
Probabilistic Plan Recognition in Multiagent Systems

Suchi Saria
Computer Science Department

Mount Holyoke College
South Hadley, MA 01075

ssaria@mtholyoke.edu

Sridhar Mahadevan
Department of Computer Science

University of Massachusetts
Amherst, MA 01002

mahadeva@cs.umass.edu

Abstract

We present a theoretical framework for online proba-
bilistic plan recognition in cooperative multiagent sys-
tems. Our model extends the Abstract Hidden Markov
Model (AHMM) (Bui, Venkatesh, & West 2002), and
consists of a hierarchical dynamic Bayes network that
allows reasoning about the interaction among multiple
cooperating agents. We provide an in-depth analysis of
two different policy termination schemes, Tall and Tany

for concurrent action introduced in (Rohanimanesh &
Mahadevan 2003). In the Tall scheme, a joint policy
terminates only when all agents have terminated exe-
cuting their individual policies. In the Tany scheme,
a joint policy terminates as soon as any of the agents
terminates executing its individual policy. Since exact
inference is intractable, we describe an approximate al-
gorithm using Rao-Blackwellized particle filtering. Our
approximate inference procedure reduces the complex-
ity from exponential time in N, the number of agents
and K, the number of levels, to time linear in both N
and K̂ ≤ K (the lowest-level of plan coordination) for
the Tall termination scheme and O(N log N) and linear
in K̂ for the Tany termination scheme.

Introduction
A large number of real-world multiagent domains require
reasoning about the team behavior of agents, from sporting
events, military and security surveillance, to teams of
robots (Mataric 1997) (Marsella et al. 1999). Effective
coordination is known to be a major challenge in such
domains. If agents possess similar abilities and share the
same utility function or common interests, they run the risk
of both pursuing the same objective with the consequence
of an undesirable outcome unless they coordinate (Boutilier
1999). For example, in robot soccer, while a team is attack-
ing, say a player is required to block the opponent while the
second player receives the ball from its teammate. If both
agents position themselves to block the opponent, then the
pass fails. Additionally, agents need to coordinate plans at
different levels of detail. For example, in executing a pass
between two agents, agents need to coordinate at the level
of kicking the ball on time and in the right direction such

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

that the other agent receives the ball without losing it to the
opponent team. However, the individual details of muscle
movement in each agent is obviously not communicated or
coordinated explicitly.

This paper provides a rigorous theoretical framework
for representing and reasoning about hierarchical plans
in cooperative multiagent systems. Extensive work has
been done in opponent model recognition, e.g. (Riley
& Veloso 2001) and (Intille & Bobick 1999), and space
precludes us from giving a detailed discussion of previous
work, but suffice it to say that many earlier approaches are
domain-specific. More importantly, much previous work
fails to explicitly model hierarchical aspects of coordination
among agents. We base our work on (Bui, Venkatesh, &
West 2002), which introduced the framework of the abstract
hidden Markov Model (AHMM) for plan recognition
in single agent systems. We extend their approach and
introduce Hierarchical Multiagent Markov Processes as a
framework for modeling hierarchical policy execution in
multiagent systems. We assume agents coordinate their
actions at more abstract levels explicitly using a central
controller, but that at lower levels, individual policies are
executed without coordination by each agent.

Hierarchical Multiagent Markov Processes
Since we are primarily interested here in plan recognition,
and not in finding optimal policies, we do not need the full
machinery of Markov decision processes. However, much of
our work is inspired by work on multiagent MDP (MMDP)
models (e.g., (Boutilier 1999)), although a key weakness
of previous models has been the lack of attention paid to
policy hierarchies. In particular, our work specifically relies
on the notion of a policy hierarchy using ideas from hierar-
chical reinforcement learning (Barto & Mahadevan 2003;
Makar, Mahadevan, & Ghavamzadeh 2001). As in a typical
MDP, the world consists of a set of possible states and
actions permissible in those states. A policy maps a state to
an action (deterministic policy) or a distribution over a set of
actions (stochastic policy). Hierarchical policies can invoke
more refined policies, i.e., at any state s, a high-level policy
πk is executed by selecting a lower-level policy πk−1,
according to the distribution σπk(s, ·). The selected policy

ICAPS 2004 287

From: ICAPS-04 Proceedings. Copyright © 2004, AAAI (www.aaai.org). All rights reserved.

πk−1 selects among a set of lower-level policies and so on
until a primitive action is selected for each agent. Once
πk−1 terminates in a state d, πk also terminates with termi-
nation distribution βπk(d) if d is in the termination set of πk

or continues by selecting another k−1 level policy in state d.

The advantage of our approach lies in the way it explicitly
models the level of detail to which agents coordinate plans.
Below this level, policies are executed independently. To
represent this dichotomy in shared execution and individual
execution, we specify the lowest coordination level by
K̂. K̂ remains the same throughout the process of policy
execution and (for simplicity) is independent of the agents’
states. All policies above K̂ are shared or joint policies.
We model joint policies as a MMDP with the exception
that they are defined over temporally extended actions for
each agent. At level K̂, the joint-policy selects a lower level
single agent policy for each agent i which further selects
lower level policies within the agent’s policy hierarchies and
so on. To illustrate these ideas through a 5-level example
(see Figure 1), consider two agents executing an attack
strategy in soccer. One possible way of attack is to execute
a multiple-pass to the goal. A multiple-pass involves
repeatedly executing a single-pass between two agents at
the lower level. Each single pass requires one agent to pass
the ball and the second agent to receive the ball. Receiving
the ball involves running to the location where the ball is
expected which in turn calls a sequence of move primitive
actions. This set of recursively selected policies at all levels
including the primitive actions defines the policy hierarchy.

Throughout the paper, we use Eki,t where E is any entity
such as a state or a policy. Here, the first subscript i specifies
an agent from a set of N agents, the second subscript t
specifies the time and the superscript k specifies the level in
the hierarchy to which this entity belongs. We use 1:n to
denote the sequence (1, 2, · · · , n)

Definition 1: Local Policy
An example of a local policy µi is passing the ball which
involves executing a set of actions such as turn, kick and
wait. We define the local policy as a tuple µi =�
Sµi ,Dµi , βµi , σµi � for each agent i ∈ {1, · · ·n} where

• Sµi ⊆ Si ⊆ S is the subset of applicable states for agent
i and policy µi

• Dµi is the set of termination states

• βµi :Dµi → (0, 1] is the termination distribution such that
βµi(d) = 1 for all states d ∈ Dµi \ Sµi

• σµi :Sµi × Ai → [0, 1] is the action selection function
such that for the given policy µi and current state s,
σµi(s, a) is the probability with which the action a is se-
lected in state s. If the agents are homogeneous, then the
set of local policies are the same for all agents and the
subscript i can be removed. Each such policy generates a
Markov sequence of states defined by the transition model
σa(s, s

′)

attack
4

1

0 0

multiple-pass

single-pass

move, turn

pass the ball

turn, wait,kick

2

1Receive the ball

ψ
1:n

ω
1:n

µ2µ1

1a a 2

Single agent
policies

Joint policy
hierarchy

Agent1 Agent2

{

{

Figure 1: Policy hierarchy illustrating a soccer strategy with
two agents.

Definition 2: Abstract Policies
An abstract policy is defined in a way similar to a local pol-
icy where states map to other lower-level policies instead of
primitive actions.
Definition 2.1 Abstract Single-agent policy over other
Single-agent policies
Let Πµ

i be a set of single agent policies. A tuple νi =�
Sνi ,Dνi , βνi , σνi � is an abstract policy over other policies
in Πµ

i for each agent i ∈ {1, · · · , n} where

• Sνi ⊆
⋃
µi∈Πµ

i
Sµi is the subset of applicable states

• Dνi is the set of termination states

• βνi :Dνi → (0, 1] is the termination distribution such that
βνi(d) = 1 for all states d ∈ Dνi \ Sνi

• σνi :Sνi×Πµ
i → [0, 1] is the mapping of states to abstract

policies such that for the given policy νi and current state
s, σνi(s, µi) is the probability with which the lower level
policy µi is selected

Definition 2.2 Abstract Joint-agent policy over Abstract
Single-agent policies
Performing a single-pass between two agents is an example
of an abstract joint policy. It is defined as the tuple ψ1:n =�
Sψ1:n

,Dψ1:n
, βψ1:n

, σψ1:n
� over a set of abstract single-

agent policies in (Πν
1 × Πν

2 · · · × Πν
n).

• Sψ1:n
⊆

⋃
ν1∈Πν

1
Sν1 ×

⋃
ν2∈Πν

2
Sν2 · · ·

×
⋃
νn∈Πνn

Sνn are the applicable states

• Dψ1:n
is the set of termination states

• βψ1:n
:Dψ1:n

→ (0, 1] is the termination distribution such
that βψ1:n

(d1, d2 · · · dn) = 1 for all states specified by the
tuple < d1, · · · dn >∈ Dψ1:n

\ Sψ1:n

• σψ1:n
:Sψ1:n

× (Πν
1 × Πν

2 · · · × Πν
n) → [0, 1] is the map-

ping of states to abstract single agent policies such that
for the given policy ψ1:n and current state of all agents,
σψ1:n

(s1, s2 · · · sn, ν1, ν2 · · · νn) is the probability with
which agent 1 executes the policy ν1, agent 2 executes
the policy ν2 and so on.

Definition 2.3 Abstract Joint-agent policy over other
Joint-agent policies
A multiple pass is an example of an abstract joint policy
which involves executing a lower-level single-pass joint pol-
icy (see Figure 1). An abstract joint policy is defined as

288 ICAPS 2004

the tuple ω1:n =� Sω1:n
,Dω1:n

, βω1:n
, σω1:n

� over a
set lower level abstract joint-policies in Πψ

1:n for all agents
where

• Sω1:n
⊆

⋃
ψ∈Πψ

1:n

Sψ1:n
is the set of applicable states

• Dω1:n
is the set of termination states

• βω1:n
:Dω1:n

→ (0, 1] is the termination distribution such
that βω1:n

(d) = 1 for all states d ∈ Dω1:n
\ Sω1:n

• σω1:n
:Sω1:n

× Πψ
1:n → [0, 1] is the mapping of states to

abstract joint-policies such that for the given joint-policy
ω1:n and current state s1:n of all agents σω1:n

(s1:n, ψ1:n)
is the probability with which the lower-level joint policy
ψ1:n is selected

Definition 3: Policy Hierarchy A policy hierarchy is the
set of recursively defined policies at all levels including
the primitive actions. It is represented by the tuple, H =

{(Π0
1,Π

0
2 · · ·Π

0
n), · · · (Π

K̂−1
1 ,ΠK̂−1

2 · · ·ΠK̂−1
n),ΠK̂

1:n,

· · ·ΠK
1:n} where the lowest-level joint policy is defined at

level K̂.

In the soccer example in Figure 1, K̂ = 2. The policy at
level K̂ calls a level (K̂ − 1) single agent policy for each
agent, each of which call other level (K̂ − 2) policies in the
single-agent policy hierarchies and so on. (Π0

1,Π
0
2 · · ·Π

0
n)

is the tuple representing the set of primitive actions for all
agents. Even though the definition above represents a bal-
anced policy hierarchy, it is possible to specify an unbal-
anced hierarchy by introducing dummy policies at the higher
levels which are the same as its lower-level policies or prim-
itive actions. The cardinality of the joint policy at level K̂

is |ΠK̂−1
1 | × |ΠK̂−1

2 | · · · × |ΠK̂−1
n |. Although complete co-

ordination can be modeled by defining policies at all levels
including primitive actions as joint policy nodes, this causes
the number of possible joint-policies to blow up. Specifying
the joint policies only at levels K̂ > 1 allows the agents to
abstract away individual lower level planning details from
other agents and reduces the complexity of inference in the
network.

Dynamic Bayesian Network representation
We view the policy recognition problem in a multi-agent
system as probabilistic inference on a dynamic Bayes Net-
work (DBN). To explain the full DBN, we first describe the
two fundamental sub-structures of policy termination and
policy selection for each of the two termination mechanisms,
Tany and Tall, introduced in the concurrent action model
(CAM) (Rohanimanesh & Mahadevan 2003). We construct
the full network by “stacking up” these sub-structures for K
layers just as in the AHMM (Bui, Venkatesh, & West 2002).
In each sub-structure, st−1 represents the relevant state vari-
able at time t − 1. Let πkt represent the policy variable at
time t and level k. Single agent policy nodes within the
agent’s policy hierarchy, i.e., at level l < K̂, just depend
on the state of that agent. The joint-policy nodes depend on
s1:n,t−1, the states of all agents at time t − 1. The natural

termination of policy πkt is represented by the boolean vari-
able ekt , which becomes true when the policy πkt terminates
in a state d according to the termination distribution βπkt (d).
An additional coordination node γt−1, a boolean variable, is
defined at levelK̂ which controls influence on a single agent
policy hierarchy from other single agent policy hierarchies
under the pre-defined termination scheme.

1. Policy termination Due to the way the model is de-
fined, within an agent’s individual policy hierarchy and
within the joint policy hierarchy, policies cannot naturally
terminate if a lower level policy is still continuing its exe-
cution. In other words, in the context of ek−1

t = F (false),
ekt deterministically assumes the value false and is indepen-
dent of both the state and policy. Following the notion of
context-specific independence (CSI) (Boutilier et al. 1996),
as shown in the graphical representation in Figure 2, the
links from the policy and states to the termination nodes can
be removed. If ek−1

t = T (true), then ekt = T with probabil-
ity βπ(st).

π t
k π t

k π t
k

e t
k

=Fe t
k

e t
k

s
2,t−1

s
1,t−1

s
2,t−1

s
1,t−1

s
2,t−1

s
1,t−1

e
k−1

=Fe =Te
k−1
t

k−1
t t

Figure 2: Sub-structure for natural policy termination.
Dashed arcs represents context-specific independence.

2. Policy selection For policy selection, the current
policy πkt depends on the higher level policy πk+1

t , the
state variable at previous time step st−1, its own policy
value πkt−1, and its termination status ekt−1. As shown in
Figure 3, ekt−1 serves as the context variable that controls
the dependency of πkt on its parents. If the previous policy
has not terminated, then the current policy is the same as
the previous policy and as shown using CSI, is independent
of both the state and higher level policy. If the previous
policy has terminated, i.e., ekt−1 = T , then a new policy
is selected independent of the previous policy from the
distribution P (πkt |π

k+1
t , st−1) based on the previous state

and the higher level policy. For levels below K̂, the policy
selection sub-structure has additional dependency on the
joint-termination node, γt−1. When γt−1 = T , even if the
policies in the single agent hierarchy have not terminated at
time t − 1, new policies are selected instead at time t. This
is called interruption or forced policy selection.

• In the Tall termination scheme, γt−1 becomes true only
when all individual policy termination nodes at level
K̂ − 1 and time t − 1 become true, i.e., all agents have
naturally terminated their individual policy hierarchies.
For example, while coordinating to execute a single pass

ICAPS 2004 289

π
t
kπ

t−1
k

π
t
k+1 π

t
k+1 π

t
k+1

π
t
kπ

t
kπ

t−1
k

e
t−1
k

e
t−1
k

=F e
t−1
k

=T

π
t−1
k

s
1,t−1s

1,t−1
s
1,t−1

s
2,t−1

s
2,t−1

s
2,t−1

Figure 3: General sub-structure for policy selection. Dashed
arcs represent context-specific independence relations.

strategy, γt−1 becomes true only when both agents suc-
cessfully finish their individual policies, i.e., Agent 1 has
successfully made the pass and Agent 2 has successfully
received the ball. When not all agents have terminated,
agents that have terminated, independent of the state and
previous policy, repeatedly execute a wait or one-step no-
op policy until all agents terminate.

• In the Tany termination scheme, γt−1 becomes true if any
agent from the set of agents terminates at time t− 1, oth-
erwise it remains false. Consider the example, where two
teammates are running to chase the ball. The agents stop
chasing the ball as soon as any one of the teammates ac-
quires the ball. Now a new policy is selected for both
teammates even though only one member naturally ter-
minated. Hence, when γt−1 = T , even if et−1 = F ,
the remaining agents that did not terminate naturally are
forced to select a new policy as shown in Figure 4. In the
context that γt−1 = F , policy selection at time t takes
place in the same way as shown in Figure 3.

e e
1 2

γ
F F F

T
T
T

T
F
T

F
T
T

πk+1

e
t−1

k

πk

s
t−1

t

t

γ=Τ
t−1

t−1
kπ

Figure 4: Policy selection under Tany termination for two
agents. Dashed arcs represent context-specific indepen-
dence relations.

3. The full DBN structure The DBN shown in Fig-
ure 5 can be constructed by super-imposing the above sub-
structures of policy termination and policy selection at each
level. To get an intuitive understanding of the DBN, note
that each agent’s individual policy hierarchy is an AHMM
with K̂ − 1 policy levels. All single agent AHMMs are
connected through γt−1 which controls influence on a sin-
gle agent policy hierarchy from the higher level joint policy
nodes as well as other single agent policy hierarchies. γt−1

becomes true under the pre-specified termination scheme
when agents terminate at the highest level of policy execu-
tion in their AHMM. The levels at and above K̂ are modeled
just as those in the AHMM except the policies are defined

as joint policies which depend on the states of all agents. It
is easy to see how the network can be extended to multi-
ple agents by extending the joint policy at and above level
K̂. To model complete coordination, the model simplifies to
look like a single agent AHMM with the exception that the
policy and action nodes are defined as joint nodes over the
states of all agents. Additionally, the joint-termination node
γ is removed because it always assumes the value true since
actions terminate naturally at each time step. It is also pos-
sible to model coordination among groups of agents where
each group can specify a degree of coordination, i.e., the
level at which their joint policy is specified independently.
The individual subgroup’s joint-policies are now treated as
single agent policies in the larger DBN.

Single agent
Policy

1:n

Kπ

2
0π

1
0π

1
0s

2

1
K−1e

2

1:n
π K

2
πK−1

1
πK−1

State layer

Observation layer

agent1

agent2

Level 0

Joint−termination

Level K−1

Top−most level K

Time Index T−1 T

Level K

Action

Joint−policy

γ

Termination

0s

K−1e

Figure 5: The DBN representation showing two agents.
Each agent policy hierarchy is an AHMM with K̂ levels. γ
at level K̂ − 1 is the coordination node. In the Tall scheme,
the dashed arcs from γt to the single agent policies below
level K̂ − 1 are removed. The dotted-arcs represents the
inter-time slice dependency.

4. Conditional Independence Properties in a Time
Slice of the DBN We had presented the problem of plan
recognition as probabilistic inference on the DBN shown
in Figure 5. The belief state of our DBN representing
the execution of HMMP is a joint distribution over NK̂
single agent policy nodes, N states, N highest level of
termination values for all N agents and K − K̂ + 1 joint
policy nodes. Thus, generally the size of the belief state
representation is exponential in the size of K and N and
there is no compact way to represent the belief state.
This makes exact inference in the network intractable for
large K and N. However, both the policy selection and

290 ICAPS 2004

the policy termination sub-structures discussed earlier
motivate additional conditional independence statements
that simplify the structure of a time slice in the network.
In both sub-structures, termination nodes ekt−1 and γt−1

serve as the context variables, i.e., knowing the termination
variables simplifies the network using the notion of Context
Specific Independence. At the time of policy selection,
policies above level k influence the policies below level k
only through the policy at level k. Hence, by conditioning
on the starting state and the starting time of the policies, we
can exploit additional conditional independence structure in
the network. We generalize the conditional independence
theorem in (Bui, Venkatesh, & West 2002) to express the
conditional independence properties in our network.

Conditional Independence Theorem Given the policy at
level k, its starting time and starting state, all policies and
states below level k are independent of the policies above
level k.

We now re-state and discuss this theorem for two special
cases in our network.

• Case 1: At level k ≥ K̂.
Let τkt = max{t′ < t|ekt′ = T} be the ran-
dom variable representing the starting time of the
current level k policy πk1:n,t. Let αk1:n,t, the state
at time τkt , be its starting state. Let π<k1:n,t =

{s1:n,t, π
1:K̂−1
1,t , π1:K̂−1

2,t · · ·π1:K̂−1
n,t , πK̂1:n,t · · ·π

k−1
1:n,t} de-

note the set of all single agent policies, joint policies and
states below level k at the current time t and π>k1:n,t =

{πk+1
1:n,t, · · ·π

K
1:n,t} denote the set of current policies above

level k. Then, given the current policy πk1:n,t at level k, its
starting state and starting time, the set of all single agent
policies, states and joint policies below level k are inde-
pendent of the set of all joint policies above level k. This
is written as:

π<k1:n,t⊥π
>k
1:n,t | π

k
1:n,t, α

k
1:n,t, τ

k
t (1)

Enumerating all the agent states, and treating the joint
policies as the set of basic policies, the layers above k
are same as those in the AHMM. Using context specific
independence properties described earlier in this section,
the proof of the AHMM can be directly extended to this
general case of joint policies.

• Case 2: At level k < K̂.
Let τkt = max{t′ < t|γt′ = T or ekt′ = T} be the random
variable representing the starting time of the current level
k policy πki,t. Let αki,t, the state at time τkt , be its starting

state. Let π<ki,t = {si,t, π
1:k−1
i,t } denote the set of single

agent policies below level k and the state for agent i at
time t. Then, given the current policy πki,t at level k, its
stating state and time, the set of lower level policies and
state in the policy hierarchy for agent i are independent
of the set of all other policies at time t, including the joint
policies and other agent’s individual policy hierarchies.

This is written as:

π<ki,t ⊥π
(k+1):K̂−1
i,t , πK̂:K

1:n,t ,∀jj 6=iπ
0:K̂−1
j,t ,

∀jj 6=isj,t | π
k
i,t, α

k
i,t, τ

k
t (2)

Proof sketch: Each single agent hierarchy is modeled
as an AHMM. Policy selection at any level k below K̂
in our network has additional dependency on the joint
termination γt−1. Hence, conditioning on γt−1 as well
leads to the same CSI properties as discussed for the
AHMM and πki,t, α

k
i,t, and τkt d-separate π<ki,t from the

rest of the variables in the time-slice.

Inference in the network
The complexity of inference in the DBN depends on the
size of representation of the belief state. In general, in our
DBN, the belief state we need to maintain does not preserve
the conditional independence properties of the single
time-slice network discussed above, making exact inference
intractable even when the DBN has a sparse structure. The
belief state for our model is the set of all variables in the cur-
rent time slice t conditioned on the observation ot written as:
P (π<K̂1,t , π

<K̂
2,t , · · ·π

<K̂
n,t , π

K̂
1:n,t, · · · , π

K
1:n,t, s1:n,t, e

1:K̂−1
1,t , · · ·

· · · , e1:K̂−1
n,t , eK̂1:n,t · · · , e

K
1:n,t, γt | o1:n,t) (3)

Exact inference is clearly not scalable to a large domain

1s0

2s0

0π2

0π1

1:n
πK

K
1:nπ

2πK−1
1πK−1

1π1
1π2

agent1

agent2

1s0

0π1

1:n
πK

K
1:nπ

1πK−1

1π1

1π2

0π2

2s0

2πK−1

1:n

K
1:n

2

agent1

agent2

γ

eK

e

eK−1

1e2

Figure 6: The left structure is the belief tree Tt. The belief
state Bt is obtained by attaching the termination nodes to Tt.
The tree has its root at the πK1:n,t

where several agents are interacting. However, if we as-
sume: 1) the state sequence can be observed with certainty
2) the exact time when each policy starts and ends is known,
then the Conditional Independence Theorem stated earlier
holds and as a direct consequence of this theorem, the belief
state decomposes into the simple tree-like structure shown
in Figure 6. The new belief state is now conditioned on both
the state as well as termination node values upto time t − 1
since they are now observed:

ICAPS 2004 291

P (eallt , πallt , s1:n,t|s1:n,0:t−1, e
all
1:t−1)

= P (eallt |πallt , s1:n,t)P (πallt , s1:n,t|s1:n,0:t−1, e
all
1:t−1)

= P (eallt |πallt , s1:n,t)Tt

The new belief state is realized by adding the links from
the current policies and current states to the terminating
nodes in Tt as shown in Figure 6. On analyzing the size of
our belief state, we note that each node has a manageable
size. The domain for a joint policy variable πkt is Πk, the
set of all policies at level k. If πkt is a single agent policy,
then its domain is further limited to Πk

i , the set of policies
at level k only defined in the policy hierarchy of agent i.
Given the starting state αkt of a policy, the set of possible
policies is limited to πkt ∈ Πk(αkt) and is independent of
K. Similarly, the domain for st, the state at time t is the
set of states reachable from st−1 in one primitive action.
More generally, if N is the maximum number of of relevant
neighboring states and policies at any single level of the
network, then for any link, the conditional probability table
is O(N 2) and the overall size of the belief chain is O(LN 2)

where L = K̂N + (K − K̂) is the number of links in the
belief tree Tt.

Exact-step: We now briefly describe an algorithm that

1s0

0π1

1:n
πK

K
1:nπ

1πK−1

1π1

1π2

0π2

2s0

2πK−1

1:n

K
1:n

2

agent1

agent2

γ

eK

e

eK−1

1e2
0π1

1:n
πK

1πK−1

1π1

1π2

0π2

2s0

2πK−1

1:n

K
1:n

2

K
1:nπ

agent1

agent2

γ

eK

e

eK−1

1e2
0π1

1:n
πK

1πK−1

1π1

1π2

0π2

2πK−1

1:n

K
1:n

K
1:nπ

agent1

agent2

eK

e

a. b. c.

Figure 7: Representation of the belief state update from Bt
to Bt+.The root of the tree is shown as the bolded node. The
dashed arcs show the resulting arcs after arc-reversal at that
step

recursively updates the simple belief state shown in Figure
6 in closed form. It is possible to use the general junction
tree algorithm (Lauritzen & Spiegelhalter 1988) instead to
update the belief state, but at the expense of converting from
the undirected graph to a directed graph after inference at
each time-step to allow efficient sampling from the network.
Given the complete specification of the belief state Bt, the
new belief state Bt+1 can be computed by ‘rolling-over’ Bt
(Boyen & Koller 1995) using the following steps:
1) Absorbing the new evidence: Here, we instantiate all
the state and termination nodes at time t, to obtain Bt+.
We maintain the belief tree Tt with its root at the highest
level of termination in the network. When we say that the
tree Tt has root at a node, it means that all links in the tree
point away from that node. To move the root from a node

at level k to any level say k’, we iteratively reverse the link
between adjacent nodes starting at k till we reach k’ using
the standard link-reversal operation (Shachter 1986).
We start by instantiating the state and termination nodes in
the single agent hierarchies as described for the AHMM.
To do this for agent 1, as shown in Figure 7a, the root is
first moved to s1,t to instantiate the state for agent 1. Once
a node has been instantiated and absorbed, it is removed
from the belief state. We then instantiate e1:K̂−1

1,t , the
termination nodes in agent 1’s policy hierarchy starting
with e11,t. Within the single agent policy hierarchies, a
policy at a higher level cannot naturally terminate if any
policy at the lower level has not terminated. Hence, the
only valid instantiation of the termination nodes is such that
l1,t = {k′|k ∈ 1, · · · , K̂ − 1;∀k > k′, ek1,t = F ;∀k <

k′, ek1,t = T} where l1,t is the highest level of termination
within the single agent hierarchy of agent 1. All policies
below li,t must terminate and all policies above must not
terminate. To absorb each instantiated termination node,
we iteratively reverse the links from πk−1

i,t to πki,t and πki,t
to eki,t for agent i as shown in Figure 7b. We repeat this
process of instantiating the state and termination nodes
for every agent’s individual policy hierarchy. The last link
reversed while repeating this process for every agent policy

hierarchy is from πK̂−1
i,t to πK̂1:n,t. The resulting belief

state as shown in Figure 7c after all the agent’s states and
termination nodes in the single agent policy hierarchies
have been instantiated has its root at level K̂.
Now the remaining termination nodes e≥K̂i,t are instantiated

in the same way by reversing the link from πk−1
1:n,t to πk1:n,t

and πk1:n,t to ek1:n,t iff the joint-termination γt = T (A
longer version of the paper contains details on this proce-
dure). The termination nodes are instantiated only until
ek1:n,t = F , i.e., till a joint-policy at level k terminates. As
discussed earlier, all policies above level k by default do not
terminate because the policy at level k has not terminated.
The resulting belief tree after all the states and termination
nodes have been instantiated, has its root at πrt1:n,t where

rt is at K̂ by default if no joint policies terminate or at the
highest level k where a joint policy has terminated.

2) Projecting the belief state into the next step: This step
creates the new belief tree Tt+1 from Bt+. Since the poli-
cies at and above rt have not terminated, the marginals are
retained in the belief tree Tt+1 as shown in Figure 8a. For
updating the belief tree, the parameters of the new subtree
starting at k ≤ rt are obtained from one of the following
policy selection distributions:

• σ
π
k+1

1:n,t+1

(s1:n,t, π
k
1:n,t+1), k ≥ K̂

• σ
π
k+1

1:n,t+1

(si,t, π
k
i,t+1), k = K̂ − 1

• σ
π
k+1

i,t+1

(si,t, π
k
i,t+1), k < K̂ − 1

Let li,t ∈ {1 · · · K̂ − 1} be the highest level of termi-
nation for each agent in the single agent policy hierarchy.
If none of the joint policies have terminated as shown in

292 ICAPS 2004

1π1,t

1,tπK-1

K
1:n,tπ

0π1,t

1,ts0

2,t

2,t 2,t+1

1,t+1

Tt+1

Bt+

1:n,t
πK

0π1,t+1

1:n,t1:n,t
π tr

1π1,t

1,tπK-1

K
1:n,tπ

0π1,t

1,ts0

2,t

2,t

K
1:n,t+1

2,t+1

2,t+1

1,t+1

1,t+1

Tt+1

Bt+

1:n,t
πK

agent1

πK-1

1π2,t

0π2,t

s0 agent1

0π2,t+1

s0

1π1,t+1

s0

agent2 agent2b.

πk

agent1

πK-1

1π2,t

0π2,t

s0 agent1

π

πK-1

1π2,t+1

0π2,t+1

s0

1π1,t+1

πK-1

0π1,t+1

s0

agent2 agent2a.

Figure 8: Belief state updating from Bt+ to Tt+1. All
marginals of Bt+ above the highest level of termination are
retained in Tt+1 a. shows update procedure when the high-
est level termination is ≥ K̂. b. shows update procedure
when no joint policies have terminated. Here agent1 has its
highest level of termination at level K̂−2 and agent2 at level
0.

Figure 8b, then for each agent i, all policies above li,t are
retained as well in Tt+1 and a new subtree is formed for
remaining levels at and below level li,t using the policy
selection distribution given above. The new belief tree
is a combination of the belief tree Tt and newly created
sub-tree. The new belief state Bt+1 is obtained by adding
the termination variables to Tt+1 as shown in Figure 6. This
ends the exact update procedure for our network.

The complexity of the belief update procedure is propor-
tional to N, the number of agents and rt, the level at which
the root of the tree is maintained, because the algorithm
only needs to modify the bottom rt levels. The probability
that a single agent policy terminates at level k is assumed
to be exponentially small w.r.t. k (Bui, Venkatesh, & West
2002). Consequently, for the Tall termination scheme, the
probability that the highest level of termination in a given
time step is at any level k is exponentially small with respect
to N and k. The expected value of the highest level of
termination at each time step is O(

∑
k(

e−1
e)N l

eNk) which
is constant bounded in K, the total number of levels in the
network and exponentially decreasing inN . e represents the
base of the natural log. Since, the root of the belief tree by
default is maintained at K̂, the average update complexity
at each time step for the Tall termination scheme becomes
O(NK̂).

For the Tany termination scheme, probability that the
highest level of policy termination is at any level L is calcu-
lated as follows. Let li be the highest level of termination
for each agent i.

Pr(maxNi=1 li = L)

= Pr(
N

max
i=1

li ≤ L) − Pr(
N

max
i=1

li ≤ L− 1)

Pr(maxNi=1 li ≤ L)

=
∏

N

Pr(li ≤ L)

=
∏

N

(
e − 1

e
)(1 +

1

e
+

1

e2
· · · +

1

eL
)

= (1 −
1

eL+1
)N

Pr(maxNi=1 li = L)

= (1 −
1

eL+1
)N − (1 −

1

eL
)N

Thus, the expected value for the highest level of termination
at each time step is

O(
∑

k

k((1 −
1

ek+1
)N − (1 −

1

ek
)N)) (4)

We analyze the complexity graphically by plotting the
expected value (eq. 4) for plan hierarchies with varying
number of agents (1 − 1000 agents) and varying number of
levels (1 − 500 levels) as shown in Figure 9. It is apparent
from the plot that the expected value is independent in
the total number of levels in the plan hierarchy. Also,
we superimpose the plot for the logarithm of n for each
l and offset it by 0.5 for clarity. The expected value
clearly varies logarithmically in n as shown. Hence, the
average update complexity at each time step for Tany is
O(max(NlogN,NK̂))

Approximation step: The above algorithm is used to
update the belief state only if both assumptions stated earlier
hold, i.e., the agent states as well as the time when a policy
starts and terminates is known. In any real world application,
these assumptions are too restrictive. We had seen earlier
that if these assumptions do not hold then the belief state no
longer has the simple tree-like structure. Our goal is to esti-
mate the marginal P (πkt+1|ot). One possible approach is to
sample from the network to calculate this marginal (Doucet,
Godsill, & Andrieu 2000). However, sampling in the prod-
uct space of all variables in a given time slice of the network
becomes less efficient and accurate with large K and N.
To improve the accuracy of sampling in the network, we use
Rao-Blackwellized Particle Filtering (Doucet et al. 2000) to
analytically marginalize some of the variables and sample
only the remaining variables in the belief state. As a con-
sequence of the Rao-Blackwell theorem (Casella & Robert
1996) stated below, the Rao-Blackwellized estimator is gen-
erally more accurate than any sampling estimator that in-
volves sampling all variables for the same number of sam-
ples N.

V ar(U) = V ar(E[U |V]) + E[V ar(U |V)]

ICAPS 2004 293

0
200

400
600

800
1000

0

100

200

300

400

500

−2

0

2

4

6

8

Number of agents (n)

Complexity of update procedure for T
any

Total levels (K)

E
xp

ec
te

d
va

lu
e

of
 m

ax
i l i

Figure 9: This plot shows empirically that the expected
value of the highest level of termination under Tany is in-
dependent of the number of levels and is bounded logarith-
mically in the number of agents.

where U is the set of all variables and V is the set of sampled
variables. Hence V ar(U) ≥ V ar(E[U |V]). We use our
context variables, the states and termination nodes as our
RB variables. Conditioning on these variables yields a lower
variance estimator for the marginals πallt and simplifies
the network to the simple tree-like structure. Now, we
can use the exact-step described above to update the belief
state once the RB variables have been sampled. Applying
RBPF to our network is tricky because the sequence of
RB variables that we are using do not satisfy the Markov
property. To sample efficiently from the network, for each
agent i, we first position the root of Tt at si,t and reverse the
link from oi,t using evidence reversal (Kanazawa, Koller, &
Russell 1995). This gives us the network structure with oi,t
absorbed into the network. Now, we perform forward sam-
pling starting from the root node and proceeding upward to
sample si,t and ei,t. The joint policy termination nodes are
sampled after all the single agent policy termination nodes
have been sampled. The samples of the policy nodes are
discarded since they are not needed. Sampling is stopped at
the first level k in the single agent policy hierarchy of agent
i where ei,t = F . Similarly, the joint policy termination
nodes are only sampled if γt = T . If M samples are
maintained, then the overall complexity of maintaining the
samples on average at each time step for Tall is O(MN)
and is constant bounded in K, the number of levels in the
network. For Tany , the average sampling complexity at
each time step for is O(M max(NlgN,NK̂)). In the limit,
M → ∞, the above inference algorithm performs as well
as exact inference.

For t = 0,1 ...
For each sample i = 1,...M

Sample s(i)1:n,t, e
all(i)
t from B

(i)
t (s

(i)
1:n,t, e

all(i)
t |ot)

Update weight w(i) = w(i)B
(i)
t (ot)

Compute the posterior RB belief state
B

(i)
t+ = B

(i)
t (πallt |s

(i)
1:n,t, e

all(i)
t , ot)

Compute the belief tree T (i)
t+1 from B

(i)
t+

Compute the new belief state B
(i)
t+1 from T

(i)
t+1

Compute the marginal h(i)

πk
t+1

= T
(i)
t+1(π

k
t+1)

End
Compute the estimator P (πkt+1|ot) =

∑M

i=1 h
(i)

πk
t+1

w(i)

End

Experimental Results
We present here an application of the HMMP framework to
the problem of recognizing behavior of two agents in a simu-
lated domain of our lab. The coordinates of the agents in the
lab can be obtained by laser tracking by the robot. Our DBN
has a 4 level action/policy hierarchy (see Figure 10). The
lowest coordination level is defined atK̂ = 2. We define the
parameters of the policies manually to simulate the move-
ment of the agents in the lab. To represent the uncertainty in
our observations, we assume that the agents can be anywhere
among its two neighboring states with probabilities defined
by a pre-specified model. For a typical sample trajectory, ex-
act inference in the network returns the probabilities of the
joint policies and the single agent policies. Shown below
is an observed sample trajectory for when both agents are
trying to exit separately from the two opposite doors in the
lab under the Tall termination scheme. As the observations
about the trajectories arrive over time, the predicted proba-
bility distribution for the agents’ exit policy, the highest level
goal in the network, using exact inference is shown in Figure
11. To show that our approximate inference algorithm can
perform as well as exact inference for a large enough sam-
ple set, we compute the same probability distribution using
approximate inference with 500 samples and get similar re-
sults (see Figure 12).
Trajectory of Agent 1: 3,2,3,2,4,5,6,6,8,8,9,7,8,9,7
Trajectory of Agent 2: 6,6,5,5,3,4,5,4,3,3,1,2,1,1,2

In the network for Tany , only at level 3, we define new
policies such as go to the left door when we hear a knock,
and answer the telephone when the phone rings. Here is
a sample trajectory where both agents proceed to the left
door when a knock is heard at time step 1. At time step
10, the telephone rings and agent 1 proceeds to answer
the telephone while agent 2 is still at the left door. The
predicted marginal distributions for the highest level goal
node using exact and approximate inference are shown in
Figure 13 and Figure 14 respectively.
Trajectory of Agent 1: 8,8,7,6,5,6,5,4,4,4,5,6,6,7,8
Trajectory of Agent 2: 7,6,5,5,4,3,2,3,2,1,1,1,1,1,1

Conclusions and Future Work
We have presented Hierarchical Multiagent Markov Pro-
cesses(HMMP) as a framework for hierarchical probabilis-

294 ICAPS 2004

Left door-Left door
Left door-Right door
Right door-Left door
Right door-Right door

Exit-together
Exit-separately

Go to Right door
Go to Left door

Go to Right door
Go to Left door

Move left
Wait

Move Right
Move left
Wait

Move Right

Agent 1 Agent 2

Level 0

Level 1

Level 2

Level 3

Figure 10: The policy hierarchy for the Tall termination. 2)
The ALL Lab and states as marked.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (t)

p(
Jo

in
t−

po
lic

y
at

 le
ve

l 3
|o

bs
er

va
tio

n
up

to
 t)

Exact inference
x−exit together
o−exit separately

Figure 11: Exact inference results showing the evolution of
the probability of the highest level policy under Tall termi-
nation.

tic plan recognition in cooperative multiagent systems. This
framework extends the Abstract Hidden Markov Model to
multiagent systems. We analyzed in detail the process of
inference in our network for two coordination mechanisms:
Tany and Tall. We showed that using an efficient sampling
scheme and exploiting additional conditional independence
relations in the network, the Rao-Blackwellized Particle Fil-
ter approximate inference method greatly reduces the com-
plexity of the inference in the network.

We briefly outline some directions for future work. One
interesting direction to pursue is to investigate techniques for
adapting the parameters of the hierarchical DBN from exam-
ple trajectories. Adaptation would be a useful component of
many real-world multiagent plan recognition systems, e.g.
robot soccer, where the capacity to adapt to the opponents
strategy may prove invaluable. Another interesting direction
is to investigate other forms of combining individual agent
policies, including probabilistic methods such as “noisy-T-

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (t)

P
(J

oi
nt

−
po

lic
y

at
 le

ve
l 3

|o
bs

er
va

tio
ns

 u
pt

o
t)

Approximate inference
x−exit together
o−exit separately

Figure 12: Approximate inference results showing the evo-
lution of the probability of the highest level policy under Tall
termination.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (t)

P
(jo

in
t−

po
lic

y
at

 le
ve

l 3
|o

bs
er

va
tio

ns
 u

pt
o

t)

Exact inference
x−answer door
o− answer both door and telephone

Figure 13: Exact Inference results showing the evolution of
the probability of the highest level policy under Tany termi-
nation

any” and “noisy-T-all”. Finally, we plan to apply the pro-
posed framework to a real-world multiagent task, to test its
scaleability and effectiveness.

Acknowledgements
We would like to thank members of the Autonomous Learn-
ing Laboratory for their feedback.

References
Barto, A., and Mahadevan, S. 2003. Recent advances
in hierarchical reinforcement learning. Special Issue on
Reinforcement Learning, Discrete Event Systems journal
13:41–77.

ICAPS 2004 295

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (t)

P
(J

oi
nt

−
po

lic
y

at
 le

ve
l 3

|o
bs

er
va

tio
ns

 u
pt

o
t)

Approximate inference
x−answer door
o−answer both door and telephone

Figure 14: Approximate inference results showing the evo-
lution of the probability of the highest level policy under
Tany termination.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In Proceedings of Uncertainty in Artificial Intelli-
gence, 115–123.

Boutilier, C. 1999. Sequential optimality and coordination
in multiagent systems. In International Joint Conference
in Artificial Intelligence, 478–485.

Boyen, X., and Koller, D. 1995. Tractable inference for
complex stochastic processes. In Proceedings of Uncer-
tainty in Artificial Intelligence, 33–42.

Bui, H.; Venkatesh, S.; and West, G. 2002. Policy recog-
nition in the Abstract Hidden Markov Model. Journal of
Artificial Intelligence Research 17:451–499.

Casella, G., and Robert, C. 1996. Rao-Blackwellization of
sampling schemes. Biometrika 83:81–94.

Doucet, A.; de Freitas, N.; Murphy, K.; and Russell, S.
2000. Rao-Blackwellised particle filtering for dynamic
bayesian networks. In Proceedings of Uncertainty in Ar-
tificial Intelligence, 176–183.

Doucet, A.; Godsill, S.; and Andrieu, C. 2000. On sequen-
tial monte carlo sampling methods for bayesian filtering.
Statistics and Computing 10(3):197–208.

Intille, S., and Bobick, A. 1999. A framework for recog-
nizing multi-agent action from visual evidence. In National
Conference for Artificial Intelligence.

Kanazawa, K.; Koller, D.; and Russell, S. 1995. Stochastic
simulation algorithms for dynamic probabilistic networks.
In Proceedings of Uncertainty in Artificial Intelligence,
346–351.

Lauritzen, S., and Spiegelhalter, D. 1988. Local compu-
tations with probabilties on graphical structures and their
application to expert systems. Royal Statistical Society B
50:154–227.

Makar, R.; Mahadevan, S.; and Ghavamzadeh, M. 2001.
Hierarchical multi-agent reinforcement learning. In Pro-
ceedings of the Fifth International Conference on Au-
tonomous Agents.
Marsella, S.; Adibi, J.; Al-Onaizan, Y.; Kaminka, G.;
Muslea, I.; and Tambe, M. 1999. On being a teammage:
Experiences acquired in the design of robocup teams. In
Proceedings of the Third International Conference on Au-
tonomous Agents.
Mataric, M. 1997. Reinforcement learning in the multi-
robot domain. Autonomous Robots 4(1):73–83.
Riley, P., and Veloso, M. 2001. Coaching a simulated soc-
cer team by opponent model recognition. In Proceedings of
the Fifth International Conference on Autonomous Agents.
Rohanimanesh, K., and Mahadevan, S. 2003. Learning to
take concurrent actions. In Neural Information Processing
Systems (NIPS).
Shachter, R. D. 1986. Evaluating influence diagrams. Op-
erations Research 34(6):871–882.

296 ICAPS 2004

