1 PropCalc Definitions and Abbreviations

1.1 Syntax of PropCalc

 $\mathbf{P_{var}} \stackrel{\text{def}}{=} \{p, q, r, s, p_0, q_0, r_0, s_0, p_1, q_1, r_1, s_1, \ldots\}$ **PropCalc Variables**

Definition 1.1 [Inductive Definition of Propositional Formulas (P_{fmla}) (Syntax of PropCalc)

base 0. $\top, \bot \in \mathbf{P}_{\text{fmla}}$

base 1. If $a \in \mathbf{P}_{var}$ then $a \in \mathbf{P}_{fmla}$

inductive 2. If $\alpha \in \mathbf{P}_{\mathbf{fmla}}$ then $\neg \alpha \in \mathbf{P}_{\mathbf{fmla}}$

inductive 3. If $\alpha, \beta \in \mathbf{P}_{\text{fmla}}$ then $(\alpha \lor \beta) \in \mathbf{P}_{\text{fmla}}$

1.2 Precedence

- 1. \neg binds most tightly, then
- 2. \land, \lor , then
- 3. $\rightarrow, \leftrightarrow$
- 4. \rightarrow associates as follows: $\alpha \rightarrow \beta \rightarrow \gamma \equiv \alpha \rightarrow (\beta \rightarrow \gamma)$

Example: $\neg \alpha \land \beta \rightarrow \neg \gamma \lor \delta \rightarrow \epsilon \equiv (\neg \alpha \land \beta) \rightarrow ((\neg \gamma \lor \delta) \rightarrow \epsilon)$

1.3 Semantics of PropCalc

A truth assignment or world is a function $\mathcal{A} : D \to \{0, 1\}$ where dom $(\mathcal{A}) = D \subseteq \mathbf{P}_{var}$. Extend \mathcal{A} to $\mathcal{A}' : \mathbf{P}_{fmla}(D) \to \{0, 1\}$ inductively as follows:

1. $\mathcal{A}(\top) \stackrel{\text{def}}{=} 1; \mathcal{A}(\bot) \stackrel{\text{def}}{=} 0$ 2. for $v \in D, \mathcal{A}'(v) \stackrel{\text{def}}{=} \mathcal{A}(v)$ 3. $\mathcal{A}'(\neg \alpha) \stackrel{\text{def}}{=} 1 - \mathcal{A}'(\alpha)$ 4. $\mathcal{A}'(\alpha \lor \beta) \stackrel{\text{def}}{=} \max(\mathcal{A}'(\alpha), \mathcal{A}'(\beta))$ [For convenience, we will assume that $\mathcal{A} = \mathcal{A}'$, i.e., don't bother writing the "'".]

We say that \mathcal{A} is **suitable** or **appropriate** for α if $var(\alpha) \subseteq dom(\mathcal{A})$.

Example: if dom(\mathcal{A}) = {p, q}, then \mathcal{A} is suitable for $p \lor \neg p \to \top$, but not for $\bot \to q \lor r$.

Note that a Truth Table can provide an equivalent definition for the semantics of PropCalc.

truth assignment	p	q	$\neg p$	$p \lor q$	$p \wedge q$	$p \to q$
\mathcal{A}_0	0	0	1	0	0	1
\mathcal{A}_1	0	1	1	1	0	1
\mathcal{A}_2	1	0	0	1	0	0
\mathcal{A}_3	1	1	0	1	1	1

Note: If $\alpha \in \mathbf{P}_{\text{fmla}}$ has *n* variables, then there are 2^n possible truth assignments of interest. These are all the different worlds that might exist from α 's point of view.

1.4 Equivalence

Definition 1.2 [Semantic Implication] For a set of formula, $\Gamma \subseteq \mathbf{P_{fmla}}$, and world, \mathcal{A} , we write $\mathcal{A} \models \Gamma$ to mean that \mathcal{A} satisifies every formula in Γ . For $\alpha \in \mathbf{P_{fmla}}$, we write $\Gamma \models \alpha$ (Γ semantically implies α) to mean that for all appropriate \mathcal{A} , If $\mathcal{A} \models \Gamma$, then $\mathcal{A} \models \alpha$. This is called semantic implication because it is a form of implication having to do with semantics, i.e., what worlds Γ and α hold in. Once we prove the completeness theorem, i.e., ($\Gamma \models \alpha$) \Leftrightarrow ($\Gamma \vdash \alpha$), we will use \models just for satisfaction, i.e., $\mathcal{A} \models \alpha$ (α is true in \mathcal{A}) and $\Gamma \vdash \alpha$ (Γ proves α), i.e., there is a resolution proof of α , using assumptions from Γ .

Definition 1.3 For $\alpha, \beta \in \mathbf{P_{fmla}}$, we say that α and β are **equivalent** iff $\alpha \models \beta$ and $\beta \models \alpha$, i.e., for all \mathcal{A} appropriate for α and β , $\mathcal{A}(\alpha) = \mathcal{A}(\beta)$.

Some Important Equivalences (worth memorizing):

contrapositive	$p \rightarrow q$	\equiv	$\neg q \rightarrow \neg p$
de Morgan	$\neg(p \lor q)$	≡	$\neg p \land \neg q$
de Morgan	$\neg (p \land q)$	≡	$\neg p \vee \neg q$
excluded middle	$p \vee \neg p$	≡	Т
double negation	p	\equiv	$\neg \neg p$
commutative laws	$p \vee q$	≡	$q \vee p$
commutative laws	$p \wedge q$	≡	$q \wedge p$
associative laws	$(p \lor q) \lor r$	≡	$p \lor (q \lor r)$
associative laws	$(p \wedge q) \wedge r$	≡	$p \wedge (q \wedge r)$
distributive laws	$p \lor (q \land r)$	≡	$(p \lor q) \land (p \lor r)$
distributive laws	$p \wedge (q \vee r)$	≡	$(p \wedge q) \vee (p \wedge r)$

1.5 Abbreviations

"↔"	is an abbrevi	atior	n for "is an abbreviation for"
	$\alpha \wedge \beta$	\hookrightarrow	$\neg(\neg \alpha \lor \neg \beta)$
	$\alpha \to \beta$	\hookrightarrow	$\neg \alpha \lor \beta$
	$a \leftrightarrow \beta$	\hookrightarrow	$(a \to \beta) \land (\beta \to a)$

(See **abbreviations.pdf** on the syllabus page:

https://people.cs.umass.edu/~immerman/cs513/syllabus.html
where I post important abbreviations.)