5.1 Syntax of First Order Logic with Equality

- $\operatorname{VAR} \stackrel{\text { def }}{=}\left\{x, y, z, u, v, w, x_{0}, y_{0}, \ldots, x_{1}, y_{1}, \ldots\right\}$
- Vocabulary: $\Sigma=\left(P_{1}, P_{2}, \ldots, P_{s} ; f_{1}, f_{2}, \ldots, f_{t}\right)$
- Relation Symbols: $P_{i} ; \quad \operatorname{ar}\left(P_{i}\right)$ is its arity, i.e., the number of arguments it takes.
- Function Symbols: f_{i} of arity $\operatorname{ar}\left(f_{i}\right)$, typically abbreviated as f, g, h
- Constant Symbols: f_{i} when $\operatorname{ar}\left(f_{i}\right)=0$, typically abbreviated as a, b, c, d, k

Definition 5.1 term (Σ) Terms are the strings that represent objects.
Base Case: If $v \in \operatorname{VAR}$ then $v \in \operatorname{term}(\Sigma)$.
Inductive Case: If $t_{1}, t_{2}, \ldots, t_{r} \in \operatorname{term}(\Sigma), f \in \Sigma$ and $\operatorname{ar}(f)=r$ then $f\left(t_{1}, \ldots, t_{r}\right) \in \operatorname{term}(\Sigma) \square$
A term $t \in \operatorname{term}(\Sigma)$ is a syntactic object that any structure $\mathcal{A} \in \operatorname{STRUC}[\Sigma]$ will have to interpret as an element $t^{\mathcal{A}} \in|\mathcal{A}|$.

Definition 5.2 $L(\Sigma)$ (First Order formulas of Vocab Σ)
Base Case: atomic formulas
If $t_{1}, \ldots, \operatorname{tar}_{\left(P_{i}\right)} \in \operatorname{term}(\Sigma)$ and $P_{i} \in \Sigma$ then $P_{i}\left(t_{1}, \ldots, \operatorname{tar}_{\left(P_{i}\right)}\right) \in L(\Sigma)$.

Inductive Steps:

If $\alpha, \beta \in L(\Sigma)$ and $v \in$ VAR then

1. $\neg \alpha \in L(\Sigma)$
2. $(\alpha \vee \beta) \in L(\Sigma)$
3. $\exists v(\alpha) \in L(\Sigma)$

Abbreviation: $\quad \forall x(\alpha) \hookrightarrow \neg \exists x(\neg \alpha)$

5.2 Semantics of First Order Logic with Equality

Definition 5.3 \mathcal{A} is a logical structure of vocabulary $\Sigma(A \in \operatorname{STRUC}[\Sigma])$ iff

$$
\mathcal{A}=\left(|\mathcal{A}|, P_{1}^{\mathcal{A}}, \ldots, P_{s}^{\mathcal{A}} ; f_{1}^{\mathcal{A}}, \ldots, f_{t}^{\mathcal{A}}\right)
$$

$|\mathcal{A}| \neq \emptyset$,
$P_{i}^{\mathcal{A}} \subseteq|\mathcal{A}|^{\operatorname{ar}\left(P_{i}\right)}, \quad \mathcal{A}$ interprets predicate symbol P_{i} as an $\operatorname{ar}\left(P_{i}\right)$-ary relation over its universe.
$f_{i}^{\mathcal{A}}:|\mathcal{A}|^{\operatorname{ar}\left(f_{i}\right)} \rightarrow|\mathcal{A}|, \quad \mathcal{A}$ interprets function symbol f_{i} as a total function taking $\operatorname{ar}\left(f_{i}\right)$ arguments.
To simplify Tarski's Definition of Truth, we assume that every structure \mathcal{A} gives a default value $v^{\mathcal{A}} \in|\mathcal{A}|$ to every variable $v \in$ VAR.

5.3 Tarski's Definition of Truth

Definition 5.4 Every structure $\mathcal{A} \in \operatorname{STRUC}[\Sigma]$ inteprets every term $t \in \operatorname{term}(\Sigma)$ as an element, $t^{\mathcal{A}}$ of its universe.
base case: If $v \in \operatorname{VAR}$ then $v^{\mathcal{A}} \in|\mathcal{A}|$ is already defined.
inductive case: If t_{1}, \ldots, t_{r} are terms already defined by \mathcal{A}, and $f^{r} \in \Sigma$, then

$$
f\left(t_{1}, \ldots, t_{r}\right)^{\mathcal{A}} \stackrel{\text { def }}{=} f^{\mathcal{A}}\left(t_{1}^{\mathcal{A}}, \ldots, t_{r}^{\mathcal{A}}\right)
$$

Definition 5.5 [Truth] Let $\varphi \in L(\Sigma), \mathcal{A} \in \operatorname{STRUC}[\Sigma]$. We inductively define whether or not $\mathcal{A} \models \varphi$.
Base Case: (Atomic Formulas)

1. $\mathcal{A} \models P_{i}\left(t_{1}, \ldots, t_{\operatorname{ar}\left(P_{i}\right)}\right) \quad$ iff $\quad\left(t_{1}^{\mathcal{A}}, \ldots, t_{\operatorname{ar}}^{\mathcal{A}}\left(P_{i}\right)\right) \in P_{i}^{\mathcal{A}}$
2. $\mathcal{A} \models t_{1}=t_{2} \quad$ iff $\quad t_{1}^{\mathcal{A}}=t_{2}^{\mathcal{A}}$, i.e., we insist that the binary predicate symbol, " $=$ ", is always interpreted as "true equality", i.e, $t_{1}^{\mathcal{A}}$ and $t_{2}^{\mathcal{A}}$ are the exact same element of $|\mathcal{A}|$. Put another way, $\quad=\mathcal{A} \stackrel{\text { def }}{=}\{(a, a)|a \in| \mathcal{A} \mid\}$.

Inductive Cases:

1. $\mathcal{A} \models \neg \alpha \quad$ iff $\quad \mathcal{A} \not \models \alpha$
2. $\mathcal{A} \models(\alpha \vee \beta) \quad$ iff $\quad \mathcal{A} \models \alpha$ or $\mathcal{A} \models \beta$
3. $\mathcal{A} \models \exists v(\alpha) \quad$ iff \quad there exists $a \in|\mathcal{A}|$ such that $\mathcal{A}[a / v] \models \alpha$
where $\mathcal{A}[a / v]$ is defined to be the exact same structure as \mathcal{A} with the single exception that the default value of v in $\mathcal{A}[a / v]$ is a, i.e., $v^{\mathcal{A}[a / v]}=a$.

5.4 Examples

Some vocabularies:

- $\Sigma_{\text {graph }}=(E ;), \quad \operatorname{ar}(E)=2$
- $\Sigma_{\text {st-graph }}=(E ; s, t), \quad \operatorname{ar}(E)=2, \operatorname{ar}(s)=\operatorname{ar}(t)=0$
- $\Sigma_{\mathrm{N}}=(\leq[$ infix $] ; 0$, Suc $,+[$ infix $], *[$ infix $]), \quad \operatorname{ar}(\leq)=\operatorname{ar}(+)=\operatorname{ar}(*)=2, \operatorname{ar}($ Suc $)=1$
- $\Sigma_{\text {set }}=(\in[$ infix $] ; \emptyset), \quad \operatorname{ar}(\in)=2, \operatorname{ar}(\emptyset)=0$
- $\Sigma_{\text {group }}=(; \circ[$ infix $], e), \quad \operatorname{ar}(\circ)=2, \operatorname{ar}(e)=0$

Some structures:

G_{0}

$$
E^{G_{0}}=\{(0,1),(2,2)\}
$$

$G_{0} \in \operatorname{STRUC}\left[\Sigma_{\text {graph }}\right] ; G_{0}^{\prime} \in \operatorname{STRUC}\left[\Sigma_{\text {st-graph }}\right] ;\left|G_{0}\right|=\left|G_{0}^{\prime}\right|=\{0,1,2\}$
$E(s, t) \in L\left(\Sigma_{\text {st-graph }}\right) ; \quad G_{0}^{\prime} \models E(s, t)$
Let $\mathbf{N}=\left(\{0,1, \ldots\}, \leq \mathbf{N}, \operatorname{Suc}^{\mathbf{N}},+\mathbf{N}_{, *} \mathbf{N}\right)$. \mathbf{N} is the standard model of the natural numbers. $\mathbf{N} \in$ $\operatorname{STRUC}\left[\Sigma_{\mathrm{N}}\right]$.

$$
\begin{aligned}
\leq_{\mathbf{N}} & =\{(0,0),(0,1), \ldots,(1,1),(1,2), \ldots,(8,9),(8,10), \ldots\} \\
\mathbf{S u c}^{\mathbf{N}} & =\{(0,1),(1,2),(2,3), \ldots\} \\
{ }_{+} \mathbf{N} & =\{((0,0), 0),((0,1), 1), \ldots((2,2), 4) \ldots,((8,9), 17) \ldots\} \\
{ }^{\mathbf{N}} & =\{((0,0), 0),((0,1), 0), \ldots((2,2), 4) \ldots,((8,9), 72) \ldots\}
\end{aligned}
$$

Let $\alpha \equiv \forall x y(x=y \leftrightarrow \forall z(z \in x \leftrightarrow z \in y))$. α is the "axiom of extensionality", the first axiom of ZFC (Zermelo-Fraenkel plus Choice). It says, "Two sets are equal iff they have exactly the same elements."

A group, G, is a non-empty set with a binary operation that is associative, has an identity and inverses.

The group theory axioms consist of $\gamma_{1} \wedge \gamma_{2} \wedge \gamma_{3}$:

$$
\begin{array}{cl}
\text { Associative: } & \gamma_{1} \equiv \forall x y z(x \circ y) \circ z=x \circ(y \circ z) \\
\text { Identity: } & \left.\gamma_{2} \equiv \forall x(x \circ e)=x\right) \\
\text { Inverse: } & \left.\gamma_{3} \equiv \forall x \exists y(x \circ y)=e\right)
\end{array}
$$

A group is neither more nor less than a model of the group theory axioms.
A graph is neither more nor less than a structure of vocabulary $\Sigma_{\text {graph }}$.
Let $\psi \in L\left(\Sigma_{\text {graph }}\right)$ say "loop-free and undirected":

$$
\psi \equiv \forall x y(\neg E(x, x) \wedge(E(x, y) \rightarrow E(y, x))
$$

A loop-free, undirected graph is neither more not less than a model of ψ.

