
Getting Things Done on Computational RFIDs with Energy-Aware
Checkpointing and Voltage-Aware Scheduling

Benjamin Ransford Shane Clark Mastooreh Salajegheh Kevin Fu
{ransford, ssclark, negin, kevinfu}@cs.umass.edu
Department of Computer Science, University of Massachusetts Amherst

Abstract
Computational RFIDs (CRFIDs) provide flexible,
general-purpose computation on a microcontroller via
energy that is harvested and stored in capacitors rather
than batteries. Our contributions include a definition
of CRFIDs, a framework for energy management in
CRFIDs, and the preliminary design of Mementos,
a medley of compile-time and run-time techniques
to achieve effective forward progress of computation
on CRFIDs by using energy-aware computational
checkpoints and voltage-aware program reordering that
maintains program semantics. Our preliminary measure-
ments indicate that Mementos will enable CRFIDs to
complete long-running computations despite constant
interruptions to power.

1 Introduction
The recent advent of ultra-low-power microcontrollers is
leading to an entirely new class of low-power embed-
ded computers. Maintenance-free computational RFIDs
(CRFIDs) enable general-purpose computation with only
harvested radio frequency (RF) energy and can operate
in contexts where replacing or recharging a battery is in-
convenient or hazardous (e.g., implantable medical de-
vices [8]) or where integrated circuits and small surface-
mount capacitors enable economies of scale for manu-
facturing and miniaturization. The primary challenges to
CRFIDs are (1) performing effective computation in spite
of continual power interruptions that result in complete
loss of computational state, and (2) effectively using en-
ergy from a continuously varying voltage supply.

Computation on CRFIDs differs from traditional
general-purpose computation in several ways — posing
new challenges to energy-aware computation.

Frequent power loss is the common case rather than
the exception. Today, software is designed to recover
from occasional power failures on PCs and sensor motes.
Low-power devices such as contactless smartcards require
computations to finish in a single energy lifecycle —
that is, one period of energy availability or one charge-

discharge cycle of the energy store. CRFIDs instead sup-
port delay-tolerant computations that can be suspended
and resumed, enabling computation on a larger class of
problems. Our experiments on a prototype CRFID typi-
cally enjoy less than one second of uninterrupted compu-
tation before either entering RAM retention mode or com-
pletely losing power and state. The rate of interruption
is determined by capacitor size, distance from an RFID
reader, and the periodicity of RF energy delivered by the
reader. Since longer read ranges allow more flexible, per-
vasive applications and harvested radio energy drops off
with the square of distance [13], there will always be a
range outside which deployed CRFIDs lose power despite
hardware optimizations. Thus, a key goal is to enable for-
ward progress of computation in an energy-efficient man-
ner despite interruptions to power. We define forward
progress as measurable progress toward some computa-
tional goal.

Voltage-dependent instruction sequencing. The ex-
treme resource constraints of CRFIDs lead to violations
of traditional hardware-software abstractions. Not only
do different instructions consume different amounts of en-
ergy, but different instructions (e.g., erasing flash mem-
ory) require different minimum voltage levels. Thus at
certain times, a high supply voltage operation may unnec-
essarily block execution of a low supply voltage operation
because of the continuously varying supply voltage.

Continuous problems for discrete power manage-
ment. Unintentional underclocking leads to idly wasted
energy. Devices powered by conventional batteries en-
joy relatively constant voltage, but CRFIDs relying on ca-
pacitors endure rapidly fluctuating voltage — even across
pairs of consecutive instructions. Dynamic voltage and
frequency scaling microcontrollers provide a small set of
discrete power saving modes (supply voltage and clock
frequency combinations), but because voltage varies and
adjusting power modes during each and every instruction
is difficult, a single slow clock frequency is selected re-
gardless of voltage. A CRFID’s microcontroller works
when its supply voltage is sufficient for the selected clock
frequency. If the supply voltage is higher than required

USENIX Workshop on Power Aware Computing and Systems (HotPower 2008). November 30, 2008 1



for the selected frequency, then after each clock tick, the
logic gates settle long before the next clock tick and the
remaining time and energy is wasted [6]. Consequently,
a particular instruction consumes more energy at higher
voltages, posing an opportunity for clever scheduling.

Our contributions include (1) a definition of compu-
tational RFID (CRFID), (2) a framework to better under-
stand how to optimize the energy consumption of deter-
minate tasks on CRFIDs, and (3) the preliminary design
of Mementos, a medley of static compile-time and dy-
namic run-time techniques to achieve effective forward
progress of computation by using energy-aware computa-
tional checkpoints and voltage-aware program reordering
that maintains program semantics.

1.1 Framework for Forward Progress
Because of the frequent power loss, a checkpoint of com-
putational state is fundamental to the nature of comput-
ing in CRFIDs. Upon availability of harvested energy, a
CRFID can make forward progress by restoring a check-
point. However, checkpoints themselves consume signif-
icant energy because writes to non-volatile memory con-
sume much more energy than computation. Thus, our ap-
proach in Mementos uses energy hints to minimize check-
points yet guarantee forward progress of computation. A
second energy-aware strategy in Mementos reorders code
while maintaining program semantics so that high-voltage
operations appear early in an energy lifecycle. This strat-
egy is unique to the continuously varying voltage supplies
common on CRFIDs.

1.2 Background on CRFIDs
A computational RFID contains at least four basic subsys-
tems: (1) a microcontroller for general-purpose computa-
tion, (2) non-volatile storage such as flash memory, (3) a
small, maintenance-free reservoir such as a surface-mount
capacitor to store harvested energy, and (4) an ultra-low-
power radio link. Sensor motes and computational RFIDs
are both energy-constrained, but they serve different pur-
poses and have several fundamental differences.

Energy. CRFIDs often rely on surface-mount capaci-
tors to operate in environments where batteries are diffi-
cult or dangerous to replace or recharge. Batteries tend
to maintain a relatively constant voltage until depletion.
Capacitors exhibit an exponential decay over time, with
the steepest loss of voltage at the beginning of discharge.
Therefore, a microcontroller relying on a capacitor must
tolerate an exponentially decreasing voltage.

Communication & Storage. Motes that have active
radio circuitry can transmit data at will, but CRFIDs use
backscatter communication — electrical modulation of
impedance to change antenna reflectivity — and therefore
cannot communicate autonomously. Instead, a CRFID
must wait for an RFID reader to initiate both sending and

receiving of information. To save energy, motes avoid un-
necessary radio communication; CRFIDs avoid unneces-
sary writes to flash memory for the same reason.

Computation. CRFIDs must tolerate extremely bursty
computation because of continual power interruptions.
Thus, the microprocessor supports at least three power
modes: active, sleep, and reset (loss of state). The typ-
ical active lifecycle of a CRFID is less than one second,
whereas a sensor mote’s active lifecycle is often measured
in days or weeks.

The WISP computational RFID. The Wireless Iden-
tification and Sensing Platform (WISP) from Intel Re-
search Seattle [3, 11] is an instance of a CRFID. An
ultra-low-power TI MSP430F1232 microcontroller pro-
vides general-purpose computation (up to 8 MHz) and
storage (256 bytes of RAM, roughly 8 KB of flash), and a
surface-mount capacitor stores harvested RF energy.

2 The Mementos System
Mementos enables forward progress of computation de-
spite continual power interruptions. Mementos com-
bines compile-time and run-time techniques to implement
energy-aware execution checkpointing and program re-
ordering on CRFIDs. We are developing Mementos on
prototype WISP CRFIDs.

2.1 Execution Checkpointing
Execution checkpointing means saving program state to
non-volatile memory in case an external event causes ex-
ecution to halt. In the CRFID model, fluctuating en-
ergy availability and charge leakage contribute to frequent
power loss. Unlike previous execution checkpointing sys-
tems (e.g., that of Gummadi et al. [7] for sensor net-
works), Mementos assumes that failures are the common
case rather than unusual events; it must therefore suspend
and resume execution quickly and often.

The checkpointing system’s first task is pre-assembly
energy profiling of a program. Mementos reads a com-
piled program and a profile of the energy usage per in-
struction class for the target architecture (similar to Ta-
ble 2). It then examines the source and destination
operands of each instruction and, for each labeled pro-
gram block, emits a sum that estimates the total energy
required for one execution of that block.

After computing energy estimates for program blocks,
Mementos inserts trigger points into the instruction
stream at salient junctures (e.g., at loop termination tests).
A trigger point is a sequence of instructions that decides at
run-time whether to checkpoint. Table 1 lists the variables
Mementos considers when deciding whether to check-
point. A trigger point:

1. Measures the storage capacitor’s voltage using an on-
board analog-to-digital converter (ADC). The volt-

USENIX Workshop on Power Aware Computing and Systems (HotPower 2008). November 30, 2008 2



V Voltage on the storage capacitor
C Storage capacitor’s (fixed) capacitance
E0 Energy in storage capacitor on wake

Eremaining Energy remaining in capacitor now
Eprogram Compile-time estimate of total energy

required for portion of program not yet
completed

Cfinish Instantaneous cost (energy required) of
completing program

Ccheckpoint Instantaneous cost (energy required) of
checkpointing

Table 1: Variables Mementos uses at trigger points to decide
whether to checkpoint.

age V and the capacitance C determine the energy
that remains in the capacitor as Eremaining = (CV 2)/2.

2. Estimates the energy cost of finishing the program:
Cfinish ≈ Eprogram− (E0−Eremaining), where E0 is the
initial energy on wake.

3. Estimates the energy cost Ccheckpoint of writing state
to non-volatile storage (checkpointing).

4. Decides what to do next: if Cfinish ≤ Ccheckpoint ≤
Eremaining, return to the computation. If Ccheckpoint ≤
Eremaining < Cfinish, checkpoint. Otherwise, save a
very small amount of state to non-volatile informa-
tion memory to indicate that checkpointing should
be more aggressive in the device’s next lifecycle.

At the beginning of run time, Mementos measures the
total available energy (E0 above). It checks a predeter-
mined location in non-volatile memory for a restorable
checkpoint. If it finds no such checkpoint, it starts the
program from the beginning. If it does find a check-
point, it uses the checkpointed information to restore the
program’s state, including the program counter. It then
resumes execution of the program at the point where it
had been suspended. Figure 1 illustrates the operation of
checkpointing.

We note that energy measurement is not a zero-cost
primitive operation; it involves using an on-chip ADC
to measure the storage capacitor’s voltage. On a WISP
(Rev. 1) prototype, we measured the per-bit energy con-
sumption of an ADC read operation to be equivalent to
the per-bit energy consumption of a flash write operation.

2.2 Program Reordering
Program reordering means rearranging blocks of program
code. Whereas scheduling considers how to order seg-
ments that are already separate, program reordering de-
composes a single program into segments and schedules

those segments. Two observations motivate our sugges-
tion of program reordering in the CRFID model: first, if a
program comprises multiple distinct parts, in some cases
it is possible to automatically determine the execution or-
der dependencies among those parts. Second, certain op-
erations (e.g., flash memory erasure) require high supply
voltage. Taking capacitor leakage into account, Memen-
tos aims to facilitate progress by moving high-voltage op-
erations in front of low-voltage operations in the execu-
tion order if program semantics allow.

Slack time or underclocking subtly affects scheduling
decisions as well. Instructions take more energy when
voltage is higher. Therefore, when reordering instructions
Mementos must take care to select schedules that mini-
mize the energy wasted on slack time: if two high-voltage
operations require different amounts of energy at the same
voltage, scheduling the less intensive operation first may
result in lower total energy consumption.

2.3 Challenges
Resources are limited. Low-power microcontrollers pro-
vide limited resources. Mementos necessarily imposes
some overhead in non-volatile memory for energy esti-
mates, code, and checkpoints. Using Mementos is ap-
propriate when the cost of its overhead outweighs—over
time—the cost of failures.

Identifying “state” is hard. Most programs alter reg-
isters and memory during execution. A checkpoint is of
no value unless it includes enough state to allow Memen-
tos to resume the computation where it left off, but be-
cause resources are limited, checkpoints should include
minimal non-state information. One conservative ap-
proach requires the programmer to instrument programs
with hints that highlight important state. However, be-
cause Mementos is meant to operate automatically, and
because programmers make mistakes, depending solely
on programmer input is undesirable. Mementos currently
takes the naı̈ve approach, copying key portions of RAM to
non-volatile memory. A future version of Mementos may
instrument programs for automatic identification of state.

Inaccuracy makes deciding when to checkpoint dif-
ficult. In the simplest cases, Mementos can accurately
measure available energy at each trigger point in the in-
struction stream and can completely checkpoint to non-
volatile storage just before losing power. Sadly, applica-
tions are not likely to present the simplest cases, and this
strategy is risky.

The greatest risk posed by our energy measurement and
checkpointing strategy is that power loss may occur be-
fore a checkpoint has been completely written. At first, it
appears that waiting as long as possible to checkpoint is
the best strategy in all cases. But, paradoxically, the worst
time to write to flash memory is at the end of a lifecycle
because of declining voltage. One approach to this prob-

USENIX Workshop on Power Aware Computing and Systems (HotPower 2008). November 30, 2008 3



T1 T2 T3 T4 Sleep Reset

T1 Chkpt T2 Chkpt Sleep Reset

T1 T2 T3 Chkpt Sleep Reset

T1 T2 T3 T4 Sleep Reset

T3 Chkpt Sleep Reset

T4 T5

T1 T2 T3 T4 Sleep Reset

Rtrv

Rtrv T4 T4 ChkptRtrv T5

(a)

(b)

(c)

...

Figure 1: Checkpoints allow computation to span multiple device lifecycles. Sequences (a)–(c) illustrate the effect of different
checkpointing strategies for a task T comprising equal-size subtasks T1–T5. In sequence (a), no checkpointing is done and power
fails after T4; the sequence is doomed to repeat forever. Sequence (b) shows the effect of excessive checkpointing: the computation
makes steady progress but takes three lifecycles to complete. Sequence (c) shows the optimal checkpointing strategy.

lem assumes that energy estimates are inaccurate and in-
serts trigger points earlier than the estimates recommend.

By introducing a realistic assumption about energy
availability, Mementos avoids the aforementioned para-
dox. In realistic environments, bursty but regular RF
energy puts CRFIDs in active-sleep-active-reset cycles
rather than active-reset cycles; periods of activity are in-
terrupted by periods of sleeping in which RAM is re-
tained. Mementos can prepare a checkpoint in RAM inex-
pensively just before or after the sleep period. During the
sleep period, the storage capacitor is replenished. When
voltage becomes sufficient, the CPU wakes up and Me-
mentos uses the high voltage to store a checkpoint to non-
volatile memory. We call this technique Flash Forward.

2.4 Example: modexp
To demonstrate the utility of Mementos, we implemented
a standard iterative modular exponentiation algorithm on
a WISP (Rev. 1) and instrumented it to raise a GPIO pin
on the WISP’s CPU upon completion. The toy algorithm
repeatedly halves a 32-bit exponent while squaring a 32-
bit base and reducing by a 32-bit modulus. After charg-
ing the WISP’s storage capacitor to 4.5 V using an ex-
ternal power supply, we removed the power supply and
observed the WISP’s voltage and GPIO pin on an oscillo-
scope. Without checkpointing, the CPU’s voltage fell be-
low 2.7 V—the voltage supervisor’s cut-off point—before
the WISP signaled completion. We instrumented a sec-
ond version of the algorithm with a checkpoint routine
that interrupted execution after 15 iterations and wrote the
current values of the base, exponent, and accumulated re-
sult to non-volatile memory. We repeated the original ex-
periment and observed that the program signaled comple-
tion after one full charge/execute/recharge/execute cycle.
Transiently supplying energy with an external power sup-
ply simulates the worst-case energy availability circum-
stances — i.e., total loss of harvestable energy.

2.5 Applications
Mementos on CRFID is not suitable for all applications.
Applications that are good candidates for deployment on
Mementos share several attributes:

• They require more computational resources than
could comfortably be provided by conventional
RFID in a single lifecycle.

• They must be at least somewhat delay-tolerant; it is
always possible that any given CRFID device may
not be able to harvest enough energy to compute at
any given time.

• Their computations are amenable to splitting so that
chunks of execution can occur in different device
lifecycles.

We provide examples of applications that may benefit
from Mementos.

Zero-power security. Halperin et al. [8] used a proto-
type CRFID device to build a defense mechanism for an
implantable medical device. They implemented a simple
authentication protocol based on RC5; the device raised a
CPU pin to signal another device that it was safe to use
its own limited battery to communicate with an external
party. The advantage of their technique is that the party
that wants to authenticate must “pay” the energy cost of
the authentication. A future version could leverage Me-
mentos to implement more sophisticated cryptography.

Visitation proofs. Benaloh and de Mare [2] intro-
duced cryptographic accumulators, which allow member-
ship proofs in constant space. A CRFID device using
Mementos could securely and reliably accumulate values
with the goal of proving that the device visited a required
set of locations.

2.6 Measurements
To measure capacitor leakage, we charged the 10 µF stor-
age capacitor on a WISP (Rev. 1) to 4.5 V using an ex-
ternal power supply, then removed the power supply and
measured the capacitor’s voltage as the WISP’s CPU slept
in RAM retention mode. The capacitor exhibited a drop
from 4.5 V to 2.7 V (the WISP’s minimum operating
voltage, comfortably above the 2.2 V threshold for flash
writes and the 1.8 V threshold for microcontroller opera-
tion) in 700 ms, after which the WISP’s voltage supervi-
sor cut power to the CPU. Executing an infinite loop in-

USENIX Workshop on Power Aware Computing and Systems (HotPower 2008). November 30, 2008 4



crementing a counter instead of sleeping reduced the fall
time to 92 ms.

In a resource-limited CRFID environment, it is pos-
sible to observe the effects of individual instructions on
the storage capacitor’s voltage. For example, writing to
flash memory is expensive in terms of current, voltage,
and time. We measured energy per instruction for each
type of memory access by observing the storage capaci-
tor’s voltage drop on an oscilloscope. A clear hierarchy of
energy consumption, illustrated by Table 2, emerged, with
flash memory writes requiring disproportionately large
amounts of energy. Note that reading from flash memory
is comparable to reading from RAM.

Instr. Dest. Src. Energy/Instr. (nJ) Perc. Error
NOP — — 2.0 4%

reg 1.1 23%
MOV reg flash 5.2 17%

mem 6.3 33%
reg 8.1 13%

MOV mem flash 11.8 4%
mem 11.7 7%
reg 461.0 4%

MOV flash flash 350.3 1%
mem 1126.2 4%

Table 2: Energy required per instruction varies on the TI
MSP430F1232. Each figure is the average of 5 measurements
(smallest and largest discarded) on a WISP (Rev. 1).

Additionally, we observed that the energy consump-
tion of a flash memory write on the MSP430 is not data-
dependent. For each of four values containing different
numbers of 0 bits, we measured the total energy con-
sumption of writing the value to five consecutive words of
flash memory (averaged over five runs). We observed that,
for example, the energy costs of writing an all-0 value
and an all-1 value were indistinguishable within the error
bounds.

3 Related Work
Work on checkpointing computations has long focused on
providing insurance against occasional failures; the fun-
damental difference in our work is that failure is the com-
mon case. Plank et al. [9] discuss checkpointing strategies
in detail; their portable Libckpt library for UNIX imple-
ments both automatic (periodic, checkpoint-on-write) and
user-directed checkpointing strategies.

Research on wireless sensor networks has yielded
many results related to minimizing energy consumption.
Eon [12] is an energy-aware programming language de-
signed to facilitate “perpetual” systems built on energy
harvesting devices. Mementos shares many of Eon’s
goals—long-running computation, easy programmability,
accurate on-line energy measurement—but does not re-

quire the programmer to reformulate programs into flows,
has tighter resource constraints, and lacks access to a so-
phisticated operating system.

Sensor networking research has also led to develop-
ments in cooperative checkpointing. Using neighbor
nodes to store state information [15] is not an option for
CRFIDs because they lack the ability to initiate conver-
sations. Checkpointing as a “macroprogramming” prim-
itive [7] is an appealing concept, but no macroprogram-
ming platform for CRFIDs currently exists.

Buettner et al. [3] describe WISP-based RFID sen-
sor networks (RSNs) that present attractive alternatives to
conventional mote-based wireless sensor networks. They
discuss the challenges RSNs face — emphasizing the in-
termittent nature of harvested energy and the asymmet-
ric nature of the underlying RFID protocol. They suggest
program splitting as an approach to the execution of large
programs. CRFIDs endure many of the same challenges
as RSNs, but with emphasis on computation. Our CRFID
approach in Mementos [10] focuses on checkpointing and
scheduling that do not require manual splitting of pro-
grams. We believe Mementos is the first system that auto-
mates the instrumentation and execution of programs that
tolerate intermittent power on CRFIDs.

Chae et al. [4] demonstrated RC5 on a WISP CRFID by
carefully choosing parameters so that computations would
finish in a single lifecycle. Mementos aims to facilitate
computation that spans multiple lifecycles.

4 Open Problems
The benefits of Mementos may remain compelling as
hardware improves. One direction for hardware improve-
ment is in the area of slack time, the energy cost of which
depends on frequency and voltage. Energy efficiency re-
search has focused on the NP-hard [1] problem of opti-
mal discrete dynamic voltage selection, in which proces-
sor voltage is selected from a small set after a frequency
is selected. The continuous case is easier than the discrete
case [1], but hardware limitations—namely, the need to
carefully tune analog phase-locked loop and voltage reg-
ulator designs [5]—make continuous frequency scaling
impractical. We hope our work motivates work on low-
energy designs that permit higher-resolution frequency
scaling.

Our techniques may also be applicable to devices that
are powered by conventional batteries, although on a
much longer timescale; Mementos would likely need to
estimate energy differently. Our work targets present-
day computational RFIDs, which are powered by con-
ventional capacitors and run out of energy quickly. Fu-
ture CRFIDs may include supercapacitors instead of con-
ventional capacitors, as Yeager et al. [14] demonstrate.
Supercapacitors store more energy per unit volume than
conventional capacitors, enabling semi-autonomous com-

USENIX Workshop on Power Aware Computing and Systems (HotPower 2008). November 30, 2008 5



putation without a constant supply of harvestable energy,
but they charge slowly; it may take several hours to charge
a CRFID’s supercapacitor sufficiently for several hours of
periodic computation. Future work may strike a balance
between supercapacitors and quick-charging conventional
capacitors.

Future CRFIDs may also incorporate more memory.
While we performed experiments on a WISP (Rev. 1)
CRFID, its inventors released a new version [11] bear-
ing a different MSP430 microcontroller with four times
as much RAM (1 KB) and four times as much flash mem-
ory (32 KB). Advances in microcontroller design and fab-
rication may allow further expansion of memory without
increasing power consumption.

5 Conclusion
Computational RFIDs will enable pervasive computation
in places where battery-operated devices are difficult to
maintain. Our framework motivates the notion of com-
putational checkpoints as a fundamental abstraction. The
preliminary design of Mementos generates compile-time
energy hints for energy-aware checkpoints at run-time,
and reorders voltage-sensitive instructions while main-
taining program semantics to more effectively utilize en-
ergy from a continuously varying supply voltage.

6 Acknowledgments
We thank the anonymous reviewers and the members of
the SPQR group at UMass Amherst Computer Science
and Electrical Computer Engineering for their comments
and suggestions. We further thank Wayne Burleson for
guidance on architectural and circuit-level behaviors of
CRFIDs; John Tuttle for assistance with energy measure-
ments; and Alanson Sample and Joshua Smith from Intel
Research for their generous support of the WISP platform.
This research was supported by NSF grants CNS-0520729
and CNS-0627529. This research is supported in part by
UMass through the CVIP Technology Development Fund.
This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award
Number 2006-CS-001-000001. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the
U.S. Department of Homeland Security.

References
[1] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng, and B. M.

Al-Hashimi. Overhead-conscious voltage selection for dy-
namic and leakage energy reduction of time-constrained
systems. In Design, Automation and Test in Europe Con-
ference and Exposition (DATE), pages 518–525. IEEE
Computer Society, 2004.

[2] J. C. Benaloh and M. de Mare. One-way accumulators:
A decentralized alternative to digital signatures (extended
abstract). In EUROCRYPT, pages 274–285, 1993.

[3] M. Buettner, B. Greenstein, A. Sample, J. R. Smith, and
D. Wetherall. Revisiting smart dust with RFID sensor net-
works. In Proc. 7th ACM Workshop on Hot Topics in Net-
works (HotNets-VII), October 2008.

[4] H.-J. Chae, D. J. Yeager, J. R. Smith, and K. Fu. Maximal-
ist cryptography and computation on the WISP UHF RFID
tag. In Proceedings of the Conference on RFID Security,
July 2007.

[5] A. P. Chandrakasan, W. J. Bowhill, and F. Fox. Design of
High-Performance Microprocessor Circuits. Wiley-IEEE
Press, 2000.

[6] C. Ellis. Controlling Energy Demand in Mobile Comput-
ing Systems. Synthesis Lectures on Mobile and Pervasive
Computing. Morgan & Claypool, 2007.

[7] R. Gummadi, N. Kothari, T. Millstein, and R. Govin-
dan. Declarative failure recovery for sensor networks. In
Aspect-Oriented Software Development, 2007.

[8] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S.
Clark, B. Defend, W. Morgan, K. Fu, T. Kohno, and W. H.
Maisel. Pacemakers and implantable cardiac defibrillators:
Software radio attacks and zero-power defenses. In IEEE
Symposium on Security and Privacy, May 2008.

[9] J. S. Plank. Libckpt: Transparent checkpointing under
Unix. In USENIX 1995 Technical Conference.

[10] B. Ransford and K. Fu. Mementos: A secure platform for
batteryless persvasive computing, August 2008. USENIX
Security Works-in-Progress Presentation.

[11] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mami-
shev, and J. R. Smith. Design of an RFID-based battery-
free programmable sensing platform. In IEEE Transac-
tions on Instrumentation and Measurement, 2008.

[12] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D.
Corner, and E. D. Berger. Eon: A Language and Runtime
System for Perpetual Systems. In ACM SenSys, November
2007.

[13] R. Want. RFID Explained: A Primer on Radio Frequency
Identification Technologies. Synthesis Lectures on Mobile
and Pervasive Computing. Morgan & Claypool, 2006.

[14] D. Yeager, P. Powledge, R. Prasad, D. Wetherall, and
J. Smith. Wirelessly-Charged UHF Tags for Sensor Data
Collection. In RFID, 2008 IEEE International Conference
on, pages 320–327, 2008.

[15] S. Yi, J. Heo, Y. Cho, and J. Hong. Adaptive mobile check-
pointing facility for wireless sensor networks. In M. L.
Gavrilova, O. Gervasi, V. Kumar, C. J. K. Tan, D. Taniar,
A. Laganà, Y. Mun, and H. Choo, editors, ICCSA (2), vol-
ume 3981 of Lecture Notes in Computer Science, pages
701–709. Springer, 2006.

USENIX Workshop on Power Aware Computing and Systems (HotPower 2008). November 30, 2008 6


	Introduction
	Framework for Forward Progress
	Background on CRFIDs

	The Mementos System
	Execution Checkpointing
	Program Reordering
	Challenges
	Example: modexp
	Applications
	Measurements

	Related Work
	Open Problems
	Conclusion
	Acknowledgments

