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The resilience of a boolean query with respect to a database, D,
is the minimum number of tuples that must be removed from D to
make the query false.

Resilience is crucial to figuring out why a certain tuple, t, occurs
in the answer to a query or view, q, on a database, D.
and to computing the minimum change needed to remove t from
the view.

Often D = Dx ∪ Dn is partly exogenous and partly
endogenous.

Treat exogenous part as fixed, beyond our control; only consider
possible changes to the endogenous part.
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Resilience as a decision problem

RES(q) =
{

(D, k)
∣∣ ∃Γ ⊆ Dn (D − Γ) 6|= q & |Γ| ≤ k

}

Example: qvc :− V (x)E (x , y)V (y)

Prop: RES(qvc) is NP complete.

Proof.
RES(qvc) is exactly the vertex cover problem: how many vertices
need we remove so that no edges remain. �

qvc has a self join.

Goal: Characterize the complexity of resilience for
sj-free conjunctive queries.
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Triangle Query

x y

z

R

T S

q4 :− R(x , y), S(y , z), T (z , x)

Query hypergraph: relations are vertices;
variables are hyperedges
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The triangle query, q4, is hard.

Prop. RES(q4) is NP-complete.

Proof: Reduce 3SAT to RES(q4). Let ψ = C1 ∧ · · · ∧ Cm

be a 3-CNF formula, var(ψ) = {v1, . . . , vn}

Map ψ 7→ (Dψ, kψ) s.t. ψ ∈ 3SAT ⇔ (Dψ, kψ) ∈ RES(q4)
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ψ = C1 ∧ · · · ∧ Cm var(ψ) = {v1, . . . , vn} ψ 7→ (Dψ, kψ)

q4 :− R(x , y), S(y , z),T (z , x)

(Dψ, kψ) ∈ RES(q4) ⇔ ∃Γ |Γ| = kψ ∧ Dψ − Γ has no

Dψ has one circular gadget Gi for each variable vi .

ai1 bi1 c i1 ai2 bi2 c i2
vi vi vi vi vi vi
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In Gi must choose all vi ’s or all vi ’s

ai1 bi1 c i1 ai2 bi2 c i2
vi vi vi vi vi vi

...

ai1 ai3

ai5
...

vi
vi vi vi vi vi vi

vi

vi

vi

vi

vi

vi

1

22m
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For each clause, e.g., Cj = (v1 ∨ v2 ∨ v3), pick the jth
occurrences of v1 ∈ G1, v2 ∈ G2 and v3 ∈ G3. Identify head of v1
with tail of v2, head of v2 with tail of v3, head of v3 with tail of v1

a14j+1

a34j+2

b14j+1

b24j+1

c34j+1 c
2
4j+1

v1

v2v3

G1

G2G3

This new RGB triangle is automatically removed iff one of the
literals in Cj is chosen true. �
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Tripod Query

x y
z

A

C

B

W

qT :− A(x),B(y),C (z),W (x , y , z)

Prop. RES(qT) is NP complete.
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RES(qT) is NP complete.

qT :− A(x),B(y),C (z),W (x , y , z)

var(A) ⊆ var(W ).

A dominates W .

Prop. If A dominates W , then we can assume that W is
exogenous, i.e., rewrite as W x, tuples from W x are never chosen.

qT :− A(x),B(y),C (z),W x(x , y , z)
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RES(qT) is NP complete.

q4 :− R(x , y),S(y , z),T (z , x)

qT :− A(x),B(y),C (z),W x(x , y , z)

Proof: Show RES(q4) ≤ RES(qT)

Let (D, k) be an instance of RES(q4).

(D, k) 7→ (D ′, k) D ′
def
= (A,B,C ,W x)

A =
{
〈ab〉

∣∣ R(a, b) ∈ D
}

B =
{
〈bc〉

∣∣ S(b, c) ∈ D
}

C =
{
〈ca〉

∣∣ T (c , a) ∈ D
}

W x =
{

(〈ab〉, 〈bc〉, 〈ca〉)
∣∣ a, b, c ∈ dom(D)

}
Claim (D, k) ∈ RES(q4) ⇔ (D ′, k) ∈ RES(qT). �
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Linear Queries

Def. A query is linear if all of the vertices of its hypergraph can
be drawn along a straight line with all of its hyperedges convex.

For example, the following query is linear:

q :−A(x),R(x , y), S(y , z)

A R S

y

z

x
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Linear Queries are Easy

Prop. For any linear sj-free conjuctive query q, RES(q) ∈ P.

Proof: Use Network Flow.

RES(D, q) is the min cut of corresponding network.

s

a1

a2

a3

b1

b2

b3

t

1
1
1

1

1

1

1

1
1
1

1

q :− A(x) R(x , y) S(y , z)

�
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x y

z

A

R

T S

Is Rats hard or easy ?

qrats :− A(x),R(x , y), S(y , z),T (z , x)

q1 ≡ A(x),Rx(x , y),S(y , z),T x(z , x) Domination
RES(qrats) ≡ RES(q1)

q2 ≡ A(x),Rx(x , y , z),S(y , z),T x(z , x) Dissociation
RES(q1) ≤ RES(q2)

q3 ≡ A(x),Rx(x , y , z),S(y , z),T x(z , x , y) Dissociation
RES(q2) ≤ RES(q3)

q4 ≡ A(x),Rx(x , y , z),S(y , z) Repetition
RES(q3) ≡ RES(q4)

q4 is linear and therefore easy!
RES(qrats) ≤ RES(q5) qrats is easy!
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What do the triangle and the tripod have in common?

x y

z

R

T S

x y
z

A

C

B

W

q4 :−R(x , y), S(y , z),T (z , x) qT :−A(x),B(y),C (z),W x(x , y , z)

Def. A triad is a set of three endogenous atoms, T = {S0,S1,S2}
such that for every pair i , j , there is a path from Si to Sj that uses
no variable occurring in the other atom of T .

{R, S ,T} is a triad in q4.

{A,B,C} is a triad in qT.
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{A,B,C} is a triad in qT.
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Lemma Let q be an sj-free conjunctive query where all dominated
atoms are exogenous. If q has a triad, then RES(q) is NP-complete.

Proof: Show RES(q4) ≤ RES(q)
�
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Lemma Let q be an sj-free conjunctive query that has no triad.
Then RES(q) ∈ P.

Proof: By induction on the number of endogenous atoms in q
that we can transform it into a linear query by using dissociations.

Inductive case: assume true for triad-free queries with n
endogenous atoms. Let qn+1 be triad-free and have n + 1
endogenous atoms.

Since there is no triad, we can linearize the endogenous atoms:

S1

c1

E x
1

c2

E x
2
· · ·

· · ·

· · ·
E x
n−1

cn

E x
n

cn+1

S2 Sn Sn+1

�
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Dichotomy Theorem for Resilience: Let q be a sj-free
conjunctive query all of whose dominated atoms are exogenous. If
q has a triad then RES(q) is NP complete. Otherwise, RES(q) ∈ P.
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Extend to Databases with Functional Dependencies

induced rewrites preserve complexity of resilience:
q :−R(x , y), S(y , z),T (z , x); x 7→ y

q∗ :−R(x , y),S(y , z),T (z , x , y); x 7→ y

Let q∗ be q after all possible induced rewrites have been applied.

Lemma: RES(q) ≡ RES(q∗)

Dichotomy Theorem for Resilience with FD’s Let q∗ be an
sj-free conjunctive query with FD’s, all possible induced rewrites
applied and all dominated atoms are exogenous. If q∗ has a triad
then RES(q) is NP complete. Otherwise, RES(q) ∈ P.

Corollary Induced rewrites characterized the effect of FD’s:

RES(q; Φ) ≡ RES(q∗; Φ) ≡ RES(q∗)
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Future Directions

I Extend characterization of complexity of resilience to
conjunctive queries with self joins.

I Extend to sj’s with FD’s.

I Extend to the complexity of “view side-effects” problem.

I Characterize the complexity of the parts of the problem that
are in P, cf. [Allender, et. al.]

I Understand & explain Dichotomy Phenomenon
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