1 PropCalc Definitions and Abbreviations

1.1 Syntax of PropCalc

$$
\mathbf{P}_{\mathbf{v a r}} \stackrel{\text { def }}{=}\left\{p, q, r, s, p_{0}, q_{0}, r_{0}, s_{0}, p_{1}, q_{1}, r_{1}, s_{1}, \ldots\right\} \quad \text { PropCalc Variables }
$$

Definition 1.1 [Inductive Definition of Propositional Formulas ($\mathbf{P}_{\text {fmla }}$) (Syntax of PropCalc)
base 0. $T, \perp \in \mathbf{P}_{\text {fmla }}$
base 1. If $a \in \mathbf{P}_{\text {var }}$ then $a \in \mathbf{P}_{\text {fmla }}$
inductive 2. If $\alpha \in \mathbf{P}_{\text {fmla }}$ then $\neg \alpha \in \mathbf{P}_{\text {fmla }}$
inductive 3. If $\alpha, \beta \in \mathbf{P}_{\text {fmla }}$ then $(\alpha \vee \beta) \in \mathbf{P}_{\text {fmla }}$

1.2 Precedence

1. \neg binds most tightly, then
2. \wedge, \vee, then
3. $\rightarrow, \leftrightarrow$
4. \rightarrow associates as follows: $\alpha \rightarrow \beta \rightarrow \gamma \equiv \alpha \rightarrow(\beta \rightarrow \gamma)$

Example: $\quad \neg \alpha \wedge \beta \rightarrow \neg \gamma \vee \delta \rightarrow \epsilon \equiv(\neg \alpha \wedge \beta) \rightarrow((\neg \gamma \vee \delta) \rightarrow \epsilon)$

1.3 Semantics of PropCalc

A truth assignment or world is a function $\mathcal{A}: D \rightarrow\{0,1\}$ where $\operatorname{dom}(\mathcal{A})=D \subseteq \mathbf{P}_{\text {var }}$. Extend \mathcal{A} to $\mathcal{A}^{\prime}: \mathbf{P}_{\text {fmla }}(D) \rightarrow\{0,1\}$ inductively as follows:

1. $\mathcal{A}(T) \stackrel{\text { def }}{=} 1 ; \mathcal{A}(\perp) \stackrel{\text { def }}{=} 0$
2. for $v \in D, \mathcal{A}^{\prime}(v) \stackrel{\text { def }}{=} \mathcal{A}(v)$
3. $\mathcal{A}^{\prime}(\neg \alpha) \stackrel{\text { def }}{=} 1-\mathcal{A}^{\prime}(\alpha)$
4. $\mathcal{A}^{\prime}(\alpha \vee \beta) \stackrel{\text { def }}{=} \max \left(\mathcal{A}^{\prime}(\alpha), \mathcal{A}^{\prime}(\beta)\right)$
[For convenience, we will assume that $\mathcal{A}=\mathcal{A}^{\prime}$, i.e., don't bother writing the " ${ }^{\prime}$ ".]
We say that \mathcal{A} is suitable or appropriate for α if $\operatorname{var}(\alpha) \subseteq \operatorname{dom}(\mathcal{A})$.
Example: if $\operatorname{dom}(\mathcal{A})=\{p, q\}$, then \mathcal{A} is suitable for $p \vee \neg p \rightarrow \top$, but not for $\perp \rightarrow q \vee r$.
Note that a Truth Table can provide an equivalent definition for the semantics of PropCalc.

truth assignment	p	q	$\neg p$	$p \vee q$	$p \wedge q$	$p \rightarrow q$
\mathcal{A}_{0}	0	0	1	0	0	1
\mathcal{A}_{1}	0	1	1	1	0	1
\mathcal{A}_{2}	1	0	0	1	0	0
\mathcal{A}_{3}	1	1	0	1	1	1

Note: If $\alpha \in \mathbf{P}_{\text {fmla }}$ has n variables, then there are 2^{n} possible truth assignments of interest. These are all the different worlds that might exist from α 's point of view.

1.4 Equivalence

Definition 1.2 [Semantic Implication] For a set of formula, $\Gamma \subseteq \mathbf{P}_{\text {fmla }}$, and world, \mathcal{A}, we write $\mathcal{A} \models \Gamma$ to mean that \mathcal{A} satisifies every formula in Γ. For $\alpha \in \mathbf{P}_{\text {fmla }}$, we write $\Gamma \models \alpha$ (Γ semantically implies α) to mean that for all appropritate \mathcal{A}, If $\mathcal{A} \models \Gamma$, then $\mathcal{A} \models \alpha$. This is called semantic implication because it is a form of implication having to do with semantics, i.e., what worlds Γ and α hold in. Once we prove the completeness theorem, i.e., $(\Gamma \models \alpha) \Leftrightarrow(\Gamma \vdash \alpha)$, we will use \models just for satisfaction, i.e., $\mathcal{A} \models \alpha(\alpha$ is true in $\mathcal{A})$ and $\Gamma \vdash \alpha(\Gamma$ proves α), i.e., there is a resolution proof of α, using assumptions from Γ.

Definition 1.3 For $\alpha, \beta \in \mathbf{P}_{\text {fmla }}$, we say that α and β are equivalent iff $\alpha \models \beta$ and $\beta \models \alpha$, i.e., for all \mathcal{A} appropritate for α and $\beta, \mathcal{A}(\alpha)=\mathcal{A}(\beta)$.

Some Important Equivalences (worth memorizing):

$$
\begin{array}{lrl}
\text { contrapositive } & p \rightarrow q & \equiv \neg q \rightarrow \neg p \\
\text { de Morgan } & \neg(p \vee q) & \equiv \neg p \wedge \neg q \\
\text { de Morgan } & \neg(p \wedge q) & \equiv \neg p \vee \neg q \\
\text { excluded middle } & p \vee \neg p & \equiv \neg \\
\text { double negation } & p & \equiv \neg \neg p \\
\text { commutative laws } & p \vee q & \equiv q \vee p \\
\text { commutative laws } & p \wedge q & \equiv q \wedge p \\
\text { associative laws } & (p \vee q) \vee r & \equiv p \vee(q \vee r) \\
\text { associative laws } & (p \wedge q) \wedge r & \equiv p \wedge(q \wedge r) \\
\text { distributive laws } & p \vee(q \wedge r) & \equiv(p \vee q) \wedge(p \vee r) \\
\text { distributive laws } & p \wedge(q \vee r) & \equiv(p \wedge q) \vee(p \wedge r)
\end{array}
$$

1.5 Abbreviations

" \hookrightarrow " is an abbreviation for "is an abbreviation for"

$$
\begin{aligned}
& \alpha \wedge \beta \hookrightarrow \\
& \alpha \rightarrow(\neg \alpha \vee \neg \beta) \\
& \alpha \leftrightarrow \beta \hookrightarrow \\
& a \alpha \vee \beta \\
& a \leftrightarrow \beta \hookrightarrow(a \rightarrow \beta) \wedge(\beta \rightarrow a)
\end{aligned}
$$

(See abbreviations.pdf on the syllabus page:
https://people.cs.umass.edu/~immerman/cs513/syllabus.html
where I post important abbreviations.)

