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1 Hierarchical Approaches to
Concurrency, Multiagency, and
Partial Observability

SRIDHAR MAHADEVAN,
MOHAMMAD GHAVAMZADEH, GEORGIOS THEOCHAROUS
KHASHAYAR ROHANIMANESH
Computer Science Department MIT A. I. Laboratory
(mahadeva,mgh,khash)@cs.umass.edu theochar@ai.mit.edu
University of Massachusetts, Amherst Cambridge, MA

Editor’s Summary:
In this chapter the authors summarize their research in hierarchical probabilistic
models for decision making involving concurrent action, multiagent coordination,
and hidden state estimation in stochastic environments. A hierarchical model for
learning concurrent plans is first described for observable single agent domains,
which combines compact state representations with temporal process abstractions
to determine how to parallelize multiple threads of activity. A hierarchical model
for multiagent coordination is then presented, where primitive joint actions and joint
states are hidden. Here, high level coordination is learned by exploiting overall task
structure, which greatly speeds up convergence by abstracting from low level steps
that do not need to be synchronized. Finally, a hierarchical framework for hidden state
estimation and action is presented, based on multi-resolution statistical modeling of
the past history of observations and actions.

1.1 INTRODUCTION

Despite five decades of research on models of decision-making, artificial systems
remain significantly below human level performance in tasks involving the plan-
ning and execution of concurrent actions, tasks where perceptual limitations require
remembering past observations, and finally problems where the behavior of other
agents needs to be taken into account. Driving (see Figure 1.1) is one of many human
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2 CONCURRENCY, MULTIAGENCY, AND PARTIAL OBSERVABILITY

activities that involve simultaneously grappling with all these challenges. To date, a
general framework that jointly addresses concurrency, multiagent coordination, and
hidden state estimation has yet to be developed, but some of the essential components
of such a framework are beginning to be understood. In this chapter, we provide
a broad overview of our previous research on hierarchical models of concurrency,
multiagency, and partial observability.

Humans learn to carry out multiple concurrent activities at many abstraction levels,
when acting alone or in concert with other humans. Figure 1.1 illustrates a familiar
everyday example, where drivers learn to observe road signs and control steering, but
also manage to engage in other activities such as operating a radio, or carrying on
a cellphone conversation. Concurrent planning and coordination is also essential to
many important engineering problems, such as flexible manufacturing with a team
of machines to scheduling robots to transport parts around factories. All these tasks
involve a hard computational problem: how to sequence multiple overlapping and
interacting parallel activities to accomplish long-term goals. The problem is difficult
to solve in general since it requires learning a mapping from noisy incomplete
perceptions to multiple temporally extended decisions with uncertain outcomes. It
is an impressive feat that humans are able to reliably solve problems such as driving
with relatively little effort, and with modest amounts of training.

Answer cellphone Tune FM  Classical Music Station

Change LanesKeep in Lane

accelerate brake coast

Fig. 1.1 Driving is one of many human activities illustrating the three principal challenges
addressed in this chapter: concurrency, multiagency, and partial observability. To drive
successfully, humans execute multiple parallel activities,while coordinating with actions taken
by other drivers on the road, and use memory to deal with their limited perceptual abilities.

In this chapter, we summarize our past research on a hierarchical approach to con-
current planning and coordination in stochastic single agent and multiagent environ-
ments. The overarching theme is that efficient solutions to these challenges can be
developed by exploiting multi-level temporal and spatial abstraction of actions and
states. The framework will be elaborated in three parts. First, a hierarchical model
for learning concurrent plans is presented, where for simplicity, it is assumed that
agents act alone, and can fully observe the state of the underlying process. The key
idea here is that by combining compact state representations with temporal process
abstractions, agents can learn to parallelize multiple threads of activity. Next, a hier-
archical model for multiagent coordination is described, where primitive joint actions
and joint states may be hidden. This partial observability of lower level actions is
indeed a blessing, since it allows agents to speedup convergence by abstracting from
low-level steps that do not need to be synchronized. Finally, we present a hierarchi-
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Fig. 1.2 A spectrum of Markov process models along several dimensions: whether agents
have a choice of action, whether states are observable or hidden, and whether actions are
unit-time (single-step) or time-varying (multi-step).

cal approach to state estimation, based on multi-resolution statistical modeling of the
past history of observations and actions.

The proposed approaches all build on a common Markov decision process (MDP)
modeling paradigm, which is summarized in the next section. Previous MDP-
based algorithms have largely focused on sequential compositions of closed-loop
programs. Also, earlier MDP-based approaches to learning multiagent coordination
ignored hierarchical task structure, resulting in slow convergence. Previous finite
memory and partially observable MDP-based methods for state estimation used
flat representations, which scale poorly to long experience chains and large state
spaces. The algorithms summarized in this chapter address these limitations in
previous work,by using new spatiotemporal abstraction based approaches for learning
concurrent closed-loop programs and abstract task-level coordination, in the presence
of significant perceptual limitations.

1.2 BACKGROUND

Probabilistic finite state machines have become a popular paradigm for modeling
sequential processes. In this representation, the interaction between an agent and its
environment is represented as a finite automata, whose states partition the past history
of the interaction into equivalence classes, and whose actions cause (probabilistic)
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transitions between states. Here, a state is a sufficient statistic for computing optimal
(or best) actions, meaning past history leading to the state can be abstracted. This
assumption is usually referred to as the Markov property.

Markov processes have become the mathematical foundation for much current work
in reinforcement learning [36], decision-theoretic planning [2], information retrieval
[8], speech recognition [11], active vision [22], and robot navigation [14]. In this
chapter, we are interested in abstracting sequential Markov processes using two
strategies: state aggregation/decomposition and temporal abstraction. State decom-
position methods typically represent states as collections of factored variables [2],
or simplify the automaton by eliminating “useless” states [4]. Temporal abstraction
mechanisms, for example in hierarchical reinforcement learning [37, 6, 25], encap-
sulate lower-level observation or action sequences into a single unit at more abstract
levels. For a unified algebraic treatment of abstraction of Markov decision processes
that covers both spatial and temporal abstraction, the reader is referred to [29].

Figure 1.2 illustrates eight Markov process models, arranged in a cube whose axes
represent significant dimensions along which the models differ from each other.
While a detailed description of each model is beyond the scope of this chapter, we
will provide brief descriptions of many of these models below, beginning in this
section with the basic MDP model.

A Markov decision process (MDP) [28] is specified by a set of states S, a set of
allowable actions A(s) in each state s, and a transition function specifying the next-
state distribution P a

ss′ for each action a ∈ A(s). A reward or cost function r(s, a)
specifies the expected reward for carrying out action a in state s. Solving a given
MDP requires finding an optimal mapping or policy π∗ : S → A that maximizes
the long-term cumulative sum of rewards (usually discounted by some factor γ < 1)
or the expected average-reward per step. A classic result is that for any MDP, there
exists a stationary deterministic optimal policy, which can be found by solving a
nonlinear set of equations, one for each state (such as by a successive approximation
method called value iteration):

V ∗(s) = max
a∈A(s)

(

r(s, a) + γ
∑

s′

P a
ss′V

∗(s′)

)

(1.1)

MDPs have been applied to many real-world domains, ranging from robotics [14, 17]
to engineering optimization [3, 18], and game playing [39]. In many such domains,
the model parameters (rewards, transition probabilities) are unknown, and need to
be estimated from samples generated by the agent exploring the environment. Q-
learning was a major advance in direct policy learning, since it obviates the need for
model estimation [45]. Here, the Bellman optimality equation is reformulated using
action values Q∗(x, a), which represent the value of the non-stationary policy of
doing action a once, and thereafter acting optimally. Q-learning eventually finds the
optimal policy asymptotically. However, much work is required in scaling Q-learning
to large problems, and abstraction is one of the key components. Factored approaches
to representing value functions may also be key to scaling to large problems [15].
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1.3 SPATIOTEMPORAL ABSTRACTION OF MARKOV PROCESSES

We now discuss strategies for hierarchical abstraction of Markov processes, including
temporal abstraction, and spatial abstraction techniques.

1.3.1 Semi-Markov Decision Processes

Hierarchical decision-making models require the ability to represent lower-level
policies over primitive actions as primitive actions at the next level (e.g., in a robot
navigation task, a “go forward” action might itself be comprised of a lower-level
actions for moving through a corridor to the end, while avoiding obstacles). Policies
over primitive actions are “semi-Markov” at the next level up, and cannot be simply
treated as single-step actions over a coarser time scale over the same states.

Semi-Markov decision processes (SMDPs) have become the preferred language for
modeling temporally extended actions (for an extended review of SMDPs and hierar-
chical action models, see [1]). Unlike Markov decision processes (MDPs), the time
between transitions may be several time units and can depend on the transition that
is made. An SMDP is defined as a five tuple (S,A,P ,R,F ), where S is a finite set of
states, A is the set of actions, P is a state transition matrix defining the single-step
transition probability of the effect of each action, and R is the reward function. For
continuous-time SMDPs, F is a function giving probability of transition times for
each state-action pair until natural termination. The transitions are at decision epochs
only. The SMDP represents snapshots of the system at decision points, whereas the
so-called natural process [28] describes the evolution of the system over all times. For
discrete-time SMDPs, the transition distribution is written as F (s′, N | s, a), which
specifies the expected number of steps N that action a will take before terminating
(naturally) in state s′ starting in state s. For continuous-time SMDPs, F (t | s, a) is
the probability that the next decision epoch occurs within t time units after the agent
chooses action a in state s at a decision epoch.

Q-learning generalizes nicely to discrete and continuous-time SMDPs. The Q-
learning rule for discrete-time discounted SMDPs is

Qt+1(s, a)← Qt(s, a)(1− β) + β

(

R + γk max
a′∈A(s′)

Qt(s
′, a′)

)

where β ∈ (0, 1), and action a was initiated in state s, lasted for k steps, and
terminated in state s′, while generating a total discounted sum of rewards of R.

Several frameworks for hierarchical reinforcement learning have been proposed, all
of which are variants of SMDPs, including options [37], MAXQ [6], and HAMs [25].
We discuss some of these in more detail in the next section.
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Fig. 1.3 An example hierarchical hidden Markov model. Only leaf nodes produce observa-
tions. Internal nodes can be viewed as generating sequences of observations.

1.3.2 Hierarchical Hidden Markov Models

Hidden Markov models (HMMs) are a widely-used probabilistic model for represent-
ing time-series data, such as speech [11]. Unlike an MDP, states are not perceivable,
and instead the agent receives an observation o which can be viewed as being gener-
ated by a stochastic process P (o | s) as a function of the underlying state s. HMMs
have been widely applied to many time-series problems, ranging from speech recog-
nition [11], information extraction [8], and bioinformatics [12]. However, like MDPs,
HMMs do not provide any direct way of representing higher-level structure that is
often present in many practical problems. For example, an HMM can be used as a
spatial representation of indoor environments [34], but typically such environments
have higher order structures such as corridors or floors which are not made explicit in
the underlying HMM model. As in the case with MDPs, in most practical problems,
the parameters of the underlying HMM have to be learned from samples. The most
popular method for learning an HMM model is the Baum-Welch procedure, which is
itself a special case of the more general Expectation-Maximization (EM) statistical
inference algorithm.

Recently, an elegant hierarchical extension of HMMs was proposed [7]. The HHMM
generalizes the standard hidden Markov model by allowing hidden states to represent
stochastic processes themselves. An HHMM is visualized as a tree structure (see
Figure 1.3) in which there are three types of states,production states (leaves of the tree)
which emit observations, and internal states which are (unobservable) hidden states
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that represent entire stochastic processes. Each production state is associated with
an observation vector which maintains distribution functions for each observation
defined for the model. Each internal state is associated with a horizontal transition
matrix, and a vertical transition vector. The horizontal transition matrix of an internal
state defines the transition probabilities among its children. The vertical transition
vectors define the probability of an internal state to activate any of its children. Each
internal state is also associated with a child called an end-state which returns control
to its parent. The end-states (e1 to e4 in Figure 1.3) do not produce observations and
cannot be activated through a vertical transition from their parent.

Figure 1.3 shows a graphical representation of an example HHMM. The HHMM
produces observations as follows:

1. If the current node is the root, then it chooses to activate one of its children
according to the vertical transition vector from the root to its children.

2. If the child activated is a product state, it produces an observation according
to an observation probability output vector. It then transitions to another state
within the same level. If the state reached after the transition is the end-state,
then control is returned to the parent of the end-state.

3. If the child is an abstract state then it chooses to activate one of its children. The
abstract state waits until control is returned to it from its child end-state. Then
it transitions to another state within the same level. If the resulting transition
is to the end-state then control is returned to the parent of the abstract state.

The basic inference algorithm for hierarchical HMMs is a modification of the “inside-
outside” algorithm for stochastic context-free grammars, and runs in O(T 3) where
T is the length of the observation sequence. Recently, Murphy developed a faster
inference algorithm for hierarchical HMMs by converting an HHMM into a dynamic
Bayes network [23].

1.3.3 Factored Markov Processes

In many domains, states are comprised of collections of objects, each of which can
be modeled as a multinomial or real-valued variable. For example, in driving, the
state of the car might include the position of the accelerator and brake, the radio, the
wheel angle etc. Here, we assume the agent-environment interaction can be modeled
as a factored semi-Markov decision process, in which the state space is spanned by
the Cartesian product of random variables X = {X1, X2, ..., Xn}, where each Xi

takes on values in some finite domain Dom(Xi). Each action is either a primitive
(single-step) action or a closed-loop policy over primitive actions.

Dynamic Bayes networks (DBNs) [5] are a popular tool for modeling transitions
across factored MDPs. Let X t

i denote the state variable Xi at time t and Xt+1
i the

variable at time t+1. Also, letA denote the set of underlying primitive actions. Then,
for any action a ∈ A, the Action Network is specified as a two-layer directed acyclic
graph whose nodes are{X t

1, X
t
2, ..., X

t
n, X

t+1
1 , Xt+1

2 , ..., Xt+1
n } and each nodeX t+1

i
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is associated with a conditional probability table (CPT) P (X t+1
i | φ(Xt+1

i ), a) in
which φ(Xt+1

i ) denotes the parents of X t+1
i in the graph. The transition probability

P (Xt+1 | Xt, a) is then defined by: P (X t+1 | Xt, a) =
∏n

i P (Xt+1
i | wi, a)

where wi is a vector whose elements are the values of the X t
j ∈ φ(Xt+1

i ).

Figure 1.4 shows a popular toy problem called the Taxi Problem [6] in which a taxi
inhabits a 7-by-7 grid world. This is an episodic problem in which the taxi (with
maximum fuel capacity of 18 units) is placed at the beginning of each episode in a
randomly selected location with a randomly selected amount of fuel (ranging from
8 to 15 units). A passenger arrives randomly in one of the four locations marked as
R(ed), G(reen), B(lue), and Y(ellow) and will select a random destination from these
four states to be transported to. The taxi must go to the location of the passenger (the
“source”), pick up the passenger, move to the destination location (the “destination”)
and put down the passenger there. The episode ends when either the passenger is
transported to the desired destination, or the taxi runs out of fuel. Treating each of
taxi position, passenger location, destination and fuel level as state variables, we can
represent this problem as a factored MDP with four state variables each taking on
values as explained above. Figure 1.4 shows a factorial representation of taxi domain
for Pickup and Fillup actions.

While it is relatively straightforward to represent factored MDPs, it is not easy to
solve them because in general the solution (i.e., the optimal value function) is not
factored. While a detailed discussion of this issue is beyond the scope of this article,
a popular strategy is to construct an approximate factored value function as a linear
summation of basis functions (see [15]). The use of factored representations is
useful not only in finding (approximate) solutions more quickly, but also in learning
a factored transition model in less time. For the taxi task illustrated in Figure 1.4, one
idea that we have investigated is to express the factored transition probabilities as a
mixed memory factorial Markov model [33]. Here, each transition probability (edge
in the graph) is represented a weighted mixture of distributions, where the weights
can be learned by an expectation maximization algorithm.

More precisely, the action model is represented as a weighted sum of cross-transition
matrices:

P (xi
t+1 | Xt, a) =

n
∑

j=1

ψi
a(j)τ ij

a (xi
t+1 | x

j
t ) (1.2)

where the parameters τ ij
a (x′ | x) are n2 elementary k × k transition matrices and

parameters ψi
a(j) are positive numbers that satisfy

∑n
j=1 ψ

i
a(j) = 1 for every action

a ∈ A (here, 0 ≤ i, j ≤ n, where n is the number of state variables). The number
of free parameters in this representation is O(An2k2) as opposed to O(Ak2n) in
the non-compact case. The parameters ψi

a(j) measure the contribution of different
state variables in the previous time step to each state variable in the current state.
If the problem is completely factored, then ψi(j) is the identity matrix whose ith

component is independent of the rest. Based on the amount of factorization that exists
in an environment, different components of ψi

a(j) at one time step will influence the
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ith component at the next. The cross-transition matrices τ ij
a (x′ | x) provide a

compact way to parameterize these influences.

R G

BY

F

t

passenger location

Taxi position

Destination

Fuel

passenger location

t+1

Taxi position

Destination

Fuel

Fillup

Fig. 1.4 The taxi domain is an instance of a factored Markov process, where actions such as
fillup can be represented compactly using dynamic Bayes networks.

Figure 1.5 shows the learning of a factored MDP compared to a table-based MDP,
averaged over 10 episodes of 50000 steps. Each point on the graph represents
the RMS error between the learned model and the ground truth, averaged over all
states and actions. The FMDP model error drops quickly in the early stages of
learning. Theoretically, the tabular maximum likelihood approach (which estimates
each transition probability as the ratio of transitions between two states versus the
number of transitions out of a state) will eventually learn the the exact model if
every pair of states and action are executed infinitely often. However, the factored
approach, which uses a mixture weighted representation, is able to generalize much
more quickly to novel states.
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Fig. 1.5 Comparing factored versus tabular model learning performance in the taxi domain.
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1.3.4 Structural Decomposition of Markov Processes

Room 3

Room 1

Room 4

x x
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x x

x

x x

$

Room 2 x

x

x x

x x

$

a) b)

Task 2 Task n

Available Action Set

Task 1

MTS

Fig. 1.6 State and action-based decomposition of Markov processes.

Other related techniques for decomposition of large MDPs have been explored, and
some of these are illustrated in Figure 1.6. A simple decomposition strategy is to
split a large MDP into sub-MDPs, which interact “weakly” [4, 25, 37]. An example
of weak interaction is navigation, where the only interaction among sub-MDPs is the
states that connect different rooms together. Another strategy is to decompose a large
MDP using the set of available actions, such as in air campaign planning problem
[21], or in conversational robotics [26]. An even more intriguing decomposition
strategy is when sub-MDPs interact with each other through shared parameters. The
transfer line optimization problem from manufacturing is a good example of such a
parametric decomposition [44].

1.4 CONCURRENCY, MULTIAGENCY, AND PARTIAL
OBSERVABILITY

This section summarizes our recent research on exploiting spatiotemporal abstraction
to produce improved solutions to three difficult problems in sequential decision-
making: learning plans involving concurrent action, multiagent coordination, and
using memory to estimate hidden state.

1.4.1 A Hierarchical Framework for Concurrent Action

We now describe a probabilistic model for learning concurrent plans over temporally
extended actions [30, 31]. The notion of concurrent action is formalized in a general
way, to capture both situations where a single agent can execute multiple parallel
processes, as well as the multi-agent case where many agents act in parallel.

The Concurrent Action Model (CAM) is defined as (S,A, T ,R), where S is a set
of states, A is a set of primary actions, T is a transition probability distribution
S × P(A) × S ×N → [0, 1], where P(A) is the power-set of the primary actions
and N is the set of natural numbers, and R is the reward function mapping S → <.
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Here, a concurrent action is viewed as a set of primary actions (hereafter called a
multi-action), where each primary action is either a single step action, or a temporally
extended action (e.g., modeled as a closed loop policy over single step actions [37]).

Figure 1.7 illustrates a toy example of concurrent planning. The general problem is
as follows. The agent is given a set of primary actions, each of which can be viewed
as a (fixed or previously learned) “subroutine” for choosing actions over a subspace
of the overall state space. The goal of the agent is to learn to construct a closed-loop
plan (or policy) that allows multiple concurrent subroutines to be executed in parallel
(and in sequence) to achieve the task at hand. For multiple primary actions to be
executed concurrently, their joint semantics must be well-defined. Concurrency is
facilitated by assuming states are not atomic, but structured as a collection of (discrete
or continuous) variables, and the effect of actions on such sets of variables can be
captured by a compact representation, such as a dynamic Bayes net (DBN) [5].

(to each room’s 2 hallways)
- One single step no-op option

- 8 multi-step navigation options

- 3 stochastic primitive actions for keys
(get-key, key-nop and putback-key)

each key
- Drops the keys 20% of times when passing
through the water trap and holding both keys

- 2 multi-step key options (pickup-key) for

water trap

and holding both keys

- 4 stochastic primitive actions
(Up, Down, Left and Right)
- Fail 10% of times, when not passing
the water trap
- Fail 30% of times, when passing the
water trap

Agent H0

H2

H1 H3 (Goal)

Fig. 1.7 A grid world problem to illustrate concurrent planning: the agent is given subroutines
for getting to each door from any interior room state, and for opening a locked door. It has
to learn the shortest path to the goal by concurrently combining these subroutines. The agent
can reach the goal more quickly if it learns to parallelize the subroutine for retrieving the key
before it reaches a locked door. However, retrieving the key too early is counterproductive
since it can drop with some probability.

Since multiple concurrent primary actions may not terminate synchronously, the
notion of a decision epoch needs to be generalized. For example, a decision epoch
can occur when any one of the actions currently running terminates. We refer to this as
the Tany termination condition (Figure 1.8, left). Alternatively, a decision epoch can
be defined to occur when all actions currently running terminate, which we refer to as
the Tall condition (Figure 1.8, middle). We can design other termination schemes by
combining Tany and Tall : for example, another termination scheme called Tcontinue

is one that always terminates based on the Tany termination scheme, but allows those
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primary actions that did not terminate naturally to keep executing, while initiating
new primary actions if they are going to be useful (Figure 1.8, right).
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Fig. 1.8 Left: Tanytermination scheme. Middle: Tall termination scheme. Right:
Tcontinue termination scheme.

For concreteness, we will describe the concurrent planning framework when the
primary actions are represented as options [37]. The treatment here is restricted
to options over discrete-time SMDPs and deterministic policies, but the main ideas
extend readily to other hierarchical formalisms [6, 25] and to continuous-timeSMDPs
[9, 28]. More formally, an option o consists of three components: a policyπ : S → A,
a termination condition β : S → [0, 1], and an initiation set I ⊆ S, where I denotes
the set of states s in which the option can be initiated. For any state s, if option π is
taken, then primitive actions are selected based on π until it terminates according to
β. An option o is a Markov option if its policy, initiation set and termination condition
depend stochastically only on the current state s ∈ S. An option o is semi-Markov if
its policy, initiation set and termination condition are dependent on all prior history
since the option was initiated. For example, the option exit-room in the grid world
environment shown in Figure 1.7, in which states are the different locations in the
room, is a Markov option, since for a given location, the direction to move to get to
the door can be computed given the current state.

A hierarchical policy over primary actions or options can be defined as follows. The
Markov policy over options µ : S → O (where O is the set of all options) selects
an option o ∈ O at time t using the function µ(st). The option o is then initiated in
st until it terminates at a random time t+ k in some state st+k according to a given
termination condition, and the process repeats in st+k.

The multistep state transition dynamics over options is defined using the discount
factor to weight the probability of transitioning. Let po(s, s′, k) denote the probability
that the option o is initiated in state s and terminates in state s′ after k steps. Then
p(s′ | s, o) =

∑

∞

k=1 p
o(s, s′, k)γk (note that when γ < 1, the transition model is not

a stochastic matrix, since the distributions do not sum to 1). If multi-step models of
options and rewards are known, optimal hierarchical plans can be found by solving
a generalized Bellman equation over options similar to Equation 1.1. Under either
definition of the termination event (i.e.; Tany , Tall , and Tcontinue ), the following
result holds.
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Theorem 1: Given a Markov decision process, and a set of concurrent Markov
options defined on it, the decision process that selects only among multi-actions, and
executes each one until its termination according to a given termination condition
forms a semi-Markov decision process.

The proof requires showing that the state transition dynamics p(s′, N | ~a, s) and
the rewards r(s,~a) over any concurrent action ~a defines a semi-Markov decision
process [30]. The significance of this result is that SMDP Q-learning methods can be
extended to learn concurrent plans under this model. The extended SMDP Q-learning
algorithm for learning to plan with concurrent actions updates the multi-action-value
functionQ(s,~a) after each decision epoch where the multi-action ~a is taken in some
state s and terminates in s′ (under a specific termination condition):

Q(s,~a)← Q(s,~a)(1− β) + β

[

R+ γk max
~a′∈Os′

Q(s′, ~a′)

]

(1.3)

where k denotes the number of time steps between initiation of the multi-action ~o
in state s and its termination in state s′, and R denotes the cumulative discounted
reward over this period. The result of using this algorithm on the simple grid world
problem in shown in Figure 1.9. The figure illustrates the difference in performance
under different termination conditions (Tall, Tany, and Tcont).
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Fig. 1.9 This graph compares an SMDP technique for learning concurrent plans (under
various termination conditions) with a slower “get-to-door-then-pickup-key” sequential plan
learner. The concurrent learners outperform the sequential learner, but the choice of termination
affects the speed and quality of the final plan.

The performance of the concurrent action model also depends on the termination event
defined for that model. Each termination event trades-off between the optimality of
the learned plan and how fast it converges to its optimal policy. Let π∗seq , π∗all and
π∗any denote the optimal policy when the primary actions are executed sequentially;
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Tall

Tany

Continue multi-action policies

Multi-action policies using

Multi-action policies using

Policies over sequential actions

Fig. 1.10 Comparison of policies over multi-actions and sequential primary actions using
different termination schemes.

when termination construct Tall is used; and when termination construct Tany is
used, respectively. Also let πcontinue represent the policy learned based on the
Tcontinue termination construct. Intuitively, the models with a termination construct
that imposes more frequent multi-action termination (such as Tany and Tcontinue ),
tend to articulate more frequently and should perform more optimally. However
due to more interruption, they may converge more slowly to their optimal behavior.
Based on the definition of each termination construct we can prove the following
theorem:

Theorem 2: In a concurrent action model and a set of termination schemes
{Tany, Tall, Tcontinue}, the following partial ordering holds among the optimal pol-
icy based on Tany , the optimal policy based on Tall , the Tcontinue policy and the
optimal sequential policy: π

∗seq ≤ π
∗all ≤ πcontinue ≤ π

∗any .

where ≤ denotes the partial ordering relation over policies. Figure 1.10 illustrates
the results defined by Theorem 2. According to this figure, the optimal multi-action
policies based on Tany and Tall , and also Tcontinue multi-action policies dominate
(with respect to the partial ordering relation defined over policies) the optimal policies
over the sequential case. Furthermore, policies based on Tcontinue multi-actions
dominate the optimal multi-action policies based on Tall termination scheme, while
themselves being dominated by the optimal multi-action policies based on Tany

termination scheme.

1.4.2 Learning Multiagent Task-Level Coordination Strategies

The second case study uses hierarchical abstraction to design efficient learning algo-
rithms for cooperative multiagent systems [46]. Figure 1.11 illustrates a multiagent
automated guided vehicle (AGV) scheduling task, where four AGV agents will max-
imize their performance at the task if they learn to coordinate with each other. The
key idea here is that coordination skills are learned more efficiently if agents learn
to synchronize using a hierarchical representation of the task structure [35]. In par-
ticular, rather than each AGV learning its response to low-level primitive actions of
the other AGV agents (for instance, if AGV1 goes forward, what should AGV2 do),
they learn high-level coordination knowledge (what is the utility of AGV1 delivering
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material to machine M3 if AGV2 is delivering assembly from machine M2, and so
on). The proposed approach differs significantly from previous work in coopera-
tive multiagent reinforcement learning [3, 38] in using hierarchical task structure to
accelerate learning, and as well in its use of concurrent temporally extended actions.
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Fig. 1.11 A multiple automated guided vehicle (AGV) optimization task. There are four
AGV agents (not shown) which carry raw materials and finished parts between the machines
and the warehouse. The task graph of this problem is shown on the right hand side of this
figure.

One general approach to learning task-level coordination is to extend the above con-
currency model to the joint state action space, where base level policies remain fixed.
An extension of this approach is now presented, where agents learn coordination
skills and the base-level policies simultaneously.

The hierarchical multiagent reinforcement learning algorithm described here can be
implemented using other hierarchical reinforcement learning formalisms also, but for
the sake of clarity, we use the MAXQ value function decomposition approach [6].
This decomposition is based on storing the value function in a distributed manner
across all nodes in a task graph. The value function is computed on demand by
querying lower level (subtask) nodes whenever a high level (task) node needs to be
evaluated. The overall task is first decomposed into subtasks up to the desired level
of details, and the task graph is constructed. We illustrate the idea using the above
multiagent AGV scheduling problem. This task can be decomposed into subtasks
and the resulting task graph is shown in figure 1.11. All AGV agents are given the
same task graph (homogeneous agents) and need to learn three skills. First, how
to do each subtask, such as deliver parts to machine M1 or navigation to drop off
station D3, and when to perform load or put action. Second, the agents also need
to learn the order to do subtasks (for instance go to pick up station of a machine
and pick up an assembly, before heading to the unload station). Finally, the agents
also need to learn how to coordinate with other agents (i.e. AGV1 can deliver parts
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to machine M4 whereas AGV3 can deliver assemblies from machine M2). We can
distinguish between two learning approaches. In the selfish case, the agents learn
with the given task graph, but make no attempt to coordinate with each other. In
the cooperative case, coordination skills among agents are learned by using joint
actions at the level(s) immediately under the root task. Therefore, it is necessary to
generalize the MAXQ decomposition from its original sequential single-agent setting
to the concurrent multiagent coordination problem. We call this extension of MAXQ,
cooperative MAXQ [19]. In this algorithm, each agent learns joint abstract action
values by communicating with other agents only the high-level subtasks that they are
doing. Since high-level tasks can take a long time to complete, communication is
needed only fairly infrequently, which is a significant advantage over flat methods.
A further advantage is that agents learn coordination skills at the level of abstract
actions and it allows for increased cooperation skills as agents do not get confused
by low level details. In addition, each agent has only local state information and is
ignorant about the other agent’s state. Keeping track of just local information greatly
simplifies the underlying reinforcement learning problem. This is based on the idea
that in many cases, the state of the other agent might be roughly estimated just by
knowing about the high-level action being performed by the other agent.

Let ~s = (s1, . . . , sn) and ~a = (a1, . . . , an) denote a joint state and a concurrent
action, where si is the local state and ai is the action being performed by agent i. Let
the joint action value function Q(p,~s,~a) represents the value of concurrent action ~a
in joint state ~s, in the context of executing parent task p.

The MAXQ decomposition of the Q-function relies on a key principle: the reward
function for the parent task is essentially the value function of the child subtask. This
principle can be extended to joint concurrent action values as shown below. The
most salient feature of the cooperative MAXQ algorithm, is that the top level(s) (the
level immediately below the root and perhaps lower levels) of the hierarchy is (are)
configured to store the completion function values for joint abstract actions of all
agents. The completion function C(p,~s,~a) is the expected cumulative discounted
reward of completing parent task p after finishing concurrent action ~a, which was
invoked in state ~s. The joint concurrent value function V (p,~s) is now approximated
by each agent i (given only its local state si) as:

V i(p, si) =

{

maxai
Qi(p, si,~a) if p is a composite action

∑

s′
i
P (s′i | si, p)R(s′j | sj , p) if p is a primitive action

where the action value function of agent i (given only its local state si) is defined as

Qi(p, si,~a) ≈ V
i(ai, si) + Ci(p, si,~a) (1.4)

The first term in equation 1.4, V i(ai, si), refers to the discounted sum of rewards
received by agent i for performing action ai in local state si. The second term,
Ci(p, si,~a), completes the sum by accounting for rewards earned for completing the
parent task p after finishing subtask ai. The completion function is updated in this
algorithm from sample values using an SMDP learning rule. Note that the correct



CONCURRENCY, MULTIAGENCY, AND PARTIAL OBSERVABILITY 17

action value is approximated by only considering local state si and also by ignoring
the effect of concurrent actions ak, k 6= i by other agents when agent i is performing
action ai. In practice, a human designer can configure the task graph to store joint
concurrent action-values at the highest (or lower than the highest as needed) level(s)
of the hierarchy.

To illustrate the use of this decomposition in learning multiagent coordination for the
AGV scheduling task, if the joint action-values are restricted to only the highest level
of the task graph under the root, we get the following value function decomposition
for AGV1:

Q
1(Root, s1, DM3, DA2, DA4, DM1) ≈ V

1(DM3, s1) + C
1(Root, s1, DM3, DA2, DA4, DM1)

which represents the value of AGV1 performing task DM3 in the context of the
overall root task, when AGV2, AGV3 and AGV4 are executing DA2, DA4 and DM1.
Note that this value is decomposed into the value of AGV1 performing DM3 subtask
itself and the completion sum of the remainder of the overall task done by all four
agents.

Figure 1.12 compares the performance and speed of the cooperative MAXQ algorithm
with other learning algorithms, including single-agent MAXQ and selfish multiagent
MAXQ, as well as several well-known AGV scheduling heuristics like “first come
first serve”, “highest queue first” and “nearest station first”.
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Fig. 1.12 This figure compares the performance of the cooperative MAXQ algorithm with
other learning methods, including single-agent MAXQ and selfish multiagent MAXQ, as well
as several well-known AGV scheduling heuristics. The throughput is measured in terms of the
number of finished assemblies deposited at the unload station per unit time.

1.4.3 Hierarchical Memory

When agents learn to act concurrently in real-world environments, the true state of the
environment is usually hidden. To address this issue, we need to combine the above
methods for learning concurrency and coordination with methods for estimating
hidden state. We have explored two multiscale memory models [10, 42]. Hierarchical
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Suffix Memory (HSM) [10] generalizes the suffix tree model [20] to SMDP-based
temporally extended actions. Suffix memory constructs state estimators from finite
chains of observation-action-reward triples. In addition to extending suffix models
to SMDP actions, HSM also uses multiple layers of temporal abstraction to form
longer-term memories at more abstract levels. Figure 1.13 illustrates this idea for
robot navigation for the simpler case of a linear chain, although the tree-based model
has also been investigated. An important side-effect is that the agent can look back
many steps back in time while ignoring the exact sequence of low-level observations
and actions that transpired. Tests in a robot navigation domain showed that HSM
outperformed “flat” suffix tree methods, as well as hierarchical methods that used no
memory [10].

. . .. . . . . .

*
?

T-junctioncorner dead end

D3 D1 D3 D2 D1 D3

*
. . . ?

d3 d2 d3d3 d2d2

abstraction level: navigation

abstraction level: traversal

abstraction level: primitive

Fig. 1.13 A hierarchical suffix memory state estimator for a robot navigation task. At
the abstract (navigation) level, observations and decisions occur at intersections. At the
lower (corridor-traversal) level, observations and decisions occur within the corridor. At each
level, each agent constructs states out of its past experience with similar history (shown with
shadows).

Partially observable MDPs are theoretically more powerful than finite memory mod-
els, but past work on POMDPs has mostly studied “flat” models for which learning
and planning algorithms scale poorly with model size. We have developed a new
hierarchical POMDP framework termed H-POMDPs (see Figure 1.14) [42], by ex-
tending the hierarchical hidden Markov model (HHMM) [7] to include rewards,
multiple entry/exit points into abstract states and (temporally extended) actions.

H-POMDPs can also be represented as Dynamic Bayesian networks [43], in a similar
way that HHMMs can be represented as DBNs [23]. Figure 1.15 shows a Dynamic
Bayesian net representation of H-POMDPs. This model differs from the model
described in [23] in two basic ways: the presence of action nodesA, and the fact that
exit nodes X are no longer binary.

In the particular navigation example shown in Figure 1.14, the exit nodeXt can take
on five possible values, representing no-exit, north-exit, east-exit, south-exit, and
west-exit. If Xt = no-exit, then we make a horizontal transition at the concrete level,
but the abstract state is required to remain the same. If Xt 6= no-exit, then we enter
a new abstract state; this abstract state then makes a vertical transition into a new
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Fig. 1.14 State transition diagram of a hierarchical POMDP used to model corridor envi-
ronments. Large ovals represent abstract states; the small solid circles within them represent
entry states, and the small hollow circles represent exit states. The small circles with arrows
represent production states. Arcs represent non-zero transition probabilities as follows: Dotted
arrows from concrete states represent concrete horizontal transitions, dashed arrows from exit
states represent abstract horizontal transitions, and solid arrows from entry states represent
vertical transitions.
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Fig. 1.15 A 2-level HPOMDP represented as a DBN.

concrete state. The new concrete state, S1
t , depends on the new abstract state, S2

t , as
well as the previous exit state, Xt−1. More precisely we can define the conditional
probability distributions of each type of node in the DBN as follows: For the abstract
nodes,

P (S2
t = s′ | S2

t−1 = s,Xt−1 = x,At−1 = a) =

{

δ(s′, s) if x =no-exit
T root(s′x | sx, a) otherwise
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where T root(s′x | sx, a) in the state representation of the HPOMDP model defines
the transition probability from abstract state s and exit state x to abstract state s′ and
entry state x, where x defines the type of entry or exit state (north, east, west, south).
S is the parent of s and s′ in the state transition model.

For the concrete nodes,

P (S1
t = s′ | S1

t−1 = s, S2
t = S,Xt−1 = x,At−1 = a) =

{

TS(s′ | s, a) if x =no-exit
V (s′ | Sx) otherwise

where V (s′ | Sx) defines the probability of a vertical transition from abstract state S
and entry state of type x to concrete state s′.

For the exit nodes,

P (Xt = x | S1
t = s, S2

t = S,At = a) = TS(Sx | s, a)

where TS(Sx | s, a) is the transition probability from production state s under
abstract state S to exit from state S of type x.

For the sensor nodes,

P (Ot = z | S1
t = s, S2

t = S,At−1 = a) = OS(z | s, a)

where OS(z | s, a) is the probability of perceiving observation z at the sth node
under state S after action a.

One of the most important differences of Hierarchical HMMs/POMDPs and flat
models are the results of inference. In a hierarchical model a transition to an abstract
state at time t is zero, unless the abstract state is able to produce part of the remaining
observations and actions in a given sequence. The inference algorithm for the state
representation of HHMMs/H-POMDPs in [7], [42] achieves this by doing inference
on all possible subsequences of observations under the different abstract states, which
leads toO(KDT 3) time, whereK is the number of states at each level of the hierarchy
and D is the depth of the hierarchy. In a DBN representation we can achieve the
same result as the cubic time algorithms by asserting that the sequence has finished.
In our particular implementation we assert that at the last time slice the sequence
has finished, and that there is a uniform probability of exit from any of the four
orientations. Since we have a DBN representation, we can apply any standard Bayes
net inference algorithm, such as junction tree, to perform filtering or smoothing which
take in the worse case O(K2DT ) time. Empirically it might be less, depending on
the size of the cliques being formed, as was shown in [23].

Due to the cubic time complexity of the EM algorithm used in [40] we have de-
veloped various approximate training techniques such as “reuse-training”, whereby
submodels are trained separately and then combined into an overall hierarchy, and
"selective-training" whereby only selected parts of the model are trained for every
sequence. Even though these methods require knowledge as to which part of the
model the data should be used for, they outperformed the flat EM algorithm in terms
of fit to test data, robot localization accuracy, and capability of structure learning at
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higher levels of abstraction. However, a DBN-representation allows us to use longer
training sequence. In [43] we show how the hierarchical model requires less data for
training than the flat model, and also illustrate how combining the hierarchical and
factorial representations outperforms both the hierarchical and flat models.

In addition to the advantages over flat methods for model learning, H-POMDPs
have an inherent advantage in planning as well. This is because belief states can be
computed at different levels of the tree, and there is often less uncertainty at higher
levels (e.g., a robot is more sure of which corridor it is in, rather than exactly which
low level state). A number of heuristics for mapping belief states to temporally
extended actions (e.g., move down the corridor ) provide good performance in robot
navigation (e.g., the most-likely-state (MLS) heuristic assumes the agent is in the
state corresponding to the “peak” of the belief state distribution) [14, 34, 24]. Such
heuristics work much better in H-POMDPs because they can be applied at multiple
levels, and probability distributions over abstract states usually have lower entropy
(see Figure 1.16). For a detailed study of the H-POMDP model, as well as its
application to robot navigation, see [40].
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Fig. 1.16 This plot shows a sample robot navigation run whose trace is on the right, where
positional uncertainty (measured by belief state entropy) at the abstract (corridor) level is less
than at the product state level. Spatiotemporal abstraction reduces the uncertainty and requires
less frequent decision-making, allowing the robot to get to goals without initial positional
information.

1.5 SUMMARY AND CONCLUSIONS

In this chapter, we presented hierarchical models of decision-making involving con-
current actions, multiagent coordination, and hidden state estimation.The common
thread which spanned solutions to these three challenges is that multi-level temporal
and spatial abstraction of actions and states can be exploited to achieve effective so-
lutions. The overall approach was presented in three phases, beginning with a hierar-
chical model for learning concurrent plans for observable single-agent domains. This
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concurrency model combined compact state representations with temporal process
abstractions to formalize concurrent action. Multiagent coordination was addressed
using a hierarchical model where primitive joint actions and joint states are abstracted
by exploiting overall task structure, which greatly speeds up convergence since low-
level steps are ignored that do not need to be synchronized. Finally, a hierarchical
framework for hidden state estimation was presented, which used multi-resolution
statistical models of the past history of observations and actions.
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