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Abstract
Software-defined networking (SDN) is a new paradigm for oper-
ating and managing computer networks. SDN enables logically-
centralized control over network devices through a “controller” —
software that operates independently of the network hardware. Net-
work operators can run both in-house and third-party SDN programs
on top of the controller, e.g., to specify routing and access control
policies.

In practice, having the controller handle events limits the network
scalability. Therefore, the feasibility of SDN depends on the ability
to efficiently decentralize network event-handling by installing
forwarding rules on the switches. However, installing a rule too
early or too late may lead to incorrect behavior, e.g., (1) packets
may be forwarded to the wrong destination or incorrectly dropped;
(2) packets handled by the switch may hide vital information
from the controller, leading to incorrect forwarding behavior. The
second issue is subtle and sometimes missed even by experienced
programmers.

The contributions of this paper are two fold. First, we formalize
the correctness and optimality requirements for decentralizing
network policies. Second, we identify a useful class of network
policies which permits automatic synthesis of a controller which
performs optimal forwarding rule installation.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages; I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis

Keywords Software-defined networking; Network programming
languages; Synthesis; Logic programming; Distributed systems

1. Introduction
Software-defined networking (SDN) is a paradigm for operating
and managing computer networks [1]. SDN enables logically-
centralized control over network devices through a “controller” —
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software that operates independently of the network hardware. In
practice, having the controller handle all network events limits
network scalability. Therefore, the feasibility of SDN depends on the
ability to efficiently and correctly decentralize handing of network
events by installing forwarding rules on the switches. This problem
can be difficult and error prone even for experienced programmers.

In particular, there is a subtle local-versus-global issue that is a
frequent cause of errors in SDN implementations. Namely, when a
packet arrives at a switch, the switch’s forwarding rules determine
whether the packet is handled locally or sent to the controller. But
when should a packet be sent to the controller?

We say that an event e is relevant if there is some sequence of
future events that can only be handled correctly if the controller
knows about e. If e is relevant then the switch must inform the
controller about it. On the other hand, if e is irrelevant, then from
the viewpoint of network traffic and efficiency, it is best for the
switch to handle e locally and not inform the controller about it.
Thus, a switch needs to test whether or not an incoming event is
relevant. However, relevance is in general a second-order property —
does there exist a sequence of future events — that may be difficult
or impossible for the switch to test.

In this paper, we solve this problem. We show how to automat-
ically go from the specification of a network policy to its decen-
tralized implementation as forwarding rules to be initially installed
on the switches and updated in response to events occurring on the
switches.

We make the following contributions:

1. We define the correctness and optimality of a decentralized
implementation of a network policy. Our definitions are given in
English and more formally in second-order logic.

2. We specify a first-order language, L1, for expressing network
policies. L1 is reasonably expressive. Furthermore, we show
how to automatically synthesize an optimal decentralized imple-
mentation of any network policy expressible in L1.

3. We identify a property that we call k-bounded causality and
show that any network policy F expressed in L1 satisfies k-
bounded causality with the parameter k easily determined from
F . Intuitively, if a network policy has k-bounded causality, then
instead of considering all possible sequences of future events,
we only need to consider sequences of length at most k.

4. Using the k-bounded causality of F , we show that the above
second-order definitions of correctness and optimality for a
decentralized implementation of F can be written simply in
a fragment of first-order logic with equality.



5. Using quantifier elimination on the resulting formulas, we show
how to automatically derive quantifier-free implementation rules
for F . The latter can be automatically translated to forwarding
rules which when installed on the switches, result in a correct
and optimal decentralized implementation of the input network
policy F .

What this paper does not do: There are many fascinating
issues about the distributed control of a network, i.e., how to send
forwarding rules over the network to keep all the switches in a
correct state as cheaply as possible. We will consider some of these
questions in future work.

In this paper, we consider the problem of computing the local
forwarding rules, not how we send them over the network to the
switches. A related interesting question which we also do not
consider in this paper is how to compute the incremental changes of
the forwarding rules. That is, which rules should we add and remove
in reaction to each new relevant event.

This paper is organized as follows: Section 2 provides an infor-
mal overview of the problem addressed by this paper. The termi-
nology used in this paper is described in Section 3. The problem
addressed by this paper is defined formally in Section 4. Section 5
provides necessary and sufficient conditions for decentralization
and optimality. Our first order policy language is defined in Sec-
tion 6. The algorithm for synthesizing forwarding rules is described
in Section 7. Related work is described in Section 8.

2. Overview
This section provides an informal overview of the decentralization
problem and how we solve it. The reader need not be familiar with
Software-Defined Networks (SDNs).

2.1 Forwarding policies
We assume that we have a finite set of switches, each of which has
a fixed set of ports, Ports, connected to hosts and other switches.
The events of interest are “packet-receive” events, each of which
represents a packet arriving at some switch s on some input port.
The possible resulting action is for s to forward the packet along
some set of ports P ⊆ Ports. A policy is a specification of what
action to take given an event and the history of all previous events.
The policy dictates the behavior of every switch as a function of the
global history of events.

As a running example, consider the well-studied policy of a
learning switch with host migration. The learning switch learns
locations of hosts in the network by analyzing the packets incoming
on its ports. Initially, it is supposed to flood any arriving packet (i.e.,
send it to all ports except where it came from), while learning the
location of its sender. Future packets, whose destination’s location is
already learned, should be forwarded directly to the learned port(s)
instead of flooding it to all ports. This eliminates unnecessary traffic.
It is possible for hosts to change their location, i.e., to migrate. The
learning switch that supports host migration should forward the
packet to the port where the packet’s destination was last seen. More
precisely, for a packet with destination d arriving at switch s on port
p, if the history does not include any previous packet that arrived at
s with source d, then s should flood the packet, i.e., send it over all
ports except p. On the other hand, if there was such a packet and
the most recent of these arrived on port p′, then s should send the
packet only on port p′.

2.2 Distributed forwarding
SDNs implement forwarding policies using switches that have
limited expressive power, along with a centralized controller. Events
can either be handled locally by the switch receiving the event, or
communicated to the controller.

Algorithm 1 Controller 〈Policy〉
State := initial state
while new packet-receive event e do

action := compute action(Policy, State, e)
update state(State, e)
rules := infer rules (Policy, State)
configure switches(rules)
send to switches(action)

end while

The switches follow forwarding rules that determine the port(s)
to which the arriving packets are forwarded according to the
attributes of the packet. These rules also determine when the switch
must forward the packet to the controller.1 Each set of rules defines
a “stateless” behaviour in the sense that it does not refer to the
previous history of events. The rules are installed and removed from
the switches only by the controller.

In contrast to the switches, the centralized controller is stateful:
its behavior, which includes instructing the switches how to forward
packets that were sent to it, as well as installing forwarding rules
on the switches for future packets, may depend on the entire log of
events that it has seen so far. For that, the controller may maintain
the history of events it has received as part of its state. Algorithm 1
depicts a simple scheme of a stateful controller, parametrized by the
policy.

Note that the policy of the learning switch described above
cannot be implemented by a switch alone as the handling of the
current packet requires access to the history of previous events.

In this work, we focus on the rule inference component of the con-
troller. For scalability and performance, as many events as possible
should be handled locally by the switches. However, as shown next
it is subtle to correctly install forwarding rules. In fact even current
high-level network programming languages including [6, 14, 18]
essentially require that the programmer specifies conditions that
determine when forwarding rules can be installed (see Section 8).

2.3 Correctness of forwarding rule installation
This paper formulates the notion of correctness of forwarding
rule installation. Our formulation is inspired by the OPENFLOW
standard [2], but it can be adapted to other distributed systems.

Roughly speaking, we say that a forwarding rule installation
policy is correct with respect to a policy if all packets are forwarded
to the right ports as defined by the policy. Since the policy defines
the actions to be performed based on the full sequence of events,
while rule installation depends only on the packets that arrive to
the controller, correctness is in fact divided to the following two
conditions: (1) every packet is forwarded to the right ports (either
by the installed rules or by the controller), and (2) packets are sent
to the controller whenever necessary.

To formalize (2) we define a notion of relevance. We call an
event relevant if it may affect the future behavior of the system.
Thus the second condition for correctness requires that all relevant
events must be forwarded to the controller.

Learning switch forwarding rules Table 1 contains several rule
installation policies for the learning switch example. Each of them
specifies a set of switch forwarding rules for any history H . In the
rules, e denotes the current event (arriving packet). Notice that H
does not appear in the rules themselves, as the switches cannot
access the history.

1 For simplicity, we assume that the switches send a packet to the controller
iff the installed forwarding rules do not determine any local action for the
packet. Our techniques can also deal with rules that explicitly send some
events to the controller.



Rule Installation Policy
trivial none

LS1
for any e1 ∈ H :
forward(e1.in) ← e.sw = e1.sw , e.dst = e1.src

LS2
for any e1, e2 ∈ H :
forward(e2.in) ← e.sw = e1.sw = e2.sw , e.src = e1.src, e.dst = e2.src

LS3
for any e1 ∈ H such that ∀e′ ∈ H. (e′.sw = e1.sw ∧ e′ > e1 =⇒ e′.src 6= e1.src) and

e2 ∈ H such that ∀e′ ∈ H. (e′.sw = e2.sw ∧ e′ > e2 =⇒ e′.src 6= e2.src)
:

forward(e2.in) ← e.sw = e1.sw = e2.sw , e.src = e1.src, e.dst = e2.src, e.in = e1.in

Table 1. Sample rule installation policies for the learning switch in terms of current events and histories, e,H respectively. e1 > e2 means
that e1 occurred later than e2 in H .

Figure 1. A sample topology for a learning switch s with three
ports 1, 2, and 3.

The trivial rule installation policy does not install any rules and
thus is correct, but it is far from optimal, as all events are handled by
the centralized controller. The LS1 policy installs a rule to forward
an event e to port p if the history includes an event that arrived to
the same switch as e on the port p and its source is the destination
of e. While this policy seems natural, it is incorrect since it installs
rules “too early”. Figure 1 shows a sample topology (with a single
switch s and two hosts A and B) and Table 2 presents a scenario
where following LS1 results in incorrect behaviour. The first event
is a packet from A to B that occurred in the switch s and arrived
on port 1. Since the switch initially has no rules, this packet is sent
to the controller which floods it, and also installs a forwarding rule
(according to LS1) to forward all packets arriving in switch s whose
destination is A to port 1. This appears to be a correct forwarding.
As a result of this rule, the next event of a packet from B to A is
(correctly) forwarded to port 1 by the switch, but it is not sent to the
centralized controller. Hence, the controller does not learn that B is
connected to port 2. Consequently, the third event (another packet
from A to B) is flooded, while it should have been forwarded only
to output port 2.

The LS2 installation policy avoids the bug of premature rule
installations, as it installs rules matching packets for which both the
source and the destination locations have already been learned. LS2

is implemented in most SDN systems. It installs a rule to forward e
to port p if the history includes: (1) an event that arrived on switch s
in input port p and its source is the destination of e; and (2) another
event that arrived on s with the same source as e. This is a more
modest installation policy which installs rules “per-flow”. However,
it cannot cope with host migration. Table 3 demonstrates an incorrect
behaviour that happens when host A relocates from port 1 to port 3.
Indeed, after the second event, when both the locations of hosts A
and B were learned, the switch will locally handle packets between
A and B. The third event, a packet from A to B that arrived on
port 3 after A migrated, is handled locally and is not sent to the
controller. Accordingly, the controller is not aware of A’s migration.
This, again, results in an incorrect behaviour, as the fourth event
from B to A is forwarded to port 1, while A informed its new
location in port 3.

LS3 is a correct rule installation policy with correct handling of
host migration. It installs a rule to forward e to port p: if (1) the last

event in the history at switch s whose source is the destination of
e arrived in input port p; (2) the last event in the history at switch
s whose source is the source of e arrived in the same input port as
e. Thus, it only installs rules for handling packets that come from
the last known location of some host. Table 4 demonstrates how
LS3 properly handles the scenario presented in Table 3. After the
second event, the rules installed match only events coming on the
known locations of A and B. Consequently, the third event (after A
migrates), is handled by the controller, and thus the controller learns
that A migrated. As a result, the controller replaces the previously
installed forwarding rules with two new rules, and the forth event is
handled correctly by the switch.

The example of the learning switch with migration shows that
deriving a correct rule installation policy for a given forwarding
policy is challenging even for simple and well-studied examples.

2.4 Optimality of forwarding rule installation
With correctness being the first criterion, our goal is to also ensure
that the forwarding rules installed on the switches allow the switches
to handle as many events as possible locally. Such a forwarding
rule installation policy is called optimal. The trivial installation is
suboptimal, whereas LS3 is optimal.

We show that having the installed rules handle all irrelevant
events is both necessary and sufficient condition for optimality.

2.5 Our approach
Our approach for inferring optimal rule installation consists of a
“static” part, which takes place at compile time, and a “dynamic”
part which operates at runtime. The static part derives from the given
policy a description of the optimal rule installation policy which
determines for each history the rules that should be installed (for
the learning switch example, this corresponds to obtaining LS3, see
Table 1). The runtime component is executed by the controller
whenever an event is forwarded to it, and it is responsible for
computing the updated rules to be installed on the switches by
applying the rule installation policy on the current history of events.
We consider the history of events received by the controller as its
state.

2.5.1 Inferring rule installation policies
In general inferring correct forwarding rule installation is undecid-
able (see Section 6.4). In this paper we define a restricted variant
of first-order logic, called L1, which is powerful enough to cap-
ture many useful forwarding policies, and is amenable to automatic
synthesis of optimal rule installation policies. We then describe an
algorithm for synthesizing an optimal rule installation policy for any
given forwarding policy expressed in our logic. For example, for the
learning switch, it infers LS3.

Applying our procedure to the Firewall example from [8] actually
improves its implementation by proactively installing more rules, as
demonstrated in Section 7.4.



event action rule-updates
〈s, 1, A→B〉 flood install:

[
forward(1) ← e.sw = s, e.dst = A

〈s, 2, A→B〉 forward(1)
〈s, 1, A→B〉 flood

Table 2. A scenario which reveals a bug in the forwarding rule installation policy LS1. Controller actions are underlined.

event action rule-updates
〈s, 1, A→B〉 flood

〈s, 2, B→A〉 forward(1) install:
[

forward(2) ← e.sw = s, e.src = A, e.dst = B
forward(1) ← e.sw = s, e.src = B, e.dst = A

A migrates from 1 to 3
〈s, 3, A→B〉 forward(2)
〈s, 2, B→A〉 forward(1)

Table 3. A scenario which reveals a bug in the the forwarding rule installation policy LS2. Controller actions are underlined.

event action rule-updates
〈s, 1, A→B〉 flood

〈s, 2, B→A〉 forward(1) install:
[

forward(2) ← e.sw = s, e.src = A, e.dst = B, e.in = 1
forward(1) ← e.sw = s, e.src = B, e.dst = A, e.in = 2

A migrates from 1 to 3

〈s, 3, A→B〉 forward(2)

remove the previous two rules

install:
[

forward(2) ← e.sw = s, e.src = A, e.dst = B, e.in = 3
forward(3) ← e.sw = s, e.src = B, e.dst = A, e.in = 2

〈s, 2, B→A〉 forward(3)

Table 4. A scenario demonstrating the correct forwarding rule installation policy LS3. Controller actions are underlined.

Formulation of correctness and optimality in first-order logic
The correctness and optimality conditions of installation policies
refer to irrelevant events, where irrelevance of events is examined
with respect to unbounded future sequences of events, which nat-
urally requires second-order quantifiers. Nevertheless, we identify
a “bounded causality” property of policies and show that for poli-
cies admitting this property the condition for an event being irrele-
vant can be equivalently specified in first-order logic. The bounded
causality property states that there is a (computable) bound k, such
that if an event affects the behaviour for some sequence of future
events, then it will also affect the behaviour for some sequence of k
future events. This allows us to construct first-order definitions of
an optimal (correct) installation policy.

Specification of policies We specify policies by formulas in L1,
which are interpreted with respect to a history and a “current”
event. L1 allows any Boolean combination of components, where
components are existentially quantified formulas, in which all
(existential) quantifiers are guarded: they either refer to the existence
of an event in the history (denoted by ∃ȳ ∈ H, where H is a special
symbol and ȳ is an event variable), or they refer to the last event
in the history that has some property ψ (denoted by ∃ȳ = Lastψ ,
where ȳ is an event variable and ψ is a formula).

For example, the policy for the learning switch that supports
migrations of hosts is specified in L1 by the collection of formulas
ϕp, one for each port p, that define when to forward to p:

ϕpls = ∃ȳ = Last(x̄.sw≈ȳ.sw)∧(x̄.dst≈ȳ.src). (ȳ.in ≈ p)

In addition, the formula that defines when to perform flood is given
by:

ϕflood
ls =

∧
p∈Ports

¬ϕp

If instead of ϕp above one takes

ϕpls = ∃ȳ ∈ H. (x̄.sw ≈ ȳ.sw) ∧ (x̄.dst ≈ ȳ.src) ∧ (ȳ.in ≈ p),

this results in a policy that forwards each packet to all ports in which
the destination of the packet was seen before.

Our design of L1 was guided by common SDN applications,
as well as by the ability to obtain the bounded causality property:
L1-policies have this property. L1 allows us to express restricted
temporal properties, using the “last” quantifiers (or similar variants,
see Section 6.2, Remark 4). A possible extension is to also explicitly
refer to order on events. We did not augment this into L1 since it
complicates the presentation of our approach.

On the other hand, L1 formulas cannot express policies that in-
volve counting events in the history or require arithmetic operations
such as advanced load balancing (we can, however, handle simple
load balancing based on fixed IP distributions). Another source of
limitation is the restriction to Boolean combinations of alternation-
free quantified formulas. If we allow alternation of quantifiers, the
bounded causality property breaks (see Section 7.1).

Static computation of rule installation policy For a policy ex-
pressed in L1 which enjoys the bounded causality property, we are
able to specify the optimal rule installation policy in first-order logic
(extended with guarded quantifiers). For example, for a learning
switch with migration, for each port p, we obtain the following
formula:

ϕp = ϕpls ∧ ∃ȳ = Last(x̄.sw≈ȳ.sw)∧(x̄.src≈ȳ.src). (ȳ.in ≈ x̄.in)

Note that when the rule installation policy refers to the history
of events via guarded quantifiers, it refers to the filtered history that
only consists of events that were sent to the controller, as opposed
to the forwarding policy that refers to the full history.



2.5.2 Runtime rule installation
After generating the first-order formulas that express the optimal
installation policy, it remains to show that given a concrete history of
events that arrived to the controller, the controller can dynamically
compute the rules that need to be installed on the switches based on
the installation policy (where the installed rules do not refer to the
history of events).

For this purpose, we first remove the guarded quantifiers (that
still exist in the definition of the installation policy) by using the
actual history at hand. Next we remove the unguarded quantifiers
using a quantifier elimination process. The result is a set of quantifier-
free formulas describing the forwarding rules to be installed.

3. Terminology
SDN is a particular form of a distributed event-driven system, com-
posed of a collection of decentralized components and a single
centralized controller. The decentralized components are config-
urable switches, and the centralized controller is the OPENFLOW
network controller. Events are packet-receive events occurring in
the switches.

Next, we precisely formulate the notions involved in defining the
decentralization problem.

Events. Q is a finite set of event attributes. Each attribute q ∈ Q
is associated with a (possibly, infinite) set of values Eq . Events are
records with one field for each event attribute. We will denote by E
the set of all events.

In the context of SDN, events are packet-receive events (packets
that arrive at a switch and may or may not be forwarded to the cen-
tralized controller). The event attributesQ include sw , in, src, dst ,
where sw is the switch receiving the packet; in is the port through
which the packet is received (Ein = Ports is a finite set of ports);
src is the source field in the packet header; and dst is the destination
field in the packet header. If needed, other fields may be included in
Q (e.g. time stamp, logical port, VLAN information etc.).

Histories. A history is a finite sequence of events from E . In
particular, an event e is considered a history of length one. H1 ·H2

denotes the concatenation of sequences H1 and H2. We write
H1 � H2 to mean that H1 is a subsequence of H2.H is the set of
all histories. The size |H| of a history is the number of elements it
contains, |e1 · . . . · en| = n.

Actions. A is a finite nonempty set of actions. In SDN-related
examples in this paper, the set of actions is A = Ports ∪
{drop, flood}, where an action p ∈ Ports represents forwarding
a given packet to port p, the action flood represents “flooding” the
packet, i.e. forwarding it to all ports except for the port in which
it was received, and the action drop means dropping the packet
without forwarding it.

Policies. A policy is a function from H to E → P+(A), the
set of non-empty subsets of A. A policy defines the behaviour
of the system, where its input is the sequence of events (history)
that occurred so far. Given a history H and a “current” event e1,
F (H)(e1) determines the (nonempty) set of actions that should be
performed in reaction to e1. When the next event e2 occurs, the
considered history also includes e1, meaning that the reaction to e2

will be each action in F (H · e1)(e2).
Here are some examples of policies for SDN:

Hub (flooding switch) Flood all arriving packets (i.e., on all
switches forward each packet to all ports except for its input
port).

Firewall Forward to port 2 all packets arriving on port 1; forward
to port 1 a packet arriving on port 2 from source s if the history

includes an incoming event on port 1 whose destination is s. In
this scenario, we assume that ports 1 and 2 are the only ports of
any switch in the network, where trusted hosts are all connected
through port 1, and untrusted hosts are connected through port
2.

Learning switch (w/o migration) For a packet arriving in switch
s with destination d, forward it to port p if the history includes a
packet that arrived in s on the input port p and its source was d
(the port p must be unique since there is no migration of hosts).
If no such packet exsits in the history, flood the arriving packet.

Learning switch with migration For a packet arriving in switch s
with destination d, forward it to port p if the history includes a
packet that arrived in s from source d and the most recent such
packet has input port p. If no such packet exists in the history,
flood the arriving packet.

Authorization Server There is a designated host ha serving as
an authorization server, which sends special authorization
and deauthorization packets to the controller. Communication
is allowed only between authorized hosts. A host becomes
authorized when the controller receives an authorization packet
authorizing the host, and may become deauthorized if the
controller receives a deauthorization packet for that host.

It is also possible to compose several of the aforementioned
policies by applying different policies in each switch.

Note that any computable policy, F , may be implemented via a
centralized controller that keeps track of the entire history: whenever
an event e occurs corresponding to switch s receiving packet p, s
informs the controller about e. The controller then instructs s to
perform the actions F (H)(e) and adds e to its log, H ′ := H · e.

However, sending all events to a centralized controller creates
a bottleneck and makes the system not scalable. A scalable system
requires that many events will be handled locally by stateless de-
centralized components, implementing the policy in a decentralized
and scalable way.

Event Handlers. To formalize the concept of locally handling
events by the decentralized components, we introduce event han-
dlers. An event handler is a partial function from E to P+(A),
which returns a set of actions to perform for the events for which it
is defined. At any point in time, the behaviour of the decentralized
components is defined by an event handler R. The domain of R
is the set of events that are locally processed by the decentralized
components without informing the controller. Whenever an event
e occurs in some decentralized component, if R(e) is defined then
each action in R(e) is performed locally. If R(e) is not defined,
then the decentralized component informs the controller and awaits
further instructions. BelowR denotes the set of all event handlers.

In the context of SDN, event handlers correspond to sets of for-
warding rules, e.g., “drop all packets arriving into port 1, and flood
all packets arriving into port 2 with source field 192.168.1.123”.
The empty event handler corresponds to the empty set of forwarding
rules. Note that the controller also implements a (total) event handler
at each point in time.
Remark 1. We view the set of switches as one abstract unit that
implements a single, joint, event handler. In practice, the joint event
handler is divided between the individual switches by taking into
account the sw attribute of the events.

Event handler generators. An event handler generator is a func-
tion fromH toR (it assigns event handlers to histories).

In the context of SDN, event handler generators correspond
to forwarding rule installation policies. Whenever the controller
processes a packet-receive event (sent to it by some switch), it also
computes a new event handler and installs it on the switches. Note



that if there are different types of switches, then a given switch only
needs the forwarding rules pertaining to its type. In practice, only
relevant changes to the set of forwarding rules must be sent to each
switch.

Let I be an event handler generator. The I-history, CI(H), for a
history H is defined inductively: CI(ε) = ε, and

CI(H · e) =

{
CI(H) · e if I(CI(H))(e) is not defined
CI(H) otherwise

For a sequence of events H = e1 · · · en, CI(H) is the subse-
quence consisting of those events that are forwarded to the controller,
i.e., not handled locally. Thus, CI(H) is the log that is saved in the
controller. Since CI strips out exactly those events that are handled
locally and thus not forwarded to the controller, we have,

Lemma 1. For any event handler generator I , CI is idempotent,
i.e., for every history H , CI(CI(H)) = CI(H).

Proof. By induction on H .

Definition 1. Given an event handler generator I , we say that a
history H is I-reachable if H = CI(H ′) for some history H ′.

Namely, H is I-reachable if there is a sequence of events for
which H is the corresponding log. By Lemma 1 we have that H is
I-reachable iff H = CI(H).

Combined policies. Let F be a policy and I an event handler
generator. To see how well F and I play together, we define the
combined policy of F with respect to I , FI : H → E → P+(A) as
follows:

FI(H)(e) =

{
I(CI(H))(e) if I(CI(H))(e) is defined
F (CI(H))(e) otherwise.

Thus FI is the policy that decentralizes according to I and defers
to F when I is not defined.

4. The Decentralization Problem
In this section we precisely define the decentralization problem.

Definition 2 (Decentralization). An event handler generator I
decentralizes a policy F if FI = F .

Definition 3 (Optimality). An event handler generator I that decen-
tralizes a policy F is optimal if for every history H and every event
handler generator I ′ that decentralizes F , CI(H) � CI′(H).

Let I be a decentralizer of F . I is optimal if it sends to the
controller exactly those events that every decentralizer of F sends
to the controller, i.e., it only sends those events that it must send.

In the decentralization problem we are given a policy F and
the goal is to produce an optimal event handler generator I that
decentralizes F . In addition to the challenge of decentralization,
another challenge stems from the fact that the event handlers
generated by I should be implemented in some restricted language
that is amenable for installation on the decentralized components.
More formally, suppose we have some restricted programming
language T such that programs of this language can run on the
decentralized components. This language is used to implement event
handlers, i.e. partial functions from E to 2A.
Remark 2. In this paper we assume that the rules supported by
the decentralized components are Boolean conditions on event
attributes. Each rule defines a Boolean condition (involving event
attributes and perhaps some constants) and an action that should
be performed if the condition is satisfied by the current packet-
receive event. In the context of SDN, the decentralized components
are the switches, which support forwarding rules according to the

OPENFLOW standard [2]. The translation of Boolean conditions of
this kind to OPENFLOW rules was addressed in [13] in the context
of the NetCore network programming language.

An event handler generator I is called T -suitable if there is an
algorithm that given a history H , produces a T -description of I(H).

Definition 4. The Decentralization Problem of a policy F relative
to T is given by:

Input. A specification of a computable policy F .
Output. A T -suitable event handler generator I that decentralizes

F and is optimal.

Note that without the optimality requirement, this problem has a
trivial solution: let I∅ be the event handler generator that always
returns the empty event handler. For this generator, we obviously
have FI∅ = F .

In general, the problem of decentralization is undecidable (for
example, if F is defined in some Turing-complete formalism,
or using full first-order logic, as shown in Section 6.4). In the
sequel, we will identify a useful family of policies for which the
decentralization problem can be solved automatically.

5. Characterization of Decentralization and
Optimality

In this section, we provide necessary and sufficient conditions for
decentralization and optimality. The results presented in this section
were verified by means of the proof assistant COQ [17]2.

5.1 Decentralization
We show that an event handler generator I decentralizes F if and
only if I agrees with F and does not hide any events relevant to the
behaviour of the system.

Definition 5 (Compatibility). An event handler generator I is
compatible with a policy F if for every event e and I-reachable
history H , I(H)(e) = F (H)(e) whenever I(H)(e) is defined.

Intuitively, I is compatible with F if the event handlers generated
by I always perform exactly the actions defined by the policy F .

Definition 6 (Transparency). An event handler generator I is
transparent with respect to a policy F if F (CI(H)) = F (H) holds
for every history H .

Recall that CI(H) is the subsequence of H that is sent to the
controller when using I . Thus, events in CI(H) are those events that
the centralized controller “sees”, and the only ones that can affect
its behaviour. In general, this filtering of events can compromise the
correctness of the whole system. An event handler generator I is
transparent with respect to a policy F exactly if this filter does not
break the policy F .

The following theorem gives a useful characterization of when
an event handler generator decentralizes a policy (Def. 2).

Theorem 1. An event handler generator I decentralizes a policy
F iff it is both compatible and transparent with respect to F .

We now obtain an equivalent definition for transparency, using
the notion of an irrelevant event:

Definition 7. An event e is irrelevant with respect to a policy F
and a history H if F (H · e ·H ′) = F (H ·H ′) for every history
H ′.

2 The COQ scripts are available at https://github.com/karbyshev/
decentralize

https://github.com/karbyshev/decentralize
https://github.com/karbyshev/decentralize


Theorem 2. I is transparent with respect to F iff for every I-
reachable history H , I(H) is only defined for events that are
irrelevant with respect to F and H .

From the inductive proof of the previous theorem, we get the
following as a corollary.

Corollary 1. I is transparent with respect to F iff for all histories
H and H ′, F (H ·H ′) = F (CI(H) ·H ′).

5.2 Optimality
We call an event handler generator proactive for a policy F if it is
defined on all possible events:

Definition 8 (Proactiveness). An event handler generator I is
proactive with respect to a policy F if for every I-reachable history
H , I(H) is defined for all events that are irrelevant with respect to
F and H .

Theorem 3. An event handler generator I that decentralizes a
policy F is optimal iff it is proactive with respect to F .

5.3 Optimal decentralizing event handler generator
Combining Theorems 1 and 3, we obtain that an event handler gen-
erator I optimally decentralizes F iff it is compatible, transparent,
and proactive with respect to F . For any policy F , we define the
event handler generator Iopt

F that decentralizes F and is optimal with
respect to F as follows:

Definition 9. Given a policy F , the event handler generator Iopt
F is

defined by:

Iopt
F (H)(e) =

{
F (H)(e) e is irrelevant w.r.t. H,F
undefined otherwise

Obviously, Iopt
F is compatible with F and proactive with respect

to F . Its transparency follows directly from Theorem 2. Therefore,
Iopt
F optimally decentralizes F . However, note that even when F is

computable, Iopt
F may not be computable, since irrelevance is defined

in terms of all possible histories H ′. In the following section we
show that for a useful family of policies, the above definition can be
used to automatically produce an optimal event handler generator.

6. First-Order Specifications of Policies
In this section we introduce a formalism for describing policies via
a fragment of first-order logic. This fragment is expressive enough
for a variety of useful and interesting policies in the context of SDN.
In the next section we provide a solution to the decentralization
problem for policies specified in this fragment, i.e., an algorithm
that synthesizes an optimal suitable event handler generator for a
given policy.

6.1 The language L
Syntax. We use an extension of many-sorted first-order language,
that we call L, as the basis for our specification languages:

• L’s sorts are the attributes inQ.
• Equality, denoted by ≈, is the only predicate symbol.
• L includes a constant symbol for any element d ∈

⋃
q∈Q Eq (we

will use the elements themselves as constant symbols).
• L employs ordinary connectives and quantifiers as in first-order

logic.
• To succinctly represent events, L allows “event variables”,

“event constants” and “selector functions” as syntactic sugar. For
example, assuming that Q = {sw , in, src, dst} and 1 ∈ Esrc ,
the expression ∀ȳ. (1 ≈ ȳ.src) ∧ (2 6≈ ȳ.dst) is a shorthand

for the L-formula ∀v1 : sw , v2 : in, v3 : src, v4 : dst . (1 ≈
v3) ∧ (2 6≈ v4) (to have shorter formulas, one can equivalently
take ∀v1 :src, v2 :dst . (1 ≈ v1) ∧ (2 6≈ v2) in this case).
• L has a designated free event variable, x̄, which we will use to

refer to the current event.
• L has two additional kinds of quantifiers:

History-guarded existential quantifiers of the form ∃ȳ ∈ H,
where H is a special symbol and ȳ is an event variable.

Last-quantifiers of the form ∃ȳ = Lastψ where ȳ is an event
variable and ψ is a quantifier-free formula whose only free
variables are ȳ and possibly the designated variable x̄.

Semantics. Define the many-sorted logical structure M =
M(Q, Eq : q ∈ Q) as follows:

• M has a domain Eq for each sort q ∈ Q.
• ≈ is interpreted as equality.
• Each constant symbol d is interpreted as the element d ∈ Eq .

The modelM and a given event e naturally induce a satisfaction
relation for quantifier-free L-formulas ϕ with x̄ as their only free
variable. SinceM is usually fixed, we write e |= ϕ to mean thatM
is a model (in the usual sense) of ϕ{e/x̄}.

The semantics of L extends usual first-order semantics. It is
defined with respect to the modelM, and a given history H and
event e. Since M is usually fixed, we write H, e |= ϕ to mean
M, H, e |= ϕ, defined inductively as follows:

• If ϕ is a quantifier-free formula with x̄ as its only free variable,
then H, e |= ϕ iff e |= ϕ.
• The propositional connectives are interpreted as usual.
• H, e |= ∀v : q. θ if H, e |= θ{d/v} for every d ∈ Eq .
• H, e |= ∃v : q. θ if H, e |= θ{d/v} for some d ∈ Eq .
• H, e |= ∃ȳ ∈ H. θ if there is some e′ in H for which
H, e |= θ{e′/ȳ}.
• H, e |= ∃ȳ = Lastψ. θ if H, e |= θ{e′/ȳ} where e′ is the last

event in H for which e |= ψ{e′/ȳ}. If no such event e′ exists
then H, e 6|= ∃ȳ = Lastψ. θ.

L-specification of event handler generators. Recall that the set
of event handlers,R, is the set of partial functions from E to P+(A)
and an event handler generator is a function from H to R. Let
I : H → R be an event handler generator. Let Φ = {ϕa | a ∈ A}
be a set of L-formulas, where each ϕa includes the variable x̄ as its
only free variable. We say that Φ defines I , if for every history H
and event e:

• I(H)(e) = {a ∈ A | H, e |= ϕa} 6= ∅ whenever I(H)(e) is
defined.
• {a ∈ A | H, e |= ϕa} = ∅ whenever I(H)(e) is not defined.

6.2 Specifications of policies
Policies are functions from H to E → P+(A). As with event
handler generators, we specify a policy via a set of formulas
Φ = {ϕa | a ∈ A}. Since policies define total event handlers,
it must be the case that for all histories H and events e, {a ∈ A |
H, e |= ϕa} 6= ∅.

We will define policies in a restriction L1 of L which we now
define. First define a component to be a prenex formula of L that
has only history-guarded and last-quantifiers:

∃ȳ1 = Lastψ1 . . .∃ȳm = Lastψm∃z̄1 ∈ H . . .∃z̄r ∈ H. θ
where θ is quantifier-free. The language L1 consists of all Boolean
combinations of components.



Notation 1. For an L1-formula ϕ, we denote by kLast(ϕ) the
number of occurrences of last-quantifiers in ϕ, and by k∃(ϕ) the
number of occurrences of guarded existential quantifiers in ϕ. We
also define kϕ = kLast(ϕ) + k∃(ϕ).

An L1-policy is a policy defined by a set of L1-formulas. The
following property of L1-formulas will be crucial for our main
results. Among other things, it will allow us to automatically check
that a set Φ = {ϕa | a ∈ A} ⊆ L1 indeed defines a policy, FΦ,
i.e., that for all histories H , FΦ(H) is total. We first introduce the
following definition.

Definition 10. Letϕ be anL1-formula, e an event, andH = e1·. . .·
en a history. The kernel of H w.r.t. ϕ and e, denoted kernelϕ,e(H),
is defined to be a minimal set of indices ⊆ {1, . . . , n} such that for
every component α of ϕ of the form

∃ȳ1 = Lastψ1 . . .∃ȳm = Lastψm∃z̄1 ∈ H . . .∃z̄r ∈ H. θ :

• for every 1 ≤ j ≤ m, kernelϕ,e(H) contains the maximal index
iLastj such that e |= ψj{eiLastj

/ȳj}, if such an index exists (eiLastj

is the last event in H that satisfies the above), and
• ifH, e |= α then kernelϕ,e(H) includes some indices i∃1 , . . . , i∃r

s.t. e |= θ{eiLast1
/ȳ1} . . . {eiLastm

/ȳm}{ei∃1 /z̄1} . . . {ei∃r /z̄r}.

Note that the size of kernelϕ,e(H) is at most kϕ. Intuitively,
kernelϕ,e(H) includes the indices of all events from H that de-
termine whether H, e |= ϕ. Therefore:

Theorem 4. Let ϕ be an L1-formula. Then for every history H =
e1 ·. . .·en and event e, and for every subsequenceH1 = ej1 ·. . .·ej`
of H such that kernelϕ,e(H) ⊆ {j1, . . . , j`}, we have H1, e |= ϕ
iff H, e |= ϕ.

Proof. Let H = e1 · . . . · en be some history and e some event. Let
H1 = ej1 ·. . .·ej` be a subsequence ofH such that kernelϕ,e(H) ⊆
{j1, . . . , j`}. We claim that for every component α of ϕ we have:
H, e |= α iff H1, e |= α. Indeed, consider some component
α = ∃ȳ1 = Lastψ1 . . .∃ȳm = Lastψm .∃z̄1 ∈ H . . .∃z̄r ∈ H. θ
of ϕ. A crucial observation is that for 1 ≤ j ≤ m, any event
e′ that is the last event in H that satisfies e |= ψj{e′/ȳ} is also
the last event in H1 that satisfies this property. Furthermore, there
is no event e′ in H that satisfies e |= ψj{e′/ȳ} iff there is no
such event in H1. Suppose that H, e |= α. Then H1, e |= α by
definition of kernelϕ,e(H) (and due to the fact that any last event
in H satisfying ψ remains a last event in H1). For the converse,
suppose that H1, e |= α. Then since all last elements of H1 are
maintained in H , and since H1 � H which ensures that the events
satisfying the history guarded quantifiers are also maintained, we
get that H, e |= α.

Remark 3. In Theorem 4 we use the set kernelϕ,e(H) of indices to
define a subsequence H0 of e1 · . . . · en and we require inclusion
of kernelϕ,e(H) in the set of indices defining the subsequence
H1 = ej1 · . . . · ej` rather than requiring that H0 � H1. The
reason for that is that e1 · . . . · en may contain duplicates of the
same event. For an event that appears more than once we must make
sure to keep in H1 the correct occurrence (index) of the event to
preserve the last elements. Therefore, it is not enough to require that
H0 � H1 � H . For example, suppose that ϕ = ∃ȳ = Lastψ.θ and
letH = e1e2e1, where e1 and e2 both satisfy ψ but only e1 satisfies
θ. Then in this case H, e |= ϕ and kernelϕ,e(H) = {3}, consisting
of the index of the last element satisfying ψ. If we just consider
the corresponding subsequence H0 = e1, then for H1 = e1e2 we
cannot guarantee H1, e |= ϕ iff H, e |= ϕ, even though H0 � H1.
This is because we kept in H1 the first occurrence of e1 where
in fact we needed the second occurrence, thus changing the last
element. When considering the sets of indices we see that indeed
{3} 6⊆ {1, 2}.

Using Theorem 4 and the property that |kernelϕ,e(H)| ≤ kϕ,
we can check if Φ = {ϕa | a ∈ A} ⊆ L1 defines a policy. We
need to check that for all histories and events, at least one of the
L1-formulas in {ϕa | a ∈ A} holds. This amounts to checking that
the L1-formula

∨
a∈A ϕ

a is valid. Theorem 4 ensures that for the
validity (or satisfiability) of an L1-formula ϕ it suffices to consider
only histories that include up to kϕ events. Furthermore, if we want
to check that some set S of actions should never take place together
(e.g. {flood, drop}), we can verify that the policy admits these
restrictions by checking that the formula

∧
a∈S ϕ

a is unsatisfiable.
Remark 4. The last quantifiers allow us to select some (occurrences
of) events from a history and refer to their properties. One can
extend L1 to include additional selectors, such as “last k”, “first k”
etc., as long as they select a fixed number of (occurrences of) events
from the history, and in addition have the property that applying
the selection on a subsequence of the history that includes all the
selected indices will result in the same selection. These properties
ensure that Theorem 4 still holds, when Definition 10 (kernel) is
adapted accordingly.

6.2.1 L1-specifications of SDN policies.
Now, we give L1 specifications for the example policies from Sec-
tion 3. Recall that in the context of SDN,Q = {sw , in, src, dst},
and the set of actions is A = Ports ∪ {flood, drop}, where
Ports = Ein is a finite set of ports present in each switch. In the
following, we use p to denote a port in Ports, and the formulas for
the actions that are not specified are assumed to be ⊥.

Hub (flooding switch). The policy for the hub is specified by:

ϕflood
hub = >

Firewall The policy for the firewall is specified by:

ϕ1
fw = (x̄.in ≈ 2) ∧ ∃ȳ ∈ H.(ȳ.in ≈ 1) ∧ (ȳ.dst ≈ x̄.src)

ϕ2
fw = (x̄.in ≈ 1)

ϕdrop
fw = ¬ϕ1

fw ∧ ¬ϕ2
fw

Learning switch The policy for the learning switch is specified
by:

ϕpls = ∃ȳ ∈ H. (x̄.sw ≈ ȳ.sw) ∧ (x̄.dst ≈ ȳ.src) ∧ (ȳ.in ≈ p)

ϕflood
ls =

∧
p∈Ports

¬ϕpls

Learning switch with migrations The policy for the learning
switch that supports migrations of hosts is specified by:

ϕplsm = ∃ȳ = Last(x̄.sw≈ȳ.sw)∧(x̄.dst≈ȳ.src). (ȳ.in ≈ p)

ϕflood
lsm =

∧
p∈Ports

¬ϕplsm

Authorization server To model the scenario, we introduce an at-
tribute type inQ, along with two constants A and D meaning that
the sent message is an authorization or deauthorization massage, re-
spectively. We assume that the authorization server connects directly
to the switch, so we can model the authorization (deauthorization)
of host h by a packet whose source is ha, its destination is h, and
its type is A (D).

The policy for the switch connected to an authorization server is
specified by:

ϕflood
auth = x̄.src 6≈ ha ∧ x̄.dst 6≈ ha =⇒

(∃ȳ = Lastψ(x̄.src). ȳ.type = A)∧
(∃ȳ = Lastψ(x̄.dst). ȳ.type = A)

ϕdrop
auth = ¬ϕflood

auth

where ψ(h) = ȳ.src = ha ∧ ȳ.dst = h.



6.3 Specification of event handlers
We finally complete the description of the specification language
by choosing the programming language T for the decentralized
components to be the quantifier-free fragment of L. The rationale is
that this is convenient for us and even very primitive components,
such as switches in the context of SDN, can run this T . More
precisely, T is the fragment L0 of L consisting of quantifier-free L-
formulas whose only free variable is x̄. A collection {ϕaR | a ∈ A}
of such formulas defines an event handler R if the following hold
for every event e:

• R(e) = {a ∈ A | e |= ϕaR} 6= ∅ whenever R(e) is defined.
• {a ∈ A | e |= ϕaR} = ∅ whenever R(e) is not defined.

For example, the event handler R which drops all packets
arriving in port 1, and is undefined for all other events, is specified
in L0 as ϕdrop

R = (x̄.in ≈ 1), and ϕaR = ⊥ for all other actions a.

6.4 Undecidability of decentralization of L-policies
If we allow to define policies using formulas in the unrestricted
language L instead of L1, the decentralization problem becomes
undecidable. To prove this, we show that the finite satisfiability
problem for first-order logic with a single binary predicate can
be reduced to the problem of (optimally) decentralizing a policy
expressed using L-formulas. Let ψ be a formula in (unsorted) first-
order logic with one binary predicate B. We transform ψ into an
L-formula by simulating every pair of elements satisfying B by an
event in the history. Technically, let ψ′ be the formula obtained from
ψ by replacing any occurrence of the binary predicate B(u,w) by
the formula (∃ȳ ∈ H.(ȳ.src ≈ u) ∧ (ȳ.dst ≈ w)). In addition,
all the original variables (and quantifiers) in ψ which are unsorted,
become sorted with sort “host”. Finally, all free variables in ψ are
existentially quantified in ψ′. ψ′ is an L-formula (note that it has no
free variable), and it can be used to define the following policy F :
ϕflood = ψ′, ϕdrop = ¬ψ′.

We now claim that ψ has no finite model iff Iopt
F (ε) = Rdrop such

that Rdrop(e) = drop for every event e, where Iopt
F is the optimal

event handler generator for F .
The construction of ψ′ ensures that ψ has no finite model iff

there is no finite history that satisfies ψ′. In addition, if there is no
finite history that satisfies ψ′, then the policy simply instructs to
always drop all events. This means that Iopt

F (ε) = Rdrop. For the
converse, assume that Iopt

F (ε) = Rdrop. Then by induction, for every
history H , CIopt

F
(H) = ε and hence FIopt

F
(H) = Iopt

F (CIopt
F

(H)) =

Iopt
F (ε) = Rdrop, meaning all events are always dropped, and by

the assumption that Iopt
F is correct with respect to F , we get that

F (H) = Rdrop for any H , hence no (finite) history satisfies ψ′.

7. Our Solution
In this section, we introduce a method for synthesizing programs
that implement optimal event handler generators for given L1-
policies. We start by showing that for any given set of L1-formulas
that defines the policy F , one can automatically derive a set of
L-formulas that defines the optimal decentralizing event handler
generator Iopt

F (see Definition 9).
Then, we will show that any event handler generator I that is

defined by a set of L-formulas is L0-suitable. That is, we present an
algorithm (see Section 7.3) that given I and a history H , produces
an L0-description of I(H).

Using these ingredients we obtain an implementation of a
controller in the context of SDN, as described in Algorithm 2. The
controller is parametrized by the policy F , and by Iopt

F , which is
expressed in L and precomputed from F by the method described
in Section 7.2. The controller accumulates the sequence H of events

Algorithm 2 Runtime System 〈F, Iopt
F 〉

H := ε
while new packet-receive event e do

action := F (H, e) # compute an action
H := H · e # update state
rules := I

opt
F (H) # compute rules (Section 7.3)

configure switches(rules)
send to switches(action)

end while

it receives as its state. For a new event, it computes the action to be
performed by evaluating the L1-formulas defining the policy on the
current history. It then infers rules by applying the algorithm from
Section 7.3 to compute Iopt

F (H).

7.1 Bounded causality
For a general policy F , Iopt

F may not be computable. This is due to
the fact that the relevance of an event may depend on the behavior
of the policy for infinitely many possible future sequences of events
(see Definition 7). However, we now show that for L1-definable
policies, we can bound the size of future sequences of events that
must be considered.

Definition 11. For an integer k, an event e is k-relevant with respect
to policy F and history H if there exists a history H ′ of size at most
k that distinguishes whether e occurred, i.e., F (H · e · H ′) 6=
F (H ·H ′).

Definition 12 (k-bounded causality). For an integer k, we say that
a policy F has k-bounded causality if for any event e and history
H , if e is relevant with respect to F and H then it is also k-relevant.

In other words, a policy F has k-bounded causality if whenever
an event e is relevant, it can cause a change after at most k additional
events.

Theorem 5. Let Φ = {ϕa | a ∈ A} ⊆ L1 define a policy FΦ.
Then FΦ has kΦ-bounded causality, for

kΦ := max{kLast(ϕa) + 2 · k∃(ϕa) | a ∈ A}. (1)

Proof. We show that F has kΦ-bounded causality. GivenH,H ′ and
e such that F (H · e ·H ′) 6= F (H ·H ′), it follows that there exists
an event e′ and an action a ∈ A such that a ∈ F (H · e ·H ′)(e′)
but a 6∈ F (H ·H ′)(e′) or vice versa. W.l.o.g. assume the former.
This means that H · e ·H ′, e′ |= ϕa but H ·H ′, e′ 6|= ϕa. We
construct a history H0 � H ′ of size at most kΦ such that the same
holds when H ′ is replaced by H0.

In order to construct H0, we construct the set of indices of the
events in H ′ that participate in H0. Let

J ′1 = kernelϕa,e′(H · e ·H ′) ∩ {|H · e|+ 1, . . . , |H · e ·H ′|}

be all the indices in kernelϕa,e′(H·e·H ′) which refer to events taken
from H ′. To consider the actual indices in H ′ we subtract |H · e|
from all of the indices. The result, JH

′
1 = {i− |H · e| | i ∈ J ′1}, is

a set of indices from H ′. Similarly, let

J ′2 = kernelϕa,e′(H ·H ′) ∩ {|H|+ 1, . . . , |H ·H ′|}

be all the indices in kernelϕa,e′(H ·H ′) of events taken from H ′,
and let JH

′
2 = {i − |H| | i ∈ J ′2} be the corresponding set of

indices in H ′.
We define a set of indices J0 = JH

′
1 ∪ JH

′
2 of events in H ′

and define a subsequence H0 of H ′ accordingly. Namely, suppose
that H ′ = e1 · . . . · e|H′|. Then H0 = ei1 · . . . · eik where
1 ≤ ei1 < . . . < eik ≤ |H

′| and J0 = {ei1 , . . . , eik}.



Recall that the kernel size of a history w.r.t. ϕa is at most
kϕa = kLast(ϕ

a) + k∃(ϕ
a). Since both JH

′
1 and JH

′
2 include

all the indices of the “last” events from H ′ (see Definition 10),
which are the same, then the size of J0 and therefore also the size
of H0 is bounded by kLast(ϕa) + 2 · k∃(ϕa) ≤ kΦ. Further, since
H · e ·H0 � H · e ·H ′ such that the set of indices of H · e ·H0

in H · e ·H ′ is ({1, . . . , |H · e|} ∪ J ′1) ⊇ kernelϕa,e′(H · e ·H ′),
then by Theorem 4, H · e ·H ′, e′ |= ϕa iff H · e ·H0, e

′ |= ϕa.
Similarly, since H · H0 � H · H ′ such that the set of indices of
H ·H0 in H ·H ′ is ({1, . . . , |H|} ∪ J ′2) ⊇ kernelϕa,e′(H ·H ′),
then by Theorem 4, H · H ′, e′ |= ϕa iff H · H0, e

′ |= ϕa.
We conclude that H · e · H0, e

′ |= ϕa but H · H0, e
′ 6|= ϕa as

required.

Remark 5. By inspecting Definition 10 and the proof of Theorem 4
and Theorem 5, it follows that in several cases we can obtain a
slightly better bound (lower kΦ), that will simplify our examples
below. In particular:

• If the given set of formulas Φ = {ϕa | a ∈ A} defining F
contains only history guarded quantifiers, then we can take

kΦ := max{k∃(ϕa)− 1 | a ∈ A}. (2)

To see this, note that without last quantifiers, it cannot be the case
that H ·H ′, e′ |= α but H · e ·H ′, e′ 6|= α for some component
α. Furthermore, if we have H ·H ′, e′ |= θ{e1/z̄1} . . . {er/z̄r}
for some e1, . . . , er , thenH ·e·H ′, e′ |= θ{e1/z̄1} . . . {er/z̄r}
for the same events (none of these properties is guaranteed in the
presence of last quantifiers). This allows us to choose k∃(ϕa)
elements (indices) to comprise H0, instead of 2 · k∃(ϕa): for
components that are satisfied in both H ·H ′ and H · e ·H ′ it
suffices to choose the elements based on H · H ′ (rather than
both). Finally, we need one event less since there is at least one
component α for which H · e ·H ′, e′ |= α but H ·H ′, e′ 6|= α.
For this component we can choose k∃(α)− 1 events, knowing
that the additional event must be e itself.
• If the formulas ϕa contain only last quantifiers then we can take

kΦ := max{kLast(ϕa)− 1 | a ∈ A}. (3)

By the proof of Theorem 5 it suffices to consider kLast(ϕa) “last”
events from H ′ in the construction of H0. In fact, since there
is at least one component α for which H · e · H ′, e′ |= α but
H · H ′, e′ 6|= α or vice versa, while the last events in H ′ are
clearly the same, then the difference must stem from a last event
in H or H · e. Either way, this event is not in H ′ making the
size of H0 at most kLast(ϕa)− 1.

Unbounded causality in the presence of quantifier alternation If
we allow alternation of quantifiers in the specification of policies,
then the k-bounded causality property does not necessarily hold.
As an example, consider a policy F which defines two possible
actions, a and b, where ϕa = ∀z̄1 ∈ H. ∃z̄2 ∈ H. z̄1.src =
z̄2.dst ∧ z̄1.dst = z̄2.src and ϕb = ¬ϕa. Namely, if in the current
history H every event has a matching event with opposite source
and destination, then action a is performed on the current event e
(for any e). Otherwise b is performed. Assume to the contrary that F
has the k-bounded causality property for some k. Consider a history
H of length k + 1 which consists of events such that all sources are
different, all destinations are different, and all sources are different
from all destinations. Further, consider an event e whose source
and destination also differ from all sources and destinations in H .
Clearly, e is relevant. However, e is not k-relevant. Indeed, for any
future sequence of events H ′′ with ≤ k events, at least one of the
events in H remains unmatched, whether H ′′ follows H or H · e.
Thus, F (H ·H ′′)(e′) = F (H · e ·H ′′)(e′) = b for any e′.

7.2 Construction of an optimal event handler generator
In this section we show that for any policy F defined by a set of L1

formulas, we can define the optimally decentralizing event handler
generator Iopt

F using a set of L-formulas. First, we introduce the
following notation.
Notation 2. Let ϕ be an L-formula with one free event variable x̄.
Let ȳ1, . . . , ȳn be event variables. We denote by ϕ[ȳ1, . . . , ȳn] the
formula obtained from ϕ as follows:

• Each subformula of ϕ of the form ∃ȳ ∈ H.ψ is replaced by

(∃ȳ ∈ H. ψ) ∨
∨

1≤i≤n

ψ{ȳi/ȳ}.

• Each subformula of ϕ of the form ∃ȳ = Lastψ. θ is replaced by(
∃ȳ = Lastψ. θ ∧N0

ψ[ȳ1, . . . , ȳn]
)
∨∨

1≤i≤n

(
θ{ȳi/ȳ} ∧ ψ{ȳi/ȳ} ∧N i

ψ[ȳ1, . . . , ȳn]
)

where N i
ψ[ȳ1, . . . , ȳn] =

∧
i<j≤n ¬ψ{ȳj/ȳ}

Intuitively, the notation ϕ[ȳ1, . . . , ȳn] is used to encode the
formula ϕ when the history is extended by a suffix of events
described by ȳ1, . . . , ȳn. This affects both the history-guarded
quantifiers and the last quantifiers. Formally, this is stated by the
following lemma.

Lemma 2. For any L-formula ϕ with one free variable x̄,
history H , events e1, . . . , en, e, and distinct event variables
ȳ1, . . . , ȳn, we have H · e1 · . . . · en, e |= ϕ iff H, e |=
ϕ[ȳ1, . . . , ȳn]{e1/ȳ1} . . . {en/ȳn}.

Using this notation, the synthesis of {ϕa
I

opt
F

| a ∈ A} from
{ϕa | a ∈ A} is done using the following definition:

Definition 13. Given {ϕa | a ∈ A}, for any action a ∈ A the
formula ϕa

I
opt
F

is defined by: ϕa
I

opt
F

:= ϕa ∧
∧

0≤m≤kΦ
a′∈A

ψa
′
m where:

• kΦ is the bound defined in Theorem 5, such that F has the
kΦ-bounded causality property.
• ψa

′
m denotes the formula:

∀ȳ1, . . . , ȳm, ȳ.

ϕa
′
{ȳ/x̄}[x̄, ȳ1, . . . , ȳm] ⇐⇒ ϕa

′
{ȳ/x̄}[ȳ1, . . . , ȳm]

We present several clarifications:

• The formulas ϕa, ψa
′
m , and therefore also ϕa

I
opt
F

, all have x̄ as
their only free event variable, which represents the “current”
event.
• Each ϕaI is anL-formula, but not anL1-formula since it includes

unguarded quantifiers.

• The conjunction of the formulas ψa
′
m over all actions a′ ∈ A

encodes the property that the (current) event e, represented by x̄,
is irrelevant when considering exactly m events into the future
(where to obtain kΦ-irrelevance we consider the conjunction
over all 0 ≤ m ≤ kΦ). Technically, ȳ1, . . . , ȳm represent the m
future events e1, . . . , em, and ȳ represents an event to which F
is applied in the future with or without considering e. On the left
hand side of the comparison we therefore apply ϕa

′
on ȳ and use

[x̄, ȳ1, . . . , ȳm] to extend the history by the events e, e1, . . . , em.
Similarly, on the right hand side we use [ȳ1, . . . , ȳm] to extend
the history by only e1, . . . , em (excluding e).

The above explanations can be straightforwardly summarized
in the following theorem that establishes the correctness of our



construction. In particular, note that since F is defined by L1-
formulas, it has kΦ-bounded causality, and so kΦ-irrelevance is
equivalent to full irrelevance.

Theorem 6. Let F be a policy defined by a set Φ = {ϕa | a ∈ A}
of L1-formulas. Then the set of L formulas Φopt = {ϕa

I
opt
F
| a ∈ A}

as in Definition 13 defines the event handler generator Iopt
F .

Proof. Follows from Theorem 2, Theorem 5 and Lemma 2.

This completes the construction of an L-definition of an optimal
event handler generator I that decentralizes F .
Remark 6. In Definition 13, in the construction of ϕa

I
opt
F

, it is
sufficient to include only m = 0 and m = kΦ in the conjunction∧

0≤m≤kΦ
a′∈A

ψa
′
m , omitting the intermediate values. The reason is

that L1-formulas cannot detect stuttering in non-empty histories.
Namely, for any ϕ ∈ L1, we have

H · e1 ·H ′, e |= ϕ ⇐⇒ H · e1 · e1 ·H ′, e |= ϕ.

As a result, if ψa
′
m , which considers m events into the future, does

not hold for some 0 < m < kΦ, it also does not hold for m = kΦ

by repeating one of the m future “refuting” elements.

7.3 L0-suitability of L-definitions
Here we show that the event handler generator I defined before as a
set of L-formulas is L0-suitable. Assume we are given such a set
{ϕaI | a ∈ A}. We describe a general algorithm that will take as
input a concrete history H , and produce a set {ϕaI(H) | a ∈ A} of
L0-formulas that defines the event handler I(H).

Let H be a particular history. For {ϕaI(H) | a ∈ A} to define
I(H) the following has to hold:

Correctness For any event e and action a:

H, e |= ϕaI iff e |= ϕaI(H)

The computation is done in two steps, as described next.

Step 1. First, we eliminate the history guarded quantifiers and
the last quantifiers according to their semantics. Suppose H =
e1 · . . . · en. Then:

• Every subformula in each ϕaI that begins with a history
guarded quantifier ∃ȳ ∈ H.θ is replaced by a disjunction:∨

1≤i≤n θ{ei/ȳ}
• Every subformula in each ϕaI that begins with a last quantifier
∃ȳ = Lastψ.θ is replaced with the following disjunction:∨

1≤i≤n

(
θ{ei/ȳ} ∧ ψ{ei/ȳ} ∧N i

ψ[e1, . . . , en]
)

where N i
ψ[e1, . . . , en] =

∧
i<j≤n ¬ψ{ej/ȳ}

Note that this transformation is similar to the one defined in
Notation 2, where we assume that the full history is e1 · . . . · en. The
next proposition justifies correctness.

Proposition 1. Let ϕ be an L-formula with one free event variable
x̄, and suppose that ϕ′ was obtained from ϕ as described above.
Then H, e |= ϕ iff e |= ϕ′.

Step 2. In this stage we have a set of formulas in which equality is
the only predicate symbol. To make them L0-formulas, it remains
to eliminate the quantifiers. For this simple case, it can be done by
“equality enumeration” as explained next.

Definition 14. For a quantifier-free L-formula ϕ in which equality
is the only predicate symbol and a variable v, ϕ 6≈v is the L-formula,
inductively denied by:

ϕ 6≈v =



> ϕ = (v ≈ v)

⊥ ϕ = (v ≈ t) or ϕ = (t ≈ v) where t 6= v

ϕ ϕ = (t1 ≈ t2) where t1 6= v and t2 6= v

ϕ 6≈v1 ◦ ϕ 6≈v2 ϕ = ϕ1 ◦ ϕ2 where ◦ ∈ {∧,∨,→,↔}
¬ϕ6≈v1 ϕ = ¬ϕ1

Intuitively, this operator resolves any equality involving v in ϕ
under the assumption that the value of v is different from the values
of all other variables and constants that appear in ϕ. Note that the
variable v does not occur anymore in ϕ 6≈v , and the following is valid
in first-order logic:

(∧
t∈Vϕ v 6≈ t

)
=⇒

(
ϕ ⇐⇒ ϕ 6≈v

)
where

Vϕ is the set of free variables and constant symbols that occur in ϕ,
except for the variable v itself.

Equipped with this operator, we can now explain what we mean
by equality enumeration.

The elimination of quantifiers from the formulas that we obtained
after step 1 directly follows from the following two equivalences,
that hold for any quantifier-free formula ϕ that has only equality as
a predicate symbol:

1. If Eq is infinite then ∀v : q. ϕ ≡
(∧

t∈Vϕ ϕ{t/v}
)
∧ ϕ 6≈v,

where Vϕ is the set of free variables and constants in ϕ except
for v.

2. If Eq is finite then ∀v : q.ϕ ≡
(∧

t∈Eq ϕ{t/v}
)

.

The second equivalence is obvious (recall that we assume a
constant symbol for any element in the domain), and the first can be
explained as follows:

∀v : q.ϕ ≡ (
∧
t∈Vϕ

ϕ{t/v}) ∧ ∀v : q.((
∧
t∈Vϕ

v 6≈ t)→ ϕ)

≡ (
∧
t∈Vϕ

ϕ{t/v}) ∧ ∀v : q.((
∧
t∈Vϕ

v 6≈ t)→ ϕ6≈v)

≡ (
∧
t∈Vϕ

ϕ{t/v}) ∧ ((∃v : q.
∧
t∈Vϕ

v 6≈ t)→ ϕ6≈v)

≡ (
∧
t∈Vϕ

ϕ{t/v}) ∧ ϕ6≈v

where the last equivalence is due to the fact that Eq is infinite.
By repeatedly applying these equivalences from the inner-most

to the outer-most quantifier, one obtains an equivalent quantifier-
free formula. Hence, the second step amounts to performing this
simple quantifier elimination on all formulas in the set, producing
{ϕaI(H) | a ∈ A} as a result.

To summarize, if we are given Φ, an L1 specification of a policy
F , we showed in Theorem 6 that we can automatically construct
Φopt, an L specification of an optimal event handler generator Iopt

F .
Now we have given an algorithm to go from Φopt and a history H to
the quantifier-free specification of forwarding rules that implement
Iopt
F (H). In conclusion, we have shown the following:

Theorem 7. Given an L1-specification of a policy F , we can
automatically produce a program which takes a history H and
produces the quantifier-free specification of forwarding rules that
implement an optimal implementation of F .

Remark 7. The running time of our solution to the decentralization
problem is determined by the complexity of the static part and the
complexity of the dynamic part. For a policy formula ψ expressed
in L1 with causality bound k, the static translation produces an



L-formula for Iopt
ψ of the length O(|ψ| · k2) with k + 1 nested

universal quantifiers, where |ψ| is the length of formula ψ. Denote
the resulting formula by ψ′. In the dynamic part, for the current
history H of length h = |H|, Step 1 eliminates guarded quantifiers
from ψ′ and produces a formula ψ′′ of size O(|ψ′| · h2k) with the
same nesting depth of universal quantifiers as ψ′. Step 2 eliminates
(unguarded) universal quantifiers from ψ′′ and returns a formula
of size O(|ψ′′| · mk+1) where m is a maximum of k, h, the
number of constants occurring in ψ and of all |Eq|, for finite Eq .
In total, the running time of the algorithm of Theorem 7 is in
O(|ψ| · k2 · h2k · mk+1). In all the examples in this paper, the
algorithm is linear in |ψ|, as k can be taken to be 0 according to
Remark 5.

It is important to note that (1) the complexity is measured with
respect to |H| where H is the log kept by the controller, and not
the full history. This is especially important as the optimal event
handler generator minimizes the size of this log; and (2) the running
time analysis refers to the processing of events handled by the
controller, whose number is minimized, and not of events handled
by the switches.

7.4 Examples
We demonstrate our technique on two examples: the firewall and the
learning switch that supports migrations.

Firewall Recall the policy for the firewall, given by:

ϕ1 = (x̄.in ≈ 2) ∧ ∃z̄ ∈ H.(z̄.in ≈ 1) ∧ (z̄.dst ≈ x̄.src)

ϕ2 = (x̄.in ≈ 1)

ϕdrop = ¬ϕ1 ∧ ¬ϕ2

In the above we renamed ȳ to z̄ in order to avoid confusion. For the
simplicity of the presentation, we focus here on just one switch. To
obtain the L-description of the optimal decentralizing event handler
generator, we use Definition 13. For each a ∈ {1, 2, drop}, we get
ϕaI = ϕa ∧ τ where

τ = ∀ȳ, ȳ1, . . . , ȳkΦ .∧
a′∈A

ϕa
′
{ȳ/x̄}[x̄, ȳ1, . . . , ȳkΦ ] ⇐⇒ ϕa

′
{ȳ/x̄}[ȳ1, . . . , ȳkΦ ]

Since the policy formulas have only one history-guarded quantifier,
we can take kΦ = 0, as explained in Remark 5. Then we can
compute an equivalent formula for τ as follows.

τ ≡ ∀ȳ.
∧
a′∈A

ϕa
′
{ȳ/x̄}[x̄] ⇐⇒ ϕa

′
{ȳ/x̄}

(1)
≡ ∀ȳ. (ϕ1{ȳ/x̄}[x̄] ⇐⇒ ϕ1{ȳ/x̄})∧

(ϕ2{ȳ/x̄}[x̄] ⇐⇒ ϕ2{ȳ/x̄})∧
(ϕdrop{ȳ/x̄}[x̄] ⇐⇒ ϕdrop{ȳ/x̄})

(2)
≡ ∀ȳ. (ϕ1{ȳ/x̄}[x̄] ⇐⇒ ϕ1{ȳ/x̄})
(3)
≡ ∀ȳ. (ȳ.in ≈ 2) ∧ (x̄.in ≈ 1) ∧ (x̄.dst ≈ ȳ.src) =⇒

∃z̄ ∈ H. (z̄.in ≈ 1) ∧ (z̄.dst ≈ ȳ.src)

In step (2), we omit the conjunct for ϕdrop, since ϕdrop is a Boolean
combination of ϕ1 and ϕ2. Furthermore, the conjunct for ϕ2

can be omitted as tautological. Step (3) is by applying standard
equivalences of propositional logic. By applying rules of FOL with
equality, it is also easy to see that the last formula can be further
simplified to:

τ ≡ (x̄.in ≈ 1) =⇒ ∃z̄ ∈ H.(z̄.in ≈ 1) ∧ (z̄.dst ≈ x̄.dst)

In particular, for the empty history one obtains:

ϕdrop
I ≡ ¬ϕ1 ∧ ¬ϕ2 ∧ (x̄.in 6≈ 1) ≡ x̄.in 6≈ 1

which is equivalent to (x̄.in ≈ 2). This means that the synthesized
rule installation policy will initially install a rule to drop all packets
arriving on port 2. This actually improves the SDN program
implementing a stateful firewall policy from [8] by proactively
installing more rules.

Learning switch with migrations Recall the policy for the learn-
ing switch that supports migrations of hosts, given by:

ϕp = ∃z̄ = Last(x̄.sw≈z̄.sw)∧(x̄.dst≈z̄.src). (z̄.in ≈ p)

ϕflood =
∧

p∈Ports

¬ϕp

Again, we renamed ȳ to z̄ in order to avoid confusion.
For each a ∈ Ports ∪ {flood}, we have ϕaI = ϕa ∧ τ where

τ ≡ ∀ȳ.
∧
a′∈A

ϕa
′
{ȳ/x̄}[x̄] ⇐⇒ ϕa

′
{ȳ/x̄}

(1)
≡ ∀ȳ.

∧
p∈Ports

(ϕp{ȳ/x̄}[x̄] ⇐⇒ ϕp{ȳ/x̄})∧

(ϕflood{ȳ/x̄}[x̄] ⇐⇒ ϕflood{ȳ/x̄})
(2)
≡ ∀ȳ.

∧
p∈Ports

(ϕp{ȳ/x̄}[x̄] ⇐⇒ ϕp{ȳ/x̄})

(3)
≡ ∀ȳ.

∧
p∈Ports

[((∃z̄ = Last ȳ.sw≈z̄.sw∧ȳ.dst≈z̄.src . z̄.in ≈ p)∧

¬(ȳ.sw ≈ x̄.sw ∧ ȳ.dst ≈ x̄.src))∨
(x̄.in ≈ p ∧ ȳ.sw ≈ x̄.sw ∧ ȳ.dst ≈ x̄.src)⇐⇒
∃z̄ = Last ȳ.sw≈z̄.sw∧ȳ.dst≈z̄.src . z̄.in ≈ p]

(4)
≡

∧
p∈Ports

∀ȳ. [ȳ.sw ≈ x̄.sw ∧ ȳ.dst ≈ x̄.src =⇒

((∃z̄ = Last ȳ.sw≈z̄.sw∧ȳ.dst≈z̄.src . z̄.in ≈ p)⇐⇒ x̄.in ≈ p)]
(5)
≡

∧
p∈Ports

[(∃z̄ = Last x̄.sw≈z̄.sw∧x̄.src≈z̄.src . z̄.in ≈ p) ⇐⇒

x̄.in ≈ p]
(6)
≡ ∃z̄ = Last x̄.sw≈z̄.sw∧x̄.src≈z̄.src . z̄.in ≈ x̄.in

In the initial description of τ we used the property that the policy
formulas have only last quantifiers. Therefore, we can take kΦ = 0,
as explained in Remark 5. We can omit the conjunct for ϕflood in
step (2), since ϕflood is a Boolean combination of ϕp, p ∈ Ports.
In step (4), we used the propositional equivalence

((A ∧ ¬B) ∨ (C ∧B) ⇐⇒ A) ≡ (B =⇒ (A ⇐⇒ C))

and the first-order equivalence ∀x.
∧
Ai ≡

∧
(∀x.Ai). In steps (5)

and (6), we used rules of FOL with equality.
We demonstrate the computation done at the runtime for the

topology from Figure 1 and scenario from Table 4. As the current
history we consider

H = 〈s, 1, A→ B〉 · 〈s, 2, B → A〉

Consider the current event e = 〈s, 3, A→ B〉, which means that
the host A has migrated to port 3. After eliminating the last-
quantifier with respect to the current history and omitting the
conjuncts for equalities of switch components, we get for τ :

1 ≈ x̄.in ∧ x̄.src ≈ A ∧ x̄.src 6≈ B ∨ 2 ≈ x̄.in ∧ x̄.src ≈ B



We see that for the current event, the above formula is equivalent to
⊥, which means that the current event e must be forwarded to the
controller.

Consider as a current history

H = 〈s, 1, A→ B〉 · 〈s, 2, B → A〉 · 〈s, 3, A→ B〉

after the migration of host A to port 3. Consider the current packet
e = 〈s, 2, B → A〉. After applying Step 1, we get for τ

1 ≈ x̄.in ∧ x̄.src ≈ A ∧ x̄.src 6≈ B ∧ x̄.src 6≈ A∨
2 ≈ x̄.in ∧ x̄.src ≈ B ∧ x̄.src 6≈ A∨
3 ≈ x̄.in ∧ x̄.src ≈ A

≡ 2 ≈ x̄.in ∧ x̄.src ≈ B ∨ 3 ≈ x̄.in ∧ x̄.src ≈ A

Since e satisfies the formula ϕ3
I = ϕ3 ∧ τ , the current event is

forwarded to port 3, as intended.

8. Related Work
Verification and Synthesis of Correct SDN Programs Verifying
the correctness of SDN programs has recently received a lot of atten-
tion [3–5, 9, 12, 16]. These works aim to verify a given controller
program which implements a forwarding rule installation policy. In
contrast, this paper identifies a specific correctness criterion. We also
automatically infer correct and optimal forwarding rule installation
policies for forwarding policies expressed in a useful fragment of
first-order logic.

Atomicity of Rule Installation This paper assumes that events
are executed atomically, ignoring out-of-order rule installations.
Consistently updating a software-defined network is an important
challenge in SDN (see [15]). One can enforce the atomicity of
the inferred forwarding rules using barriers. In the future, it may
be possible also infer the minimal barriers for a given forwarding
policy using techniques similar to [11].

Language Abstractions for SDNs. [6, 10, 14, 18] introduce ab-
stractions for programming controllers in order to simplify the task
of programming controllers and to enable more efficient implemen-
tations. Our work can be combined with these abstractions in order
to further simplify the task or SDN programming and to reduce the
number of errors for limited policies expressible in our language.

[18] transforms algorithmic policies into forwarding rules which
drastically simplifies SDN programming. However, unlike our work,
they do not analyze the dependencies between the forwarding
policies and the packet histories. Therefore that cannot guarantee
correctness for forwarding policies which depend on the histories.

[6] provides a high level level language called Pyretic for
programming SDN controllers. Pyretic provides a mechanism to
define functions which update the forwarding rules in an abstract
way. These functions are called when new packets arrive to the
controller, according to filters defined by the programmer. Note
that the programmer has to write the update code, and also to
explicitly define the filter stating which packets should trigger an
update. The programmer is also responsible for assuring that the
filter definition is consistent with the update code which requires
non-trivial temporal reasoning. In contrast we provide a higher level
of abstraction for expressing the forwarding policy and automatically
infer correct and optimal installation of forwarding rules.

Figure 2 shows the learning switch (w/o host migration) ex-
pressed in Pyretic. In lines 2–7 the programmer defines the update
and in line 8 the programmer defines the filter. Maintaining con-
sistency between the filter and the update code is error prone and
subtle. For instance, the consistency between lines 2–7 and line 8
depends on the assumption that there is no host migration, and this
assumption is not explicit anywhere in the code. Therefore, it may

1: def learn(self):
2: def update(pkt):
3: self.P =
4: if_(match(dstmac=pkt[’srcmac’],
5: switch=pkt[’switch’]),
6: fwd(pkt[’inport’]),
7: self.P)
8: q = packets(1,[’srcmac’,’switch’])
9: q.when(update)

Figure 2. A learning switch in Pyretic.

1: ON packet_in(p):
2: DO forward(new) WHERE
3: learned(p.locSw, new.locPt, p.dlDst);
4:
5: ON packet_in(p):
6: INSERT (p.locSw, p.locPt, p.dlSrc)
7: INTO learned WHERE
8: NOT learned(p.locSw, p.locPt, p.dlSrc);

Figure 3. A learning switch in FlowLog.

be worthwhile to integrate our inference mechanism into Pyretic by
limiting the expressive power of the update code.

FlowLog [14] is an innovative tierless programming language
for SDNs. It allows the programmer to express the forwarding policy
in an SQL like language.

Figure 3 shows the learning switch expressed in FlowLog. Lines
1–3 express the forwarding behavior using the relation learned.
Lines 5–8 express updating of the learned relation in response to
new packets. Line 8 (the WHERE-clause), defines for which packets
the update should take place. At first glance, it looks as if the
programmer can declare the forwarding policy w/o worrying about
rule installation. However, the installation of rules is determined
by the WHERE-clause, which has to be specified by the programmer.
Requiring that the programmer manually specifies the WHERE-clause
may lead to subtle performance and correctness issues. For example,
the programmer can naively interpret these rules according to SQL
semantics and replace the condition in the WHERE-clause by true.
In SQL semantics, both variants are equivalent since adding an
element to a relation does nothing if the element is already in the
relation. However, in FlowLog, changing the WHERE-clause to true
results in sending all packets to the controller since they will all
satisfy the WHERE-clause, leading to a performance issue. Similarly,
if the WHERE-clause is inconsistent with the update that takes place
(e.g., over-restrictive), then relevant packets will not be sent to the
controller, and the correctness of the system may be compromised.

Indeed, FlowLog and Pyretic both split the task of updating the
controller state into two interleaved mechanisms, and it is up to the
programmer to make sure they are used consistently. In contrast,
we propose a way to automatically infer one from the other and
guarantee correctness and optimality.

NetCore [13] is a novel framework for programming SDN con-
trollers. It includes a mechanism to transform Boolean combinations
of conditions on events into OPENFLOW rules, which can be used
to translate the installation rules inferred by this paper into OPEN-
FLOW. Because NetCore is Turing complete, it requires that the
programmers specify the conditions under which rules need to be in-
stalled in the form of an auxiliary hand-written function. As argued
in this paper, this approach is error prone and requires non-trivial
temporal reasoning on all possible sequences of events which may
occur. Our approach in this paper limits the expressive power of the
policy language to avoid the need to supply unchecked conditions.



Datalog as a Specification Language Datalog is another good
candidate for expressing network forwarding policies [7]. This
means expressing the forwarding policy as a Datalog query over
the history. For policies expressed in Datalog with recursion (with
or without allowing stratified negation), k-bounded causality does
not necessarily hold. This is also the case for policies expressed in
Datalog without recursion and with negation. As for Datalog without
recursion and without negation, policies expressed in it can also
be expressed using L1-formulas, and therefore have the k-bounded
causality for some k. However, not every policy expressible usingL1

formulas can be expressed in Datalog without recursion and without
negation, including simple policies such as the learning switch (since
the forwarding behavior is non-monotonic in the history).

9. Conclusion
In this work we have investigated the decentralization problem of
SDN. We characterized correctness and optimality of forwarding
rule installation policies. While the problem of finding an optimal
correct installation policy is undecidable in general, we show how to
construct such installation policies for forwarding policies expressed
in a natural restricted variant of first order logic. As a future work, it
is worthwhile to study the applicability of our approach in a broader
setting of distributed systems and distributed databases.

Extensions Our approach can be straightforwardly extended in
several ways.

Our specification language of policies, L1, includes two kinds of
guarded quantifiers: one which examines existence of some event in
the history, and one which refers to the last event in the history that
has some property. As discussed in Remark 4, our results also apply
if we extend L1 by additional guarded quantifiers, such as “last k”
or “first k”.

We consider a finite set of actionsA, which allows us to describe
functions from E to A using a finite set of formulas, one for each
action. In order to handle packet rewriting (performed for example
in NAT boxes and supported by OpenFlow) one needs to consider an
infinite set of actions since in this context, an action may be “forward
to port 2 and change the source field to 1.2.3.4”. This means that
the (infinite) set of addresses will be added to the set of actions.
Our approach can be adapted to handle this as well by adding
another sort, representing an action, to be used in L1 formulas,
such that actions will be specified internally in L1. A policy will
then be defined by a single formula with an additional free variable
describing the action to be performed. The conjunction over all
actions that is used when defining the formulas of the optimal
event handler generator (Definition 13) will simply be replaced
by a universal quantifier which will later be eliminated.

Our approach can also handle multiple types of events, by adding
an attribute that describes the event type, and any other type specific
attributes needed.

It is also possible to develop synthesis methods which are applied
incrementally each time a history is changed and to produce only
the new rules to be installed or removed.
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