Non-globally Rigid Inversive Distance Circle Packings

John C. Bowers
Dept. of Computer Science James Madison University

Joint work with:
Philip L. Bowers
Dept. of Mathematics
The Florida State University

Which Circle Packing? not this: this:

- Not necessarily a triangulation
- Combinatorics can be variable.
- Radii are fixed.
- Has 3D "sphere packing" analog

- Triangulation
- Combinatorics are fixed.
- Radii are variable.
- No "sphere packing" analog

Circle Packing Defn.

- Given a triangulation T, a circle packing is a configuration of circles P whose tangency pattern is T.

T

Koebe-Adreev-Thurston

Theorem

- Theorem (Koebe-Adreev-Thurston): Given any triangulation T of a topological sphere, there exists a univalent circle packing P of the Riemann sphere having the same combinatorics as T. Furthermore, P is unique up to Möbius transformations and inversions.

Alternatively: Circle packings of the sphere exist and are globally rigid.

Extended to closed surfaces by Thurston and the disk by Beardon and Stephenson

Univalence

Univalence is Local

snake.p packing from http://www.math.utk.edu/~kens/CirclePack/

Inversive Distance

- Formula in $\mathbb{E}^{2:}$
$\operatorname{Inv}\left(C_{1}, C_{2}\right)=\frac{d^{2}-R^{2}-r^{2}}{2 R r}$
Also defined in sphere and hyperbolic spaces.
- Acts as a "Distance" between circles.
- Not a metric:
- $\operatorname{lnv}(C, C)$ is not 0
- Does not satisfy \triangle-inequality
- Takes negative values
- Invariant under:
- Möbius transformations (on the sphere, mostly true in \mathbb{E}^{2})
- Stereographic projections

Inversive Distance Circle Packings

labeled octahedral graph

inversive distance circle packing

Realization vs. Packing

circle realization

(Edge-)Segregated Packings

Inversive Distance > 0

Inversive Distance < 0

Bowers-Stephenson Question

- Given a triangulation of a closed surface, concerns the uniqueness of segregated inversive distance circle packings.
- On the torus: are they unique up to Euclidean scaling + rigid transformations?

Yes. Local Rigidity [Guo] Global Rigidity [Luo]

- On closed hyperbolic surfaces: are they unique up to hyperbolic isometries?

Yes. Local Rigidity [Guo] Global Rigidity [Luo]

- On the 2-sphere: are they unique up to Möbius transformations and inversions?

Not globally rigid! [Ma \& Schlenker]

Ma-Schlenker Example

- Start with an infinitesimally flexible hyperideal Euclidean polyhedron.
- Use the infinitesimal flex to generate two hyperideal polyhedra that have the same edge lengths but are not equivalent.
- Convert the polyhedra to hyperbolic polyhedra.
- Use de Sitter space and Pogorelov maps to produce two non-Möbius equivalent inversive distance circle packings on the sphere.

Schönhardt's twisted octahedron

Our goal: to construct examples like this intrinsically on the sphere using only inversive geometry.

Inversive Geometry

Coaxial Systems

Coaxial Systems

hyperbolic coaxial system $/$

Coaxial Systems

Two circles defines a family

elliptic coaxial system

Two circles defines a family

Flows

Flows

Flows

Flows

Key Property: Maintains the inversive distance from the blue circle to both red circles.

Flows

hyperbolic coaxial system elliptic flow

Flows

parabolic coaxial system parabolic flow

Inversions

Inversions maintain inversive distances (inversive distance between the red circles is the same as the blue pair)

Construction

Ma-Schlenker style Octahedra Construction

Start with 3 circles with equal radii and centers on an equilateral triangle (not necessarily tangent).

Ma-Schlenker style Octahedra Construction

Extend rays in a spiral.

Ma-Schlenker style Octahedra Construction

Add three equal radii circles at a fixed distance along rays.

Ma-Schlenker style Octahedra Construction

The starting octahedron.

Ma-Schlenker style Octahedra Construction

Flow the blue circle.

Ma-Schlenker style Octahedra Construction

Flow the blue circle.

Ma-Schlenker style Octahedra Construction

Flow the blue circle.

Ma-Schlenker style Octahedra Construction

Only the outer triangle's inversive distances change.
Goal: to find a minimum.

Ma-Schlenker style Octahedra Construction

plot of inversive distance between
C_{1} and C_{2} throughout flow

The Critical Octahedron

Minimum

Ma-Schlenker style Octahedra Construction

Ma-Schlenker style Octahedra Construction

Ma-Schlenker style Octahedra Construction

Ma-Schlenker style Octahedra Construction

When we stereographically project we may not get a triangulation but by an appropriate Möbius transformation we can always obtain one.

Ma-Schlenker-style Octahedral Packing

- Theorem: Any segregated inversive distance circle packing with the graph and distances given by the figure on the left that is sufficiently near the critical octahedron is not unique.

Segregation is needed in the plane

Thank You

Questions?

References

- [Guo] Guo, R., 2011. Local rigidity of inversive distance circle packing. Transactions of the American Mathematical Society, 363(9), pp.4757-4776.
- [Luo] Luo, F., 2011. Rigidity of polyhedral surfaces, III. Geometry \& Topology, 15(4), pp.2299-2319.
- [Ma \& Schlenker] Ma, J. and Schlenker, J.M., 2012. Non-rigidity of spherical inversive distance circle packings. Discrete \& Computational Geometry, 47(3), pp.610-617.

