13 Håstad's Switching Lemma

Recall boolean query PARITY, which is true of boolean strings that have an odd number of ones. Using pebble games, we have shown that PARITY is not first-order in the absence of the numeric predicate BIT (Chapt. 6). This theorem is much more subtle with the inclusion of BIT.

Theorem 13.1 PARITY is not first-order expressible: PARITY \notin FO.

The known proofs of Theorem 13.1 all prove the stronger result that PARITY is not in the non-uniform class AC^{0} /poly or, equivalently, PARITY is not first-order, no matter what numeric predicates are available. The proof we present here is via the Håstad Switching Lemma, following the treatment in [Bea96].

Let f be a boolean function, with boolean variables $V_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. A restriction on V_{n} is a map $\rho: V_{n} \rightarrow$ $\{0,1, \star\}$. The idea is that some of the variables are set to " 0 " or " 1 " and the others - those assigned " \star " remain variables.

Restriction ρ applied to function f results in function $\left.f\right|_{\rho}$ in which value $\rho\left(x_{i}\right)$ is substituted for x_{i} in f, for each x_{i} such that $\rho\left(x_{i}\right) \neq \star$. Thus, $\left.f\right|_{\rho}$ is a function of the variables that have been assigned " \star ". Let \mathcal{R}_{n}^{r} be the set of all restrictions on V_{n} that map exactly r variables to " \star ".

We state and prove the switching lemma using decision trees. Given a formula F in disjunctive normal form (DNF) ${ }^{1}$ define the canonical decision tree $T(F)$ for F as follows: Let $C_{1}=\ell_{1} \wedge \cdots \wedge \ell_{i}$ be the first term of F, so $F=C_{1} \vee F^{\prime}$. The top of $T(F)$ is a complete binary decision tree on the variables in C_{1}. Each leaf of the tree determines a restriction ρ that assigns the appropriate value to the variables in C_{1} and assign " \star " to all the other variables. There is a unique leaf that makes C_{1} true and this should remain a leaf and be labeled " 1 ". To each other leaf, determining restriction ρ, we attach the canonical decision tree $T\left(\left.F^{\prime}\right|_{\rho}\right)$.

Let $h(T)$ be the height of tree T. We now show that for any formula F in DNF, if F has only small terms, then when randomly choosing a restriction ρ from \mathcal{R}_{n}^{r}, with high probability the height of the canonical decision tree of the resulting formula, $h\left(T\left(\left.F\right|_{\rho}\right)\right.$), is small.

It then follows that the negation of $\left.F\right|_{\rho}$ can also be written in DNF - as the disjunction of the conjunction of each branch in the tree that leads to " 0 ". Thus, with high probability, a random restriction switches a DNF formula that has only small terms to a conjunctive normal form (CNF) formula.

Lemma 13.2 (Håstad Switching Lemma) Let F be a DNF formula on n variables, such that each of its terms has length at most k. Let $p \leq 1 / 7, r=p n$, and $s \geq 0$. Then,

$$
\frac{\left|\left\{\rho \in \mathcal{R}_{n}^{r} \mid h\left(T\left(\left.F\right|_{\rho}\right)\right) \geq s\right\}\right|}{\left|\mathcal{R}_{n}^{r}\right|}<(7 p k)^{s} .
$$

Proof: The proof of Lemma 13.2 is a somewhat intricate counting argument. Let $\operatorname{Stars}(k, s)$ be the set of all sequences $w=\left(S_{1}, S_{2}, \ldots, S_{t}\right)$ where each S_{i} is a nonempty subset of $\{1,2, \ldots, k\}$ and the sum of the cardinalities of the S_{i} 's equals s

$$
\operatorname{Stars}(k, s)=\left\{\left(S_{1}, \ldots, S_{t}\right)\left|\emptyset \neq S_{i} \subseteq\{1, \ldots, k\} ; \quad \sum_{i=1}^{t}\right| S_{i} \mid=s\right\}
$$

[^0]We use the following upper bound on the size of $\operatorname{Stars}(k, s)$.

Lemma 13.3 For $k, s>0$, $|\operatorname{Stars}(k, s)| \leq(k / \ln 2)^{s}$.

Proof: We show by induction on s that $|\operatorname{Stars}(k, s)| \leq \gamma^{s}$, where γ is such that $(1+1 / \gamma)^{k}=2$. Since $(1+1 / \gamma)<$ $e^{1 / \gamma}$, we have $\gamma<k / \ln 2$ and thus the lemma will follow.
Suppose that the lemma holds for any $s^{\prime}<s$. Let $\beta \in \operatorname{Stars}(k, s)$. Then $\beta=\left(S_{1}, \beta^{\prime}\right)$, where $\beta^{\prime} \in \operatorname{Stars}(k, s-i)$ and $i=\left|S_{1}\right|$. Thus,

$$
|\operatorname{Stars}(k, s)|=\sum_{i=1}^{\min (k, s)}\binom{k}{i}|\operatorname{Stars}(k, s-i)|
$$

Thus, by the induction hypothesis,

$$
\begin{aligned}
|\operatorname{Stars}(k, s)| & \leq \sum_{i=1}^{k}\binom{k}{i} \gamma^{s-i} \\
& =\gamma^{s} \sum_{i=1}^{k}\binom{k}{i}(1 / \gamma)^{i} \\
& =\gamma^{s}\left[(1+1 / \gamma)^{k}-1\right]=\gamma^{s} .
\end{aligned}
$$

Let $R \subseteq \mathcal{R}_{n}^{r}$ be the set of restrictions ρ such that $h\left(T\left(\left.F\right|_{\rho}\right)\right) \geq s$. We will define a 1:1 map,

$$
\begin{equation*}
\alpha: R \rightarrow \mathcal{R}_{n}^{r-s} \times \operatorname{Stars}(k, s) \times 2^{s} . \tag{13.4}
\end{equation*}
$$

Once we show that α is one to one, it will follow that

$$
\begin{equation*}
\frac{|R|}{\left|\mathcal{R}_{n}^{r}\right|} \leq \frac{\left|\mathcal{R}_{n}^{r-s}\right|}{\left|\mathcal{R}_{n}^{r}\right|} \cdot|\operatorname{Stars}(k, s)| \cdot 2^{s} \tag{13.5}
\end{equation*}
$$

Observe that $\left|\mathcal{R}_{n}^{r}\right|=\binom{n}{r} 2^{n-r}$, so,

$$
\frac{\left|\mathcal{R}_{n}^{r-s}\right|}{\left|\mathcal{R}_{n}^{r}\right|}=\frac{(r)(r-1) \cdots(r-s+1)}{(n-r+s)(n-r+s-1) \cdots(n-r+1)} \cdot 2^{s} \leq\left(\frac{2 r}{n-r}\right)^{s} .
$$

Substituting this into Equation (13.5) and using Lemma 13.3, we have,

$$
\begin{aligned}
\frac{|R|}{\left|\mathcal{R}_{n}^{r}\right|} & \leq\left(\frac{2 r}{n-r}\right)^{s} \cdot(k / \ln 2)^{s} \cdot 2^{s} \\
& =\left(\frac{4 r k}{(n-r) \ln 2}\right)^{s} \\
& =\left(\frac{4 p k}{(1-p) \ln 2}\right)^{s}
\end{aligned}
$$

when $r=p n$. This is less than $(7 p k)^{s}$ when $p<1 / 7$, because $28 /(6 \ln (2))<7$.
It thus suffices to construct 1:1 map α (Equation (13.4). Let $F=C_{1} \vee C_{2} \vee \cdots$. Let $\rho \in R$, and let $C_{i_{1}}$ be the first term of F that is not set to " 0 " in $\left.F\right|_{\rho}$.

Let b be the first s steps of the lexicographically first branch in $T\left(\left.F\right|_{\rho}\right)$ that has length at least s. Let V_{1} be the set of variables in $\left.C_{i_{1}}\right|_{\rho}$. Let a_{1} be the assignment to V_{1} that makes $\left.C_{i_{1}}\right|_{\rho}$ true. Let b_{1} be the initial segment of b that assigns values to V_{1}. If b ends before all the values of V_{1} are defined, then let $b_{1}=b$, and shorten a_{1} so that it assigns values only to the variables that b_{1} does. See Figure 13.6 .
Define the set $S_{1} \subseteq\{1,2, \ldots, k\}$ to include those j such that the $j^{\text {th }}$ variable in $C_{i_{1}}$ is set by a_{1}. S_{1} is nonempty. Note that from $C_{i_{1}}$ and S_{1} we can reconstruct a_{1}.

If $b \neq b_{1}$, then $\left(b-b_{1}\right)$ is a path in $T\left(\left.F\right|_{\rho b_{1}}\right)$. Let $C_{i_{2}}$ be the first term of F not set to " 0 " by ρb_{1}. As above, we generate b_{2}, a_{2}, and S_{2}. Repeat this until the whole branch b is used up. We have $b=b_{1} b_{2} \cdots b_{t}$, and let $a=a_{1} a_{2} \cdots a_{t}$. Define the map $\delta:\{1, \ldots, s\} \rightarrow\{0,1\}$ such that $\delta(j)=1$ if a and b assign the same value at their step j, and $\delta(j)=0$ if a and b assign different values to variable j. We finally define the map α as,

$$
\alpha(\rho)=\left\langle\rho a,\left(S_{1}, S_{2}, \ldots, S_{t}\right), \delta\right\rangle .
$$

From $\alpha(\rho)$ we can reconstruct ρ as follows: $C_{i_{1}}$ is the first clause that evaluates to " 1 " using ρa. From $C_{i_{1}}$ and S_{1} we reconstruct a_{1}. Then, using δ, we can compute the restriction $\rho^{\prime}=\rho b_{1} a_{2} \cdots a_{t}$. Next, $C_{i_{2}}$ is the first clause evaluating to " 1 " using ρ^{\prime}. From this and S_{2}, we can compute a_{2}, and so on. Thus α is $1: 1$. This completes the proof of Håstad's Switching Lemma.

A striking consequence of the switching lemma is that AC^{0} circuits have restrictions on which they are constant even though many variables are assigned to " \star ":

Theorem 13.7 Let C be an unbounded fan-in circuit with n inputs, having size s and depth d. Letr $\leq n /\left(14^{d}(\log s)^{d-1}\right)$ $-(\log (s)-1)$. Then there is a restriction $\rho \in \mathcal{R}_{n}^{r}$ for which $\left.C\right|_{\rho}$ is constant.

Proof: We show inductively from the leaves up, that there is a restriction that turns all the gates into DNF or CNF formulas all of whose terms have length at most $\log s$.

Assume that level one of the circuit - the nodes sitting above the inputs and their negations - consists of "or" gates. Thus, each of these gates g is a DNF formula whose maximum term size is one. By Lemma 13.2, with $p=1 / 14, n_{1}=n / 14, k=1$, we have,

$$
\left|\left\{\rho \in \mathcal{R}_{n}^{n_{1}} \mid h\left(T\left(\left.g\right|_{\rho}\right)\right) \geq \log s\right\}\right|<(2)^{-\log s} \cdot\left|\mathcal{R}_{n}^{n_{1}}\right|
$$

Since there are at most s gates at level one, the number of restrictions ρ such that $h\left(T\left(\left.g\right|_{\rho}\right)\right) \geq \log s$ for some g is less than,

$$
s \cdot(2)^{-\log s} \cdot\left|\mathcal{R}_{n}^{n_{1}}\right|=\left|\mathcal{R}_{n}^{n_{1}}\right| .
$$

Thus, there is at least one restriction $\rho_{1} \in \mathcal{R}_{n}^{n_{1}}$ under which all the gates at level one are CNF formulas with terms of size less than $\log s$. It follows that the "and" gates at level two are CNF formulas with terms of size less than $\log s$.

Let $g_{2}=\left.g\right|_{\rho_{1}}$ be any such gate. Using Lemma 13.2, with $k=\log s, p=1 /(14 \log s), n_{2}=n_{1} /(14 \log s)$, we have,

$$
\left|\left\{\rho \in \mathcal{R}_{n_{1}}^{n_{2}} \mid h\left(T\left(\left.g_{2}\right|_{\rho}\right)\right) \geq \log s\right\}\right|<(2)^{-\log s} \cdot\left|\mathcal{R}_{n_{1}}^{n_{2}}\right| .
$$

Figure 13.6: Decision tree $T\left(\left.F\right|_{\rho}\right)^{4}$ with path of length $s, b=b_{1} b_{2} \cdots b_{t}$.

Thus, there is a restriction $\rho_{2} \in \mathcal{R}_{n_{1}}^{n_{2}}$ under which every gate at level two is a DNF formula all of whose terms have length less than $\log s$.

Repeating this argument through all d levels, we have a restriction $\rho=\rho_{1} \rho_{2} \cdots \rho_{d} \in \mathcal{R}_{n_{d}}^{n}$ such that the height $T\left(\left.C\right|_{\rho}\right)$ of the decision tree of the root of the circuit is less than $\log s$. Observe that $n_{d}=n /\left(14^{d}(\log s)^{d-1}\right)$. Let b be the restriction corresponding to any branch of the decision tree. It follows that $\left.C\right|_{\rho b}$ is constant and has at least $r=n_{d}-(\log (s)-1)$ inputs.

Suppose that circuit C in Theorem 13.7 computes the parity of its n inputs. Then any restriction of C also computes the parity of its remaining inputs. Thus, if $1 \leq r$ in Theorem 13.7, then C must not compute PARITY. It follows that if C is a size s, depth d circuit computing parity on n inputs, then the following inequalities hold,

$$
\begin{aligned}
1 & >n /\left(14^{d}(\log s)^{d-1}\right)-(\log (s)-1) \\
\log s & >n /\left(14^{d}(\log s)^{d-1}\right) \\
(\log s)^{d} & >n /\left(14^{d}\right) \\
s & >2^{\frac{1}{14} n^{\frac{1}{d}}} .
\end{aligned}
$$

We thus have the following lower bound on the number of iterations of a first-order quantifier block needed to compute PARITY. This corollary is optimal by Exercise ??.

We use the "big omega" notation for lower bounds. The "equation" $f(n)=\Omega(g(n))$ is equivalent to $g(n)=$ $O(f(n))$. It means that for almost all values of $n, f(n)$ is at least some constant multiple of $g(n)$.

Corollary 13.8 If PARITY $\in \mathrm{FO}[s(n)]$, then $s(n)=\Omega(\log n / \log \log n)$, and this holds even in the presence of arbitrary numeric predicates.

Exercise 13.9 Show that PARITY is first-order reducible to REACH. Conclude that the same lower bound as in Corollary 13.8 holds for REACH.

References

[Bea96] P. Beame, "A Switching Lemma Primer," manuscript, http://www.cs.washington.edu/homes/beame/papers.html

[^0]: ${ }^{1}$ A DNF formula is an "or" of "and"s. This is the dual of CNF.

