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A decision tree is a graphical representation of a procedure for classifying or evaluating an
item of interest. For example, given a patient’s symptoms, a decision tree could be used to de-
termine the patient’s likely diagnosis, or outcome, or recommended treatment. Figure 1 shows a
decision tree for forecasting whether a patient will die from hepatitis, based on data from the UCI
repository (Murphy & Aha, 1994). A decision tree represents a function that maps each element of
its domain to an element of its range, which is typically a class label or numerical value. At each
leaf of a decision tree, one finds an element of the range. At each internal node of the tree, one
finds a test that has a small number of possible outcomes. By branching according to the outcome
of each test, one arrives at a leaf that contains the class label or numerical value that corresponds
to the item in hand. In the Figure, each leaf shows the number of examples of each class that fall
to that leaf. These leaves are usually not of one class, so one typically chooses the most frequently
occurring class label.
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Figure 1. Hepatitis

A decision tree with a range of discrete (symbolic) class labels is called a classification tree,
while a decision tree with a range of continuous (numeric) values is called a regression tree. A
domain element is called an instance or an example or a case, or sometimes by another name
appropriate to the context. An instance is represented as a conjunction of variable values. Each
variable has its own domain of possible values, typically discrete or continuous. The space of
all possible instances is defined by set of possible instances that one could generate using these
variables and their possible values (the cross product).

1The correct citation for this article, (C) 1998 Copyright Bradford, is: Utgoff, P. E. (1998). Decision trees (pp.
222-224). In Wilson & Keil (Eds.), The MIT encyclopedia of cognitive sciences. Bradford.



Decision trees are attractive because they show clearly how to reach a decision, and because
they are easy to construct automatically from labeled instances. Two well known programs for
constructing decision trees are C4.5 (Quinlan, 1993) and CART (Breiman, Friedman, Olshen &
Stone, 1984). The tree shown in the Figure was generated by the ITI program (Utgoff, Berkman
& Clouse, 1997). These programs usually make quick work of training data, constructing a tree in
a matter of a few seconds to a few minutes. For those who prefer to see a list of rules, there is a
simple conversion, which is available in the C4.5 program. For each leaf of the tree, place its label
in the righthand side of a rule. In the lefthand side, place the conjunction of all the conditions that
would need to be true to reach that leaf from the root.

Decision trees are useful for automating decision processes that are part of an application pro-
gram. For example, for the optical character recognition (OCR) task, one needs to map the optical
representation of a symbol to a symbol name. The optical representation might be a grid of pixel
values. The tree could attempt to map these pixel values to a symbol name. Alternatively, the
designer of the system might include the computation of additional variables, also called features,
that make the mapping process simpler. Decision trees are used in a large number of applications,
and the number continues to grow as practitioners gain experience in using trees to model deci-
sion making processes. Present applications include various pixel classification tasks, language
understanding tasks such as pronoun resolution, fault diagnosis, control decisions in search, and
numerical function approximation.

A decision tree is typically constructed recursively in a top-down manner (Friedman, 1977;
Quinlan, 1986). If a set of labeled instances is sufficiently pure, then the tree is a leaf, with the
assigned label being that of the most frequently occurring class in that set. Otherwise, a test is
constructed and placed into an internal node that constitutes the tree so far. The test defines a
partition of the instances according to the outcome of the test as applied to each instance. A
branch is created for each block of the partition, and for each block, a decision tree is constructed
recursively.

One needs to define when a set of instances is to be considered sufficiently pure to constitute
a leaf. One choice would be to require absolute purity, meaning that all the instances be of the
same class. Another choice would be to require that the class distribution be significantly lopsided,
which is a less stringent form of the complete lopsidedness that one gets when the leaf is pure..
This is also known as prepruning because one restricts the growth of the tree before it occurs.

One also needs a method for constructing and selecting a test to place at an internal node.
If the test is to be based on just one variable, called a univariate test, then one needs to be able
to enumerate possible tests based on that variable. If the variable is discrete, then the possible
outcomes could be the possible values of that variable. Alternatively, a test could ask whether the
variable has a particular value, making just two possible outcomes, as is the case in the Figure.
If the variable is continuous, then some form of discretization needs to be done, so that only a
manageable number of outcomes is possible. One can accomplish this by searching for a cutpoint,
and then forming a test whether the variable value is less than the cutpoint, as shown in the Figure.

If the test is to be based on more than one variable, called a multivariate test, then one needs to
be able to search quickly for a suitable test. This is often done by mapping the discrete variables to
continuous variables, and then finding a good linear combination of those variables. A univariate
test is also known as an axis-parallel split because in a geometric view of the instance space, the
partition formed by a univariate test is parallel to the axes of the other variables. A multivariate test
is also known as an oblique split because it need not have any particular characteristic relationship



to the axes (Murthy, Kasif & Salzberg, 1994).
One must choose the best test from among those that are allowed at an internal node. This

is typically done in a greedy manner by ranking the tests according to a heuristic function, and
picking the test that is ranked best. Many heuristic tests have been suggested, and this problem is
still being studied. For classification trees, most are based on entropy minimization. By picking a
test that maximizes the purity of the blocks, one will probably obtain a smaller tree than otherwise,
and researchers and practitioners alike have a longstanding preference for smaller trees. Popular
heuristic functions include information gain, gain ratio, GINI, and Kolmogorov-Smirnoff distance.
For regression trees, most tests are based on variance minimization. A test that minimizes the
variance within the resulting blocks will also tend to produce a smaller tree than one would obtain
otherwise.

It is quite possible that a tree will overfit the data. The tree may have more structure than is
helpful because it is attempting to produce several purer blocks where one less pure block would
result in higher accuracy on unlabeled instances (instance not used in training). This can come
about due to inaccurate variable measurements or inaccurate label or value assignments. A host of
postpruning methods are available that reduce the size of the tree after it has been grown. A simple
method is to set aside some of the training instances, called the pruning set, before building the
tree. Then after the tree has been built, do a postorder traversal of the tree, reducing each subtree
to a leaf if the proposed leaf would not be significantly less accurate on the pruning set than the
subtree it would replace. This issue of balancing the desire for purity with the desire for accuracy
is also called the bias-variance tradeoff. A smaller tree has higher bias because the partition is
coarser, but lower variance because the leaves are each based on more training instances.

During the mid 1990s, researchers have been developing methods for using ensembles of
decision trees to improve accuracy (Dietterich & Bakiri, 1995; Kong & Dietterich, 1995; Breiman,
1996). To the extent that different decision trees for the same task make independent errors, a vote
of the set of decision trees can correct the errors of the individual trees.
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