
Secure Software Updates: Disappointments and New Challenges

Anthony Bellissimo, John Burgess, Kevin Fu
{twon, jburgess, kevinfu}@cs.umass.edu

Department of Computer Science, University of Massachusetts Amherst
http://prisms.cs.umass.edu/

Abstract
A client can use a content distribution network to se-
curely download software updates. These updates help
to patch everyday bugs, plug security vulnerabilities, and
secure critical infrastructure. Yet challenges remain for
secure content distribution: many deployed software up-
date mechanisms are insecure, and emerging technolo-
gies pose further hurdles for deployment. Our analysis of
several popular software update mechanisms shows that
deployed systems often rely on trusted networks to dis-
tribute critical software updates — despite the research
progress in secure content distribution. We demonstrate
how many deployed systems are susceptible to weak
man-in-the-middle attacks. Furthermore, emerging tech-
nologies such as mobile devices, sensors, medical de-
vices, and RFID tags present new challenges for secure
software updates. Sporadic network connectivity and
limited power, computation, and storage require a re-
thinking of traditional approaches for secure content dis-
tribution on embedded devices.

1 Introduction

Every day, millions of computer users update software —
some manually, some automatically, and some unknow-
ingly. Indeed, 69 of the last 71 CERT Technical Cyber
Security Alerts1 suggest applying patches, upgrades, or
updates to resolve security vulnerabilities [33]. Corpo-
rations reportedly spent more than $2 billion in 2002 on
patch management for operating systems alone [3]. Sur-
prisingly, many deployed systems do not make use of
well-understood techniques from secure content distri-
bution (Table 1).

At the same time, emerging technologies such as mo-
bile devices, sensors, and RFID tags sporadically con-
nect to the edge of the Internet. These emerging tech-
nologies bring additional challenges for securely updat-
ing embedded software. For instance, the FDA has

To appear at the USENIX Hot Topics in Security Workshop (Hot-
Sec), July 2006, Vancouver, Canada.

1Two of the 71 alerts do not suggest applying updates because up-
dates were not yet available.

recently relaxed rules on embedded software in medi-
cal devices [11, 13]. The design requirements are now
less stringent for mechanical/electrical failsafes to act as
backups to software. One implantable infusion pump re-
sulted in two overdose deaths and several injuries be-
cause the software in the wireless programmer allowed
a clinician to transpose the hours and minutes field [5].
While it is a challenge to design user interfaces to prevent
accidents, even a sound user interface will not prevent
malicious updates generated by a wireless adversary.

We first report on the state of the art in secure au-
tomatic updates. The results are disappointing. Many
software update mechanisms lack basic security mea-
sures such as verification of digital signatures. Left open
and unprotected, these update channels serve as an ideal
backdoor for spreading malicious code.

Embedded devices such as mobile phones, sensors,
medical implants, and advanced RFID tags increasingly
run more sophisticated software. One could apply tech-
niques from secure content distribution for updating soft-
ware on these new technologies. However, traditional
approaches in secure content distribution often assume
a well-connected network or a well-provisioned client.
Thus, we enumerate several of the new challenges for
updating software on embedded devices.

2 Survey of Deployed Update Systems

We begin by analyzing the resistance of several existing
software update systems to man-in-the-middle attacks
(MITM). Surprisingly, several systems lack protection
against weak MITM attacks (Table 1).

Apple MacOS Software Update. Apple signs its bi-
nary updates to ensure software integrity and authentic-
ity. Each update includes a file named “signature” con-
taining a 1,024-byte signature of the hash of the accom-
panying installation executable. Each installation binary
is checked against its signature which may only be signed
by the private key held by Apple Computer Corp. (whose
public key is included on the operating system’s installa-
tion media). No encrypted connections are needed, nor

verification that Apple manages the servers providing
the downloads. System administrators running MacOS
Server can mirror updates locally for network clients to
install without providing attackers an opportunity to in-
troduce malicious updates.

Microsoft Windows Update. A Windows Update
client first determines which packages require an up-
date. The client then downloads signed packages from
a Web server, verifies the authenticity, then extracts and
installs the updates. Microsoft automatic updates cover a
large number of services and software. Thus, the update
methods must be extremely flexible. While we believe
Microsoft has invested considerable time in designing a
sound update architecture, we did not personally exam-
ine the Windows Update system [36]. Microsoft explains
that:

In general, Windows Update uses the
same Authenticode code-signing technology,
including indirect signing via catalog files, that
Microsoft recommends and supports for ISVs
and IHVs. All signatures (whether embed-
ded Authenticode or catalog files) are RSA-
SHA1 signatures chaining to specific, known
Microsoft roots (at least 1024-bit RSA for end-
entity signing keys, at least 2048-bit RSA for
intermediate and root CAs). Catalog files con-
tain SHA1 hashes of components that don’t
support embedded signatures (like text files)
and are in turn RSA-SHA1 signed. The client-
side WU code checks all signatures for crypto-
graphic and cert chain validity before installing
any updates. [16]

Measurements of the Windows Update service [12] in-
dicate that decentralized content distribution systems like
peer-to-peer services can greatly reduce inter-ISP traffic.
Thus, it is likely that distribution of future updates will
travel over less trusted infrastructure.

Adobe Acrobat Reader. Acrobat Reader’s update
mechanism also appears secure (we examined the OS X
version). The software gets the locations of specially-
formatted update files from a Web server, then down-
loads the update files. Through extensive examination
of the update file format, we determined that Adobe in-
cludes both a OS X-native disk image containing the up-
date itself and a corresponding signature. Though we
were unable to determine the precise algorithm and key
length used to generate the signature, we located the cor-
responding public key in the Acrobat Reader application
package.

Microsoft Office Update. Microsoft’s update mech-
anism for their MacOS Office products downloads an
XML-like list of available product updates and prod-
uct versions whose presence should trigger their instal-
lation. Software certificates signed by Microsoft are in-
cluded in the XML-like file for each update that can
be downloaded. Binaries downloaded for update are
checked against the signature in the corresponding cer-
tificate and not executed if the signature does not match.
Microsoft’s public key for verification of signatures is
signed by Verisign, whose root public key is included on
the MacOS installation media. However, users are often
given the advice to download and execute unsigned disk
images from unauthenticated Web sites [23].

Mozilla Firefox 1.0 & 1.5. Firefox 1.0 downloads its
update packages from a mirror server over unencrypted
HTTP, but the list of updates and their locations is down-
loaded over HTTPS. We experimented briefly with SSL
MITM, and Firefox notified the user in no uncertain
terms that someone was doing something nasty with the
update process. It did eventually allow the user to accept
our certificates and retrieve the list through the middle-
man, but only after clicking through two warnings about
untrusted certificates. Firefox 1.5 was released during the
course of our survey, and now prevents a user from ignor-
ing warnings about suspicious certificates. However, the
list of updates and locations itself is not authenticated.
Thus, DNS spoofing of these metadata servers may open
an avenue for MITM attacks.

Fugu. Fugu is a commonly-used free sftp/scp agent for
MacOS X. Fugu has a “Check for Updates” function on
its menu bar. The program downloads an XML doc-
ument from a predefined location detailing the newest
available application version along with the location
where the program may download the latest version. Al-
though a spoofed DNS response or XML interception-
and-modification could spread malicious code, only a
disk image is mounted to the user’s desktop. Execution
of the downloaded program must be initiated manually
by copying the binary from the disk image into the “Ap-
plications” folder and then calling the executable as nor-
mally required when running Fugu. The user may exe-
cute malicious code, but it will be restricted to the user’s
privileges unless the malicious application requested and
obtained a root password from the user. An naı̈ve user
might be fooled into producing the root password for
malicious code, but this attack is not substantially eas-
ier than posting a malicious executable on a Web site for
a user to download and execute manually.

Software Platform Authenticated Connection? Authenticated Binaries?
Apple Software Update MacOS no yes
Windows Update Windows partially yes
Adobe Acrobat MacOS no yes
Microsoft Office MacOS no yes
Mozilla Firefox Windows partially no
Fugu MacOS no no
McAfee VirusScan Windows no no
McAfee VirusScan Enterprise Windows unknown yes
McAfee Virex MacOS no no*
Debian Linux no yes

Table 1: A security analysis of several software update systems. For each software package, we analyzed network
traces and mounted MITM attacks to determine whether connections were authenticated and whether binary software
updates were authenticated (i.e., appearing to have a digital signature). *In one study, we were able to install root-
privileged code via DNS spoofing. Authenticated binaries without authenticated connections are sufficient for end-to-
end secure content distribution.

McAfee VirusScan. When VirusScan is first installed,
it installs and registers a number of ActiveX compo-
nents. This must be done with the user’s explicit con-
sent, though once the controls are installed they may be
re-instantiated freely. The main application’s dialogs are
built from HTML and VBScript, and rendered using Mi-
crosoft’s HTML engine. To start the update process, the
client makes a HTTP POST request with version num-
bers of the component DLLs, executables, and virus defi-
nition file. It then parses the reply generated by the server
to determine whether any components are out-of-date. If
so, the client requests a number of documents from the
server over HTTP, including VBScript instructions that
control the behavior of the ActiveX components that the
user authorized when the software was installed.

Although we cannot say whether the ActiveX controls
expose more functionality than necessary, they certainly
expose enough to be dangerous. One of the functions ex-
ported by one of the controls is a simple wrapper around
the Windows API ShellExecute function (analogous to
the POSIX fork/exec*/waitpid or spawn* family of func-
tions). By injecting commands into the VBScript re-
turned by the server, the McAfee Updater can be forced
to execute arbitrary commands on the Windows machine
with the access level of the updating user. This prob-
lem is compounded by the fact that the user must have
administrative privileges to update the software. We ex-
ploited this functionality to download and execute code
of our choice. We injected the commands using a simple
program that sits between the victim and a Squid Web
proxy/cache which has the ability to modify the content
of messages in either direction. We modify the inbound

data to reflect that the client is out-of-date (whether or
not this is the case), which causes the client to request
the exploitable VBScript from the server. We then in-
ject our commands into the desired place in the returned
VBScript in order to trigger the desired behavior.

We briefly examined the “Enterprise” edition of
McAfee’s VirusScan software, intended to be deployed
internally at institutions such as corporations and univer-
sities. When this product performs an update, no script is
downloaded from the network to drive the update mech-
anism. Instead, it simply retrieves named files from an
administrator-configurable location, determined at install
time. Additionally, the updates themselves are encrypted
and signed using public-key cryptography. We are un-
sure why this markedly more secure design was chosen
for one product but not the other.

ActiveX considerations. When an ActiveX control is
installed, it is typically bound to a domain from which
it is allowed to be instantiated. We were unsuccessful
in invoking the vulnerable ActiveX control on another
Web page, which indicates that this part of the instal-
lation process was done properly. However, malicious
DNS replies remain a problem. We successfully pointed
“www.mcafee.com” at our attacker, then used the root
page to instantiate the vulnerable controls to run the ex-
ploit. A more sophisticated attack could use Apache’s
native URL Rewriting to reduce suspicion by users. The
code installed and executed by the control would already
be working silently on the user’s machine.

Despite the amount of bad press Microsoft’s ActiveX
technology has received with respect to security, the cen-

tral problem with the technology is that, even though it
is being instantiated and scripted over an untrustworthy
medium (the network), users must trust the control not
to abuse the very low-level control it has over their ma-
chine. In addition to our exploitation of McAfee’s update
control, there have been other recent ActiveX-related ex-
ploits. One involved Sony’s XCP DRM software [29];
the original uninstaller came packaged as an ActiveX
control that remained on the user’s machine after the
uninstallation of the DRM software. Not only could this
control be instantiated from pages on an arbitrary do-
main (unlike the McAfee control), it also exposed the
machine to executing arbitrary code without verification
that it came from a trusted source.

McAfee Virex 7 for MacOS. Virex update manager
asks the user to authenticate as an administrator, then
proceeds to log on anonymously to McAfee’s FTP server
and checks the time of the files in a particular directory.
This time is given in the filename, and is independent of
the timestamp on the server. If the client finds an update
newer than the last one retrieved, the client downloads
and unpacks the update. The update file contains an OS
X installer package, which can contain arbitrary code,
as well as pre- and post-installation instructions. Since
Virex has already obtained the root access needed by the
installer, the client silently runs the install package in the
background after retrieving it.

Employing DNS spoofing, we successfully convinced
the Virex updater to install and run our arbitrary code.
We mirrored the directory structure of the real server on
our spoofed server, and placed a package dated January
1, 2006 (V7060101.gz) at the location that the updater
searches for updates. The updater downloaded and in-
stalled the files in the package without complaint. We
used the post-install script in the package to execute our
code, which ran with root privileges.

Debian Linux. Debian distributes signed packages,
but the distributed developers are having difficulty sign-
ing software in a manner convenient for users. In 2005,
many users were unable to install updates because of an
elusive public key. Debian changes its signing key each
year [6], but until recently there was no procedure to se-
curely locate the latest public key. Signed software distri-
butions are common in the open-source community. For
instance, RedHat issues packages in the form of signed
RPMs [30].

3 What’s Next for Secure Updates?

The following section analyzes the present-day methods
for secure updates. We also enumerate the new chal-
lenges for secure updates in the context of embedded de-
vices (e.g., RFID tags and sensors).

3.1 Authenticity Now!

Researchers have largely failed to transfer technology
from secure content distribution into software updates for
standalone applications, as demonstrated by our survey
of deployed software.

Incapable standalone applications. Our study indi-
cates that operating systems tend to have better designed
update methods — as compared to the methods of stan-
dalone software applications. Operating systems have
the luxury of having more centralized control. For in-
stance, Microsoft and Apple tightly control the distribu-
tion of signed software under well-known public keys.
Debian and other open-source operating systems also
tend to have moderately tight controls over signed pack-
ages, but the public keys are sometimes elusive.

Operating systems are so monolithic, that an inte-
grated software update mechanism is a necessity for
smooth operation. Updates appear regularly, and operat-
ing systems live or die depending on the quality of pack-
age maintenance. On the other hand, standalone applica-
tions have the weakest update methods. We suspect that
small applications do not have the resources to support
an advanced software update system. Whereas an op-
erating system can leverage a single update system for
many thousands of packages, a standalone application
must bear the entire cost.

Unawareness. Though the principles of secure, au-
thenticated software distribution are well-understood, we
have shown that these principles are not necessarily fol-
lowed, even in popular software. We believe one cause
to be unawareness both by consumers and producers of
software. To a consumer, a secure software update sys-
tem and an insecure software update system are indis-
tinguishable in non-hostile environments. On the pro-
ducer side, MITM attacks could be mitigated by follow-
ing best practices such as signed mobile code [31] and
secure content distribution [9, 17, 19, 27]. We believe
that the lack of deployment of secure updates is also a
result of time-to-market priorities: first get the updates
to work, then later secure the update channel. We hope

to bring more awareness to the unfinished security objec-
tives.

Apathy. Perhaps users and producers of software sim-
ply do not care about authenticity. One rationalization
is that because much software is downloaded insecurely
from an untrusted source, it doesn’t matter if the updates
are secure. The code is already insecure. An approach
to securing such untrustworthy software is to confine the
code to a sandbox or virtual machine [34]. Thus, se-
cure update services will be most effective for software
initially obtained from a secure source (e.g., trusted in-
stallation media or code signed by a trusted party). Un-
fortunately, confinement does not work for all applica-
tions. For instance, anti-virus scanners require access to
restricted resources.

For software initially installed from untrustworthy
sources, secure updates will at best give assurance that
the updated software came from the same untrusted
source. The initial install is taken on faith, but all fu-
ture actions are tied to reputation and the initial leap of
faith.

3.2 Secure Updates for Embedded Devices
An amazing number of emerging technologies make use
of software updates. Software runs in medicinal im-
plants [22], digital video recorders, cars [10], mobile de-
vices [21], delay-tolerant networks [4], RFID tags [14],
and secure sensors [15, 26]. Several constraints exist for
such embedded devices.

Untrusted infrastructure. Nomadic devices often
give an administrator no chance to consent to a software
update. For instance, an RFID tag has no user interface.
An implanted medicinal pump cannot provide a dialog
box to a patient. Moreover, the result of a medicinal
pump is rarely idempotent. Thus, any software update
mechanism should remain secure without a user’s direct
involvement.

No application should trust the network. But in em-
bedded systems, there are even more opportunities for
untrusted components to interfere with secure updates.
For instance, RFID tags communicate entirely through
untrusted readers. There is no opportunity for a user to
give or deny consent to an update.

Sporadic network connectivity. RFID tags and hu-
man implants connect to networks only when in range.
Moreover, most automatic updates work in the back-
ground when a computer or network is idle. With mo-

bile devices, it will be more difficult to work in the back-
ground because it is also when the device is offline.

Network throughputs are likely to remain low on em-
bedded devices because the cost of deploying a spare net-
work of devices is much cheaper than deploying a dense
network (e.g., disruption tolerant networking [4]). More-
over, push-based approaches alone will not work for no-
madic devices that attach to networks only sporadically.
Instead, devices will need to pull for updates.

Limited local resources. RFID tags lack the local re-
sources for advanced cryptographic protocols. Embed-
ded devices often have limited working memory, making
the most common protection mechanisms challenging to
implement. Thus, it is more likely that embedded devices
will offload computations to more powerful, semi-trusted
third parties such as RFID readers. Sensors have limited
power and the most widely deployed RFID tags have no
local power. Medicinal implants and heart pacemakers
operate on limited batteries. Modern RFID tags measure
storage in the thousands of bits. Merely storing client
software for verifying secure updates is difficult.

3.3 Recommendations
Secure updates have many technical, economic, and so-
cial challenges. While we doubt that any approach can
address all the challenges perfectly, we make several rec-
ommendations for ensuring reasonably secure updates.

Develop a standard for secure updates. Small-time
software houses tend to implement their own homebrew
update methods. The cost of developing a sound and se-
cure update system is too great for any individual soft-
ware project to bear. The community would be much
healthier if software publishers were to momentarily set
aside differences and establish an open set of standards
for secure updates. Security is too important to be ped-
dled as a proprietary system. Imagine if every company
invented its own secure channels instead of using one of
a few well-understood systems like SSL/TLS or IPSec.
A standards body should take a stand for the collective
interests of all parties. We all need secure updates.

Secure notification. From the client’s perspective,
software updates consist of two operations: notification
of the existence of an update, and then the installation
of the update itself. We suspect that many notification
systems are not resistant to attackers that trick a client
into thinking no updates are available. Imagine a MITM
attack that simply responds to all update requests with,

“No updates are available at this time.” We are not aware
of this attack in the wild yet, but it’s relatively simple
to stop. For instance, the SFS read-only file system is
fast enough to support short expiration times on large
quantities of signed content [9]. SFSRO also includes
an authenticated directory of all file handles in the file
system. Thus, a client can verify that servers respond-
ing with “No updates available” are actually speaking the
truth.

Follow the open design principle [32]. The open de-
sign principle roughly states that it is usually better to
design a secure system with publicly scrutinized technol-
ogy rather than with proprietary homebrew technology.

Assume an untrusted infrastructure The larger the
Internet becomes, the more infrastructure joins the net-
work. Yet trust is eroding. File systems can operate on
untrusted servers [18], but a server is just one of many
untrusted components. To ensure secure updates in the
future, designs should not trust the infrastructure. Rather,
the update mechanisms should verify end-to-end authen-
ticity of updates.

4 Related Work
Worm containment. Software updates on servers
are as of yet an ineffective first-line defense against
worms [28, 35] because administrators are wary of in-
stalling updates — leaving the software vulnerable. We
believe that automated updates will forcefully become
more commonplace, with software publishers installing
updates without user consent. If this prediction comes
to pass, a secure update mechanism will be necessary to
prevent the update channel itself from becoming a new
vector of attack.

Replication on untrusted hosts. Several systems use
Merkle hash trees [20] for efficient and secure signing of
content. For instance, the SFS read-only file system (SF-
SRO) [9] uses signed Merkle hash trees so that a single
publisher can make content available at high throughput
to many readers who download content from untrusted
servers. Unfortunately, the SFSRO client software is too
large to fit on a embedded device such as an RFID tag.

Given a small set of trusted hosts, a content distri-
bution system can detect and discipline badly behav-
ing replicas [27]. In embedded devices, corrections will
be more difficult to realize because of sporadic network
connectivity.

Secure HTTP servers [8] provide authenticated con-
nections, but do not provide end-to-end authentication of

content mirrored on untrusted hosts as is common with
open source software. Secure DNS [7] signs individual
DNS records, but requires a separate PKI to support ba-
sic features such as revocation and public key discov-
ery. Techniques from TLS and secure DNS may play a
larger role in securing databases associated with RFID
tags [25], where there are as of yet no legacy systems.

Revere distributes signed updates over an overlay net-
work for scalability [17]. Overlay techniques and aggres-
sive pre-positioning of content at the edge of the network
(e.g., RFID readers) have potential for overcoming the
sporadic network connectivity challenge.

Managing software updates. Many tools provide de-
pendency checking in software updates, but ultimately
trust the network for the secure distribution of content
(Table 1). Managing the updates themselves pose many
additional challenges for distributed systems [1] and dy-
namic software updating [24].

5 Conclusion

In deployed software update systems, insecurity results
from incapable standalone applications, unawareness,
and apathy. In this paper, we demonstrate how to com-
promise a computer via a software update (it happens
to be a type of computer immunodeficiency weakness).
We believe that software engineers will need to more se-
riously embrace secure content distribution as more at-
tackers — bored of traditional attack vectors — begin
to exploit such widely-deployed software update mecha-
nisms.

Our position is that embedded devices will also need
a mechanism for secure software updates. While exist-
ing approaches help in secure distribution of software
for general purpose computers, the benefits do not trans-
fer well to the constrained environment of embedded de-
vices with sporadic network connectivity and limited re-
sources.

Secure content distribution provides one layer in the
infrastructure for software updates. Good mobile code
hygiene can provide further security. But by designing
secure update mechanisms for the challenging environ-
ment of untrusted infrastructure, we can better tackle
problems such as secure evolution of software and up-
dates of unattended critical infrastructure. Our full sur-
vey and video demonstration appear on [2].

Acknowledgments

We thank the anonymous reviewers, Andy Ellis, Edwin
Foo, and Adam Stubblefield for their helpful feedback on
early versions of this paper. We thank McAfee for fixing
the MITM vulnerabilities we identified in an earlier term
project [2].

References
[1] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simulation:

How to upgrade distributed systems. In HotOS IX, May 2003.

[2] A. Bellissimo and J. Burgess. Authentication failure attacks
in software update mechanisms, Dec. 2005. http://www-
edlab.cs.umass.edu/cs691i/projects.html decrypt with password
“Ihsac”.

[3] G. Brandman. Patching the interprise. ACM Queue, Mar. 2005.

[4] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. Max-
Prop: Routing for vehicle-based disruption-tolerant networking.
In Proceedings IEEE Infocom 2006, Apr. 2006.

[5] Class I medical device recall of the medtronic
8870 software application card version aaa 02,
2004. http://www.fda.gov/cdrh/recalls/recall-082404b-
pressrelease.html Last Viewed July 3, 2006.

[6] Debian SecureApt. http://wiki.debian.org/SecureApt Last
Viewed July 5, 2006.

[7] D. Eastlake and C. Kaufman. Domain name system security ex-
tensions. RFC 2065, Network Working Group, January 1997.

[8] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL protocol ver-
sion 3.0. Internet draft (draft-freier-ssl-version3-02.txt), Network
Working Group, November 1996. Work in progress.

[9] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure dis-
tributed read-only file system. ACM Transactions on Computer
Systems, 20(1):1–24, February 2002. A version appeared in OSDI
2000.

[10] S. Garfinkel. History’s worst software bugs. Wired News, Nov.
2005.

[11] General principles of software validation; final
guidance for industry and FDA staff, Jan. 2002.
http://www.fda.gov/cdrh/comp/guidance/938.html Last Viewed
July 5, 2006.

[12] C. Gkantsidis, T. Karagiannis, P. Rodriguez, and M. Vojnovic.
Planet scale software updates. In ACM/SIGCOMM’06, Sept.
2006. To appear.

[13] Guidance for industry - cybersecurity for networked medi-
cal devices containing off-the-shelf (OTS) software, Jan. 2005.
http://www.fda.gov/cdrh/comp/guidance/1553.html Last Viewed
July 5, 2006.

[14] A. Juels. RFID security and privacy: A research survey. IEEE
Journal on Selected Areas in Computing, 24(2):381–394, Feb.
2006.

[15] C. Karlof, N. Sastry, and D. Wagner. Tinysec: A link layer
security architecture for wireless sensor networks. In Second
ACM Conference on Embedded Networked Sensor Systems (Sen-
Sys 2004), November 2004.

[16] B. LaMacchia. Personal communication, June 2006.

[17] J. Li. Revere – disseminating security updates at Internet scale.
PhD thesis, UCLA, 2002.

[18] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation, pages
91–106, San Francisco, CA, December 2004.

[19] U. Maheshwari and R. Vingralek. How to build a trusted database
system on untrusted storage. In Proceedings of the 4th Sym-
posium on Operating Systems Design and Implementation, San
Diego, October 2000.

[20] R. C. Merkle. A digital signature based on a conventional encryp-
tion function. In C. Pomerance, editor, Advances in Cryptology—
CRYPTO ’87, volume 293 of Lecture Notes in Computer Science,
pages 369–378, Berlin, 1987. Springer-Verlag.

[21] D. Mettler. Secure software updates for mobile devices. Mas-
ter’s thesis, Department of Information Technology, University
of Zurich, July 2002.

[22] Microchips, Inc. http://www.mchips.com/ Last Viewed June 30,
2006.

[23] Microsoft Office 2004 - 11.2.4 Mac OS X version tracker.
http://www.versiontracker.com/dyn/moreinfo/macosx/14980
Last Viewed June 29, 2006.

[24] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical dynamic
software updating for C. In Proceedings of the ACM Conference
on Programming Language Design and Implementation (PLDI),
June 2006. http://www.cs.umd.edu/projects/dsu/.

[25] Auto-ID Object Name Service (ONS) 1.0, 12 Aug. 2003. Auto-
ID Working Draft. M. Mealling, editor. Available to members at
develop.autoidcenter.org/TR/ons-1.0.pdf.

[26] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar.
SPINS: Security protocols for sensor networks. Wireless Net-
works, 8(5):521–534, Sept. 2002.

[27] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Secure data
replication over untrusted hosts. In HotOS IX, May 2003.

[28] E. Rescorla. Security holes... who cares? In Proceedings of the
12th USENIX Security Symposium, August 2003.

[29] W. Roush. Inside the spyware scan-
dal. MIT Technology Review, May 2006.
http://www.technologyreview.com/read article.aspx?id=16812
Last Viewed July 5, 2006.

[30] RPM software packaging tool. www.rpm.org Last Viewed July 5,
2006.

[31] A. D. Rubin and D. E. G. Jr. Mobile code security. IEEE Internet
Computing, 2(6):30–34, 1998.

[32] J. H. Saltzer and M. D. Schroeder. The protection of information
in computer systems. In Fourth ACM Symposium on Operating
System Principles, Oct. 1973. Revised version in Communica-
tions of the ACM 17, 7 (July 1974).

[33] Technical cyber security alerts. http://www.us-
cert.gov/cas/techalerts/ Last Viewed June 29, 2006.

[34] VMware GSX server. http://www.vmware.com/ Last Viewed
July 5, 2006.

[35] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier. Shield:
vulnerability-driven network filters for preventing known vulner-
ability exploits. In SIGCOMM ’04, 2004.

[36] Windows update and automatic updates. http://tinyurl.com/r8kl5
Last Viewed June 26, 2006.

