13 Håstad's Switching Lemma

Recall boolean query PARITY, which is true of boolean strings that have an odd number of ones. Using pebble games, we have shown that PARITY is not first-order in the absence of the numeric predicate BIT (Chapt. 6). This theorem is much more subtle with the inclusion of BIT.

Theorem 13.1 PARITY *is not first-order expressible:* PARITY \notin FO.

The known proofs of Theorem 13.1 all prove the stronger result that PARITY is not in the non-uniform class AC^0 /poly or, equivalently, PARITY is not first-order, no matter what numeric predicates are available. The proof we present here is via the Håstad Switching Lemma, following the treatment in [Bea96].

Let f be a boolean function, with boolean variables $V_n = \{x_1, \ldots, x_n\}$. A *restriction* on V_n is a map $\rho : V_n \to \{0, 1, \star\}$. The idea is that some of the variables are set to "0" or "1" and the others — those assigned " \star " — remain variables.

Restriction ρ applied to function f results in function $f|_{\rho}$ in which value $\rho(x_i)$ is substituted for x_i in f, for each x_i such that $\rho(x_i) \neq \star$. Thus, $f|_{\rho}$ is a function of the variables that have been assigned " \star ". Let \mathcal{R}_n^r be the set of all restrictions on V_n that map exactly r variables to " \star ".

We state and prove the switching lemma using decision trees. Given a formula F in disjunctive normal form $(DNF)^1$ define the *canonical decision tree* T(F) for F as follows: Let $C_1 = \ell_1 \land \cdots \land \ell_i$ be the first term of F, so $F = C_1 \lor F'$. The top of T(F) is a complete binary decision tree on the variables in C_1 . Each leaf of the tree determines a restriction ρ that assigns the appropriate value to the variables in C_1 and assign " \star " to all the other variables. There is a unique leaf that makes C_1 true and this should remain a leaf and be labeled "1". To each other leaf, determining restriction ρ , we attach the canonical decision tree $T(F'|_{\rho})$.

Let h(T) be the height of tree T. We now show that for any formula F in DNF, if F has only small terms, then when randomly choosing a restriction ρ from \mathcal{R}_n^r , with high probability the height of the canonical decision tree of the resulting formula, $h(T(F|_{\rho}))$, is small.

It then follows that the negation of $F|_{\rho}$ can also be written in DNF — as the disjunction of the conjunction of each branch in the tree that leads to "0". Thus, with high probability, a random restriction switches a DNF formula that has only small terms to a conjunctive normal form (CNF) formula.

Lemma 13.2 (Håstad Switching Lemma) Let F be a DNF formula on n variables, such that each of its terms has length at most k. Let $p \le 1/7$, r = pn, and $s \ge 0$. Then,

$$\frac{\left|\{\rho \in \mathcal{R}_n^r \mid h(T(F|_\rho)) \ge s\}\right|}{|\mathcal{R}_n^r|} < (7pk)^s \,.$$

Proof: The proof of Lemma 13.2 is a somewhat intricate counting argument. Let Stars(k, s) be the set of all sequences $w = (S_1, S_2, ..., S_t)$ where each S_i is a nonempty subset of $\{1, 2, ..., k\}$ and the sum of the cardinalities of the S_i 's equals s

Stars
$$(k, s) = \{ (S_1, \dots, S_t) \mid \emptyset \neq S_i \subseteq \{1, \dots, k\}; \sum_{i=1}^t |S_i| = s \}.$$

¹A DNF formula is an "or" of "and"s. This is the dual of CNF.

We use the following upper bound on the size of Stars(k, s).

Lemma 13.3 For k, s > 0, $|Stars(k, s)| \le (k/\ln 2)^s$.

Proof: We show by induction on s that $|\text{Stars}(k, s)| \leq \gamma^s$, where γ is such that $(1+1/\gamma)^k = 2$. Since $(1+1/\gamma) < e^{1/\gamma}$, we have $\gamma < k/\ln 2$ and thus the lemma will follow.

Suppose that the lemma holds for any s' < s. Let $\beta \in \text{Stars}(k, s)$. Then $\beta = (S_1, \beta')$, where $\beta' \in \text{Stars}(k, s - i)$ and $i = |S_1|$. Thus,

$$|\operatorname{Stars}(k,s)| = \sum_{i=1}^{\min(k,s)} \binom{k}{i} |\operatorname{Stars}(k,s-i)|$$

Thus, by the induction hypothesis,

$$\begin{aligned} |\operatorname{Stars}(k,s)| &\leq \sum_{i=1}^{k} \binom{k}{i} \gamma^{s-i} \\ &= \gamma^{s} \sum_{i=1}^{k} \binom{k}{i} (1/\gamma)^{i} \\ &= \gamma^{s} [(1+1/\gamma)^{k} - 1] \quad = \quad \gamma^{s} \,. \end{aligned}$$

Let $R \subseteq \mathcal{R}_n^r$ be the set of restrictions ρ such that $h(T(F|_{\rho})) \ge s$. We will define a 1:1 map,

$$\alpha: R \to \mathcal{R}_n^{r-s} \times \operatorname{Stars}(k, s) \times 2^s .$$
(13.4)

Once we show that α is one to one, it will follow that

$$\frac{|R|}{|\mathcal{R}_n^r|} \le \frac{|\mathcal{R}_n^{r-s}|}{|\mathcal{R}_n^r|} \cdot |\operatorname{Stars}(k,s)| \cdot 2^s .$$
(13.5)

Observe that $|\mathcal{R}_n^r| = \binom{n}{r} 2^{n-r}$, so,

$$\frac{|\mathcal{R}_n^{r-s}|}{|\mathcal{R}_n^r|} = \frac{(r)(r-1)\cdots(r-s+1)}{(n-r+s)(n-r+s-1)\cdots(n-r+1)} \cdot 2^s \le \left(\frac{2r}{n-r}\right)^s.$$

Substituting this into Equation (13.5) and using Lemma 13.3, we have,

$$\begin{aligned} \frac{|R|}{|\mathcal{R}_n^r|} &\leq \left(\frac{2r}{n-r}\right)^s \cdot (k/\ln 2)^s \cdot 2^s \\ &= \left(\frac{4rk}{(n-r)\ln 2}\right)^s \\ &= \left(\frac{4pk}{(1-p)\ln 2}\right)^s \end{aligned}$$

when r = pn. This is less than $(7pk)^s$ when p < 1/7, because $28/(6 \ln(2)) < 7$.

It thus suffices to construct 1:1 map α (Equation (13.4)). Let $F = C_1 \vee C_2 \vee \cdots$. Let $\rho \in R$, and let C_{i_1} be the first term of F that is not set to "0" in $F|_{\rho}$.

Let b be the first s steps of the lexicographically first branch in $T(F|_{\rho})$ that has length at least s. Let V_1 be the set of variables in $C_{i_1}|_{\rho}$. Let a_1 be the assignment to V_1 that makes $C_{i_1}|_{\rho}$ true. Let b_1 be the initial segment of b that assigns values to V_1 . If b ends before all the values of V_1 are defined, then let $b_1 = b$, and shorten a_1 so that it assigns values only to the variables that b_1 does. See Figure 13.6.

Define the set $S_1 \subseteq \{1, 2, ..., k\}$ to include those j such that the j^{th} variable in C_{i_1} is set by a_1 . S_1 is nonempty. Note that from C_{i_1} and S_1 we can reconstruct a_1 .

If $b \neq b_1$, then $(b - b_1)$ is a path in $T(F|_{\rho b_1})$. Let C_{i_2} be the first term of F not set to "0" by ρb_1 . As above, we generate b_2 , a_2 , and S_2 . Repeat this until the whole branch b is used up. We have $b = b_1 b_2 \cdots b_t$, and let $a = a_1 a_2 \cdots a_t$. Define the map $\delta : \{1, \ldots, s\} \rightarrow \{0, 1\}$ such that $\delta(j) = 1$ if a and b assign the same value at their step j, and $\delta(j) = 0$ if a and b assign different values to variable j. We finally define the map α as,

$$\alpha(\rho) = \langle \rho a, (S_1, S_2, \dots, S_t), \delta \rangle$$

From $\alpha(\rho)$ we can reconstruct ρ as follows: C_{i_1} is the first clause that evaluates to "1" using ρa . From C_{i_1} and S_1 we reconstruct a_1 . Then, using δ , we can compute the restriction $\rho' = \rho b_1 a_2 \cdots a_t$. Next, C_{i_2} is the first clause evaluating to "1" using ρ' . From this and S_2 , we can compute a_2 , and so on. Thus α is 1:1. This completes the proof of Håstad's Switching Lemma.

A striking consequence of the switching lemma is that AC^0 circuits have restrictions on which they are constant even though many variables are assigned to " \star ":

Theorem 13.7 Let C be an unbounded fan-in circuit with n inputs, having size s and depth d. Let $r \le n/(14^d (\log s)^{d-1}) - (\log(s) - 1)$. Then there is a restriction $\rho \in \mathcal{R}_n^r$ for which $C|_{\rho}$ is constant.

Proof: We show inductively from the leaves up, that there is a restriction that turns all the gates into DNF or CNF formulas all of whose terms have length at most $\log s$.

Assume that level one of the circuit — the nodes sitting above the inputs and their negations — consists of "or" gates. Thus, each of these gates g is a DNF formula whose maximum term size is one. By Lemma 13.2, with p = 1/14, $n_1 = n/14$, k = 1, we have,

$$|\{\rho \in \mathcal{R}_n^{n_1} \mid h(T(g|_{\rho})) \ge \log s\}| < (2)^{-\log s} \cdot |\mathcal{R}_n^{n_1}|$$

Since there are at most s gates at level one, the number of restrictions ρ such that $h(T(g|_{\rho})) \ge \log s$ for some g is less than,

$$s \cdot (2)^{-\log s} \cdot |\mathcal{R}_n^{n_1}| = |\mathcal{R}_n^{n_1}|$$

Thus, there is at least one restriction $\rho_1 \in \mathcal{R}_n^{n_1}$ under which all the gates at level one are CNF formulas with terms of size less than $\log s$. It follows that the "and" gates at level two are CNF formulas with terms of size less than $\log s$.

Let $g_2 = g|_{\rho_1}$ be any such gate. Using Lemma 13.2, with $k = \log s$, $p = 1/(14 \log s)$, $n_2 = n_1/(14 \log s)$, we have,

$$|\{\rho \in \mathcal{R}_{n_1}^{n_2} \mid h(T(g_2|_{\rho})) \ge \log s\}| < (2)^{-\log s} \cdot |\mathcal{R}_{n_1}^{n_2}|$$

Figure 13.6: Decision tree $T(F|_{\rho})^4$ with path of length $s, b = b_1 b_2 \cdots b_t$.

Thus, there is a restriction $\rho_2 \in \mathcal{R}_{n_1}^{n_2}$ under which every gate at level two is a DNF formula all of whose terms have length less than $\log s$.

Repeating this argument through all d levels, we have a restriction $\rho = \rho_1 \rho_2 \cdots \rho_d \in \mathcal{R}_{n_d}^n$ such that the height $T(C|_{\rho})$ of the decision tree of the root of the circuit is less than $\log s$. Observe that $n_d = n/(14^d (\log s)^{d-1})$. Let b be the restriction corresponding to any branch of the decision tree. It follows that $C|_{\rho b}$ is constant and has at least $r = n_d - (\log(s) - 1)$ inputs.

Suppose that circuit C in Theorem 13.7 computes the parity of its n inputs. Then any restriction of C also computes the parity of its remaining inputs. Thus, if $1 \le r$ in Theorem 13.7, then C must not compute PARITY. It follows that if C is a size s, depth d circuit computing parity on n inputs, then the following inequalities hold,

$$\begin{array}{rcl} 1 &>& n/(14^d(\log s)^{d-1}) - (\log(s) - 1) \\ \log s &>& n/(14^d(\log s)^{d-1}) \\ (\log s)^d &>& n/(14^d) \\ &s &>& 2^{\frac{1}{14}n^{\frac{1}{d}}} \,. \end{array}$$

We thus have the following lower bound on the number of iterations of a first-order quantifier block needed to compute PARITY. This corollary is optimal by Exercise **??**.

We use the "big omega" notation for lower bounds. The "equation" $f(n) = \Omega(g(n))$ is equivalent to g(n) = O(f(n)). It means that for almost all values of n, f(n) is at least some constant multiple of g(n).

Corollary 13.8 If PARITY \in FO[s(n)], then $s(n) = \Omega(\log n / \log \log n)$, and this holds even in the presence of arbitrary numeric predicates.

Exercise 13.9 Show that PARITY is first-order reducible to REACH. Conclude that the same lower bound as in Corollary 13.8 holds for REACH. \Box

References

[Bea96] P. Beame, "A Switching Lemma Primer," manuscript, http://www.cs.washington.edu/homes/beame/papers.html