1}, y\right) \rightarrow x_{1}=x\right)\right) \\
\equiv & \exists x \forall x_{1}\left(\exists!y E(x, y) \wedge\left(\neg \exists!y E\left(x_{1}, y\right) \vee x_{1}=x\right)\right) \\
\equiv & \exists x \forall x_{1}\left(\exists y \forall y_{1}\left(E(x, y) \wedge\left(\neg E\left(x, y_{1}\right) \vee y_{1}=y\right)\right) \wedge\right. \\
& \left.\neg\left(\exists y_{2} \forall y_{3}\left(E\left(x_{1}, y_{2}\right) \wedge\left(\neg E\left(x_{1}, y_{3}\right) \vee y_{3}=y_{2}\right)\right)\right) \vee x_{1}=x\right) \\
\equiv & \exists x \forall x_{1} \exists y \forall y_{1}\left(\left(E(x, y) \wedge\left(\neg E\left(x, y_{1}\right) \vee y_{1}=y\right)\right) \wedge\right. \\
& \left.\left.\forall y_{2} \exists y_{3} \neg\left(E\left(x_{1}, y_{2}\right) \wedge\left(\neg E\left(x_{1}, y_{3}\right) \vee y_{3}=y_{2}\right)\right)\right) \vee x_{1}=x\right) \\
\equiv & \exists x \forall x_{1} \exists y \forall y_{1} \forall y_{2} \exists y_{3}\left(\left(E(x, y) \wedge\left(\neg E\left(x, y_{1}\right) \vee y_{1}=y\right)\right) \wedge\right. \\
& \left.\left.\left(\neg E\left(x_{1}, y_{2}\right) \vee \neg\left(\neg E\left(x_{1}, y_{3}\right) \vee y_{3}=y_{2}\right)\right)\right) \vee x_{1}=x\right) \\
\equiv & \exists x \forall x_{1} \exists y \forall y_{1} \forall y_{2} \exists y_{3}\left(\left(E(x, y) \wedge\left(\neg E\left(x, y_{1}\right) \vee y_{1}=y\right)\right) \wedge\right. \\
& \left.\left.\left(\neg E\left(x_{1}, y_{2}\right) \vee\left(E\left(x_{1}, y_{3}\right) \wedge y_{3} \neq y_{2}\right)\right)\right) \vee x_{1}=x\right)
\end{aligned}
$$

$$
\alpha_{1} \stackrel{\text { def }}{=} \forall x y(\neg E(x, y) \vee E(y, x))
$$

G_{1}

$\alpha_{2} \stackrel{\text { def }}{=} \exists x \forall y((\neg E(x, y) \wedge \neg E(y, x)) \vee x=y)$
$\alpha_{3} \stackrel{\text { def }}{=} \quad \forall x y\left(\neg E(x, y) \quad \vee \quad \begin{array}{l}\quad(\neg H(x) \vee \neg H(y)) \wedge(\neg V(x) \vee \neg V(y)))\end{array}\right.$
G_{2}

G_{3}

$\alpha_{4} \stackrel{\text { def }}{=} \exists x \forall y(H(x) \wedge \neg E(y, x))$
$\left.\left.\alpha_{5} \stackrel{\text { def } \quad \exists x \forall x_{1} \exists y \forall y_{1} \forall y_{2} \exists y_{3}\left(\left(E(x, y) \wedge\left(\neg E\left(x, y_{1}\right) \vee y_{1}=y\right)\right) \wedge\right.}{=} \quad\left(\neg E\left(x_{1}, y_{2}\right) \vee\left(E\left(x_{1}, y_{3}\right) \wedge y_{3} \neq y_{2}\right)\right)\right) \vee x_{1}=x\right)$
G_{4}

G_{5}

Use Tarski's Definition of Truth to test whether $G_{1} \models \alpha_{1}$.

$$
\begin{array}{rll}
G & \models t_{1}=t_{2} & \Leftrightarrow t_{1}^{G}=t_{2}^{G} \\
G & \models P\left(t_{1}, \ldots, t_{r}\right) & \Leftrightarrow\left(t_{1}^{G}, \ldots, t_{r}^{G}\right) \in P^{G} \\
G & \models \neg \varphi & \Leftrightarrow G \not \models \varphi \\
G & \models \varphi \wedge \psi & \Leftrightarrow G \models \varphi \text { and } G \models \psi \\
G & \models \varphi \vee \psi & \Leftrightarrow G \models \varphi \text { or } \quad G \models \psi \\
G & \models \forall x(\varphi) & \Leftrightarrow \text { for all } a \in U^{G} \quad(G, a / x) \models \varphi \\
G & \models \exists x(\varphi) & \Leftrightarrow \text { there exists an } a \in U^{G} \quad(G, a / x) \models \varphi
\end{array}
$$

$$
G_{1} \vDash \forall x y(\neg E(x, y) \vee E(y, x))
$$

$$
\text { iff } \bigwedge_{a=0}^{2} G_{1}, a / x \quad \forall y(\neg E(x, y) \vee E(y, x))
$$

$$
\text { iff } \bigwedge_{a=0}^{2} \bigwedge_{b=0}^{2} G_{1}, a / x, b / y \quad \neg E(x, y) \vee E(y, x)
$$

9 facts to check; all true:

$$
\begin{aligned}
G_{1}, 0 / x, 0 / y & \models \neg E(x, y) \vee E(y, x) \quad \text { because } G_{1}, 0 / x, 0 / y \models \neg E(x, y) \\
G_{1}, 0 / x, 1 / y & \models \neg E(x, y) \vee E(y, x) \text { because } G_{1}, 0 / x, 1 / y \models E(y, x) \\
\vdots & \models \neg E(x, y) \vee E(y, x) \text { because } \quad \vdots \\
G_{1}, 2 / x, 2 / y & \models \neg E(x, y) \vee E(y, x) \text { because } G_{1}, 0 / x, 1 / y \models \neg E(x, y)
\end{aligned}
$$

Thus, $\quad G_{1} \models \alpha_{1}$.
G_{2}

$$
\begin{aligned}
\text { iff } \bigwedge_{a=0}^{2} G_{1}, a / x & \models \forall y(\neg E(x, y) \vee E(y, x)) \\
\text { iff } \bigwedge_{a=0}^{2} \bigwedge_{b=0}^{2} G_{1}, a / x, b / y & \models \neg E(x, y) \vee E(y, x)
\end{aligned}
$$

9 facts to check; one of them is false, which one?

i>Clicker Question 22.1

$$
G_{2} \vDash \forall x y(\neg E(x, y) \vee E(y, x))
$$

G_{2}

$$
\begin{aligned}
\text { iff } \bigwedge_{a=0}^{2} G_{1}, a / x & \models \forall y(\neg E(x, y) \vee E(y, x)) \\
\text { iff } \bigwedge_{a=0}^{2} \bigwedge_{b=0}^{2} G_{1}, a / x, b / y & \models \neg E(x, y) \vee E(y, x)
\end{aligned}
$$

Which value of a gives the counterexample?
A : $a=0$
$\mathrm{B}: a=1$
$\mathrm{C}: a=2$

i $>$ Clicker Question 22.2

$$
G_{2} \vDash \forall x y(\neg E(x, y) \vee E(y, x))
$$

G_{2}

$$
\begin{aligned}
\text { iff } \bigwedge_{a=0}^{2} G_{1}, a / x & \models \forall y(\neg E(x, y) \vee E(y, x)) \\
\text { iff } \bigwedge_{a=0}^{2} \bigwedge_{b=0}^{2} G_{1}, a / x, b / y & \models \neg E(x, y) \vee E(y, x)
\end{aligned}
$$

Which value of b gives the counterexample?
$\mathrm{A}: b=0$
$B: b=1$
$C: b=2$
G_{2}

$$
G_{2} \models \forall x y(\neg E(x, y) \vee E(y, x))
$$

$$
\begin{aligned}
\text { iff } \bigwedge_{a=0}^{2} G_{1}, a / x & \models \forall y(\neg E(x, y) \vee E(y, x)) \\
\text { iff } \bigwedge_{a=0}^{2} \bigwedge_{b=0}^{2} G_{1}, a / x, b / y & \models \neg E(x, y) \vee E(y, x)
\end{aligned}
$$

9 facts to check; one of them is false, which one?

$$
G_{2}, 2 / x, 0 / y \quad \not \models \quad \neg E(x, y) \vee E(y, x)
$$

Thus, $\quad G_{2} \not \vDash \alpha_{1}$.

Truth Game: a two player game that is an equivalent but more fun way to tell whether $G \models \varphi$.

Dumbledore wants to show that $\quad G \models \varphi$.

Gandalf wants to show that $\quad G \not \vDash \varphi$.
base case: if φ is a literal, then Dumbledore wins iff $G \models \varphi$.
inductive cases:

$G \models \varphi \wedge \psi$	Gandalf	chooses	$\alpha \in\{\varphi, \psi\}$	continue on:	$G \models \alpha$
$G \models \varphi \vee \psi$	Dumbledore	chooses	$\alpha \in\{\varphi, \psi\}$	continue on:	$G \models \alpha$
$G \models \forall x \varphi$	Gandalf	chooses	$a \in U^{G}$	continue on:	$G a / x \models \varphi$
$G \vDash \exists x \varphi$	Dumbledore	chooses	$a \in U^{G}$	continue on:	$G a / x \models \varphi$

$$
G_{1} \vDash \forall x y(\neg E(x, y) \vee E(y, x)) \quad G_{1}
$$

i> Clicker Question 22.3 $\quad G_{1} \quad \models \quad \forall x y(\neg E(x, y) \vee E(y, x)) \quad G_{1}$

Who makes the first move?

B: Gandalf

It doesn't matter what Gandalf does because all the edges are undirected.
Say, for example, that at this move Gandalf chooses $x=0$ and at his next move, Gandlaf chooses $y=2$.
i>Clicker Question $22.4 \quad G_{1} 0 / x, 2 / y \quad \neg \quad(x, y) \vee E(y, x) \quad G_{1}$

Who makes the next move?

A: Dumbledore

Dumbledore makes this move, choosing the second disjunct, $\quad E(y, x)$
Dumbledore wins the game because $\quad G_{1} 0 / x, 2 / y \models E(y, x)$

Theorem 22.2 (Equivalence of Tarski's Definition of Truth and the Truth Game) Let Σ be any vocabulary, $\varphi \in \mathrm{FO}[\Sigma]$ and $\mathcal{W} \in \operatorname{WORLD}[\Sigma]$. Then

Dumbledore wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \varphi$
Gandalf wins the truth game on \mathcal{W}, φ iff $\mathcal{W} \models \neg \varphi$

Proof: By induction on the structure of φ.
base case: φ is a literal. By definition of the truth game

$$
\text { Dumbledore wins the game } \quad \Leftrightarrow \quad \mathcal{W} \models \varphi
$$

inductive hypothesis: Tarski and Truth Game defs coincide for all smaller formulas, α and β.

- $\varphi=\alpha \wedge \beta$

By Tarski: $G \models \alpha \wedge \beta$ iff $G \models \alpha$ and $G \models \beta$.
case 1: $G \models \alpha \wedge \beta$. Thus $G \models \alpha$ and $G \models \beta$.
By indHyp Dumbledore wins on G, α and on G, β. Therefore no matter what Gandalf plays, Dumbledore wins!
case $2 G \not \vDash \alpha \wedge \beta$. Thus $G \not \vDash \alpha$ or $G \not \vDash \beta$.
Gandalf choose one thats false, e.g., $G \not \vDash \alpha$.
By indHyp Gandalf wins the game on G, α. Therefore Gandalf wins the whole game.

- $\varphi=\exists x \alpha$

By Tarski: $G \models \exists x \alpha$ iff for some $a \in U^{G}, G, a / x \models \alpha$.
case 1: $G \models \exists x \alpha$. Thus $G a / x \models \alpha$ for some $a \in U^{G}$. Dumbledore chooses a and they continue to play on $G a / x, \alpha$. By indHyp, Dumbledore wins the remaining game.
case $2 G \not \vDash \exists x \alpha$. Thus no matter which $a \in U^{G}$, Dumbledore chooses, $G, a / x \not \vDash \alpha$. thus, by indHyp, Gandalf wins.

The other cases: $\varphi=\alpha \vee \beta ; \varphi=\forall x \alpha$, are similar.

