5.1 Syntax of First Order Logic with Equality

- VAR $\stackrel{\text{def}}{=} \{x, y, z, u, v, w, x_0, y_0, \dots, x_1, y_1, \dots\}$
- Vocabulary: $\Sigma = (P_1, P_2, ..., P_s; f_1, f_2, ..., f_t)$
- Relation Symbols: P_i ; $ar(P_i)$ is its arity, i.e., the number of arguments it takes.
- Function Symbols: f_i of arity $ar(f_i)$, typically abbreviated as f, g, h
- Constant Symbols: f_i when $ar(f_i) = 0$, typically abbreviated as a, b, c, d, k

Definition 5.1 term(Σ) Terms are the strings that represent objects.

Base Case: If $v \in VAR$ then $v \in term(\Sigma)$.

Inductive Case: If $t_1, t_2, \ldots, t_r \in \text{term}(\Sigma)$, $f \in \Sigma$ and ar(f) = r then $f(t_1, \ldots, t_r) \in \text{term}(\Sigma)$ \Box

A term $t \in \text{term}(\Sigma)$ is a syntactic object that any structure $\mathcal{A} \in \text{STRUC}[\Sigma]$ will have to interpret as an element $t^{\mathcal{A}} \in |\mathcal{A}|$.

Definition 5.2 $L(\Sigma)$ (First Order formulas of Vocab Σ)

Base Case: atomic formulas

If $t_1, \ldots, t_{\operatorname{ar}(P_i)} \in \operatorname{term}(\Sigma)$ and $P_i \in \Sigma$ then $P_i(t_1, \ldots, t_{\operatorname{ar}(P_i)}) \in L(\Sigma)$.

Inductive Steps:

If $\alpha, \beta \in L(\Sigma)$ and $v \in VAR$ then

- 1. $\neg \alpha \in L(\Sigma)$
- 2. $(\alpha \lor \beta) \in L(\Sigma)$
- 3. $\exists v(\alpha) \in L(\Sigma)$

Abbreviation: $\forall x(\alpha) \hookrightarrow \neg \exists x(\neg \alpha)$

5.2 Semantics of First Order Logic with Equality

Definition 5.3 \mathcal{A} is a logical structure of vocabulary Σ ($A \in \text{STRUC}[\Sigma]$) iff

$$\mathcal{A} = (|\mathcal{A}|, P_1^{\mathcal{A}}, \dots, P_s^{\mathcal{A}}; f_1^{\mathcal{A}}, \dots, f_t^{\mathcal{A}})$$

 $|\mathcal{A}| \neq \emptyset$,

 $P_i^{\mathcal{A}} \subseteq |\mathcal{A}|^{\operatorname{ar}(P_i)}, \quad \mathcal{A} \text{ interprets predicate symbol } P_i \text{ as an } \operatorname{ar}(P_i)\text{-ary relation over its universe.}$ $f_i^{\mathcal{A}} : |\mathcal{A}|^{\operatorname{ar}(f_i)} \to |\mathcal{A}|, \quad \mathcal{A} \text{ interprets function symbol } f_i \text{ as a total function taking } \operatorname{ar}(f_i) \text{ arguments.}$ To simplify Tarski's Definition of Truth, we assume that every structure \mathcal{A} gives a default value $v^{\mathcal{A}} \in |\mathcal{A}|$ to every variable $v \in \operatorname{VAR}$. \Box

5.3 Tarski's Definition of Truth

Definition 5.4 Every structure $\mathcal{A} \in \text{STRUC}[\Sigma]$ integrets every term $t \in \text{term}(\Sigma)$ as an element, $t^{\mathcal{A}}$ of its universe.

base case: If $v \in VAR$ then $v^{\mathcal{A}} \in |\mathcal{A}|$ is already defined.

inductive case: If t_1, \ldots, t_r are terms already defined by \mathcal{A} , and $f^r \in \Sigma$, then

$$f(t_1, \dots, t_r)^{\mathcal{A}} \stackrel{\text{det}}{=} f^{\mathcal{A}}(t_1^{\mathcal{A}}, \dots, t_r^{\mathcal{A}}) \qquad \Box$$

Definition 5.5 [Truth] Let $\varphi \in L(\Sigma)$, $\mathcal{A} \in \text{STRUC}[\Sigma]$. We inductively define whether or not $\mathcal{A} \models \varphi$.

Base Case: (Atomic Formulas)

- 1. $\mathcal{A} \models P_i(t_1, \dots, t_{ar(P_i)})$ iff $(t_1^{\mathcal{A}}, \dots, t_{ar(P_i)}^{\mathcal{A}}) \in P_i^{\mathcal{A}}$
- 2. $\mathcal{A} \models t_1 = t_2$ iff $t_1^{\mathcal{A}} = t_2^{\mathcal{A}}$, i.e., we insist that the binary predicate symbol, "=", is always interpreted as "true equality", i.e, $t_1^{\mathcal{A}}$ and $t_2^{\mathcal{A}}$ are the exact same element of $|\mathcal{A}|$. Put another way, $=^{\mathcal{A}} \stackrel{\text{def}}{=} \{(a, a) \mid a \in |\mathcal{A}|\}.$

Inductive Cases:

- 1. $\mathcal{A} \models \neg \alpha$ iff $\mathcal{A} \not\models \alpha$
- 2. $\mathcal{A} \models (\alpha \lor \beta)$ iff $\mathcal{A} \models \alpha$ or $\mathcal{A} \models \beta$
- 3. $\mathcal{A} \models \exists v(\alpha)$ iff there exists $a \in |\mathcal{A}|$ such that $\mathcal{A}[a/v] \models \alpha$

where $\mathcal{A}[a/v]$ is defined to be the exact same structure as \mathcal{A} with the single exception that the default value of v in $\mathcal{A}[a/v]$ is a, i.e., $v^{\mathcal{A}[a/v]} = a$.

5.4 Examples

Some vocabularies:

- $\Sigma_{\text{graph}} = (E;), \quad \operatorname{ar}(E) = 2$
- $\Sigma_{\text{st-graph}} = (E; s, t), \quad \operatorname{ar}(E) = 2, \operatorname{ar}(s) = \operatorname{ar}(t) = 0$
- $\Sigma_{N} = (\leq [infix]; 0, Suc, +[infix], *[infix]), ar(\leq) = ar(+) = ar(*) = 2, ar(Suc) = 1$
- $\Sigma_{\text{set}} = (\in [\inf x]; \emptyset), \quad \operatorname{ar}(\in) = 2, \operatorname{ar}(\emptyset) = 0$
- $\Sigma_{\text{group}} = (; \circ[\inf x], e), \quad \operatorname{ar}(\circ) = 2, \operatorname{ar}(e) = 0$

Some structures:

 $G_0 \in \mathsf{STRUC}[\Sigma_{\mathsf{graph}}]; \ G'_0 \in \mathsf{STRUC}[\Sigma_{\mathsf{st-graph}}]; \ |G_0| = |G'_0| = \{0, 1, 2\}$

 $E(s,t) \in L(\Sigma_{\text{st-graph}}); \quad G'_0 \models E(s,t)$

Let $N = (\{0, 1, ...\}, \leq^N, Suc^N, +^N, *^N)$. N is the standard model of the natural numbers. $N \in STRUC[\Sigma_N]$.

$$\leq^{\mathbf{N}} = \{(0,0), (0,1), \dots, (1,1), (1,2), \dots, (8,9), (8,10), \dots\}$$

Suc^{**N**} = $\{(0,1), (1,2), (2,3), \dots\}$
+^{**N**} = $\{((0,0),0), ((0,1),1), \dots, ((2,2),4), \dots, ((8,9),17), \dots\}$
*^{**N**} = $\{((0,0),0), ((0,1),0), \dots, ((2,2),4), \dots, ((8,9),72), \dots\}$

Let $\alpha \equiv \forall xy(x = y \leftrightarrow \forall z(z \in x \leftrightarrow z \in y))$. α is the "axiom of extensionality", the first axiom of ZFC (Zermelo-Fraenkel plus Choice). It says, "Two sets are equal iff they have exactly the same elements."

A group, G, is a non-empty set with a binary operation that is associative, has an identity and inverses.

The group theory axioms consist of $\gamma_1 \land \gamma_2 \land \gamma_3$:

Associative:
$$\gamma_1 \equiv \forall xyz \ (x \circ y) \circ z = x \circ (y \circ z)$$

Identity: $\gamma_2 \equiv \forall x \ (x \circ e) = x)$
Inverse: $\gamma_3 \equiv \forall x \exists y \ (x \circ y) = e)$

A group is neither more nor less than a model of the group theory axioms.

A graph is neither more nor less than a structure of vocabulary Σ_{graph} . Let $\psi \in L(\Sigma_{\text{graph}})$ say "loop-free and undirected":

$$\psi \equiv \forall xy(\neg E(x,x) \land (E(x,y) \to E(y,x)) .$$

A loop-free, undirected graph is neither more not less than a model of ψ .