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Abstract
We introduce a nonparametric approach to multi-
scale analysis of document corpora using a hierar-
chical matrix analysis framework called diffusion
wavelets. In contrast to eigenvector methods, diffu-
sion wavelets construct multiscale basis functions.
In this framework, a hierarchy is automatically con-
structed by an iterative series of dilation and or-
thogonalization steps beginning with an initial set
of orthogonal basis functions, such as the unit-
vector bases. Each set of basis functions at a given
level is constructed from the bases at the lower level
by dilation using the dyadic powers of a diffusion
operator. A novel aspect of our work is that the dif-
fusion analysis is conducted on the space of vari-
ables (words), instead of instances (documents).
This approach can automatically and efficiently de-
termine the number of levels of the topical hierar-
chy, as well as the topics at each level. Multiscale
analysis of document corpora is achieved by using
the projections of the documents onto the spaces
spanned by basis functions at different levels. Fur-
ther, when the input term-term matrix is a “local”
diffusion operator, the algorithm runs in time ap-
proximately linear in the number of non-zero el-
ements of the matrix. The approach is illustrated
on various data sets including NIPS conference pa-
pers, 20 Newsgroups and TDT2 data.

1 Introduction
The problem of analyzing text corpora has emerged as one
of the most active areas in data mining and machine learn-
ing. The goal here is to extract succinct descriptions of the
members of a collection that enable efficient generalization
and further processing. Many real-world corpora of text doc-
uments exhibit non-trivial semantic regularities at multiple
levels, which cannot be easily discerned using “flat” meth-
ods, such as Latent Semantic Indexing (LSI) [Deerwester et
al., 1990]. For example, in the well-known NIPS conference
paper data set, at the most abstract level, the set of all pa-
pers can be categorized into two main topics: machine learn-
ing and neuroscience. At the next level, the papers can be
categorized into a number of areas, such as dimensionality

reduction, reinforcement learning, etc. The key problem in
analyzing document collections at multiple levels is to find a
multiscale embedding of the documents. This problem can be
formalized as follows: given a collection of documents, each
of which is represented as a bag of words, can we discover a
hierarchical representation of the documents that reveals mul-
tiscale conceptual regularities?

Topic models are an important tool to find concepts from
document corpora. They have been successfully used to an-
alyze large amounts of textual information for many tasks.
A topic could be thought as a multinomial word distribution
learned from a collection of documents using either linear
algebra or statistical techniques. The words that contribute
more to each topic provide keywords that briefly summa-
rize the themes in the collection. The new representations of
documents can be computed by projecting the original doc-
uments onto the space (topic space) spanned by topic vec-
tors. Popularly used topic models include the aforementioned
LSI and Latent Dirichlet Allocation (LDA) [Blei, Ng, & Jor-
dan, 2003]. However, these models can only find regulari-
ties at a single level. Recently, several statistical approaches
were proposed to find topical hierarchies. One of them is
hLDA [Blei et al., 2004]. Such new methods heavily depend
on detailed prior information, like number of levels, number
of topics. Exact inference in these graphical models is also
generally intractable, and requires sampling-based methods.

In this paper, we present a new diffusion model based ap-
proach that automatically and efficiently finds multiscale em-
beddings of documents in a given corpus. Our method builds
on recent work in harmonic analysis, in particular diffusion
wavelets [Coifman & Maggioni, 2006]. Harmonic analy-
sis is a well-studied area of mathematics, which includes
Fourier analysis in continuous spaces. Recent work in har-
monic analysis has turned to wavelet methods, which pro-
duce a multiscale analysis of functions at many temporal and
spatial levels. Diffusion wavelets (DWT) is a recent exten-
sion of wavelet methods to functions on discrete spaces like
graphs. Unlike classical wavelets, in diffusion wavelets the
basis functions at each level of the hierarchy are not pre-
determined, but need to be constructed by dilation using the
dyadic powers of a diffusion matrix. One novel aspect of our
work is that the DWT multiscale construction is on the vari-
ables, but not on the instances (as many previous applications
of DWT have been). The key strength of the approach is that



it is completely data-driven, largely parameter-free and can
automatically determine the number of levels of the topical
hierarchy, as well as the topics at each level. To our knowl-
edge, none of the competing methods can produce a mul-
tiscale analysis of this type. Further, when the input term-
term matrix is a “local” diffusion operator, the algorithm runs
in time approximately linear in the number of non-zero ele-
ments of the matrix. In contrast to the topics learned from
another linear algebra based method LSI, our topics have lo-
cal support. This is particularly useful when the concept only
involves a small group of words. We achieve multiscale em-
beddings of document corpora by projecting the documents
onto such a hierarchical, interpretable topic space.

Our approach is tested on three real world data sets: the
NIPS (1-12) conference full paper data set, which is avail-
able at www.cs.toronto.edu/∼roweis/data.html, the 20 News-
Groups data set (people.csail.mit.edu/jrennie/20Newsgroups)
and the TDT2 data set (projects.ldc.upenn.edu/TDT2). The
results show that the multiscale diffusion model can suc-
cessfully identify the structure of each collection at multiple
scales.

2 Learning Topic Spaces
Learning a topic space means learning the topic vectors span-
ning the concept space. In a collection of documents (de-
fined on a vocabulary with n terms), any document can be
represented as a vector in Rn, where each axis represents a
term. The ith element of the vector can be some function
of the number of times that the ith term occurs in the docu-
ment. There are several possible ways to define the function
to be used here (frequency, tf-idf, etc.), but the precise method
does not affect our results. In this paper, we assume A is an
n ×m matrix whose rows represent terms and columns rep-
resent documents.

2.1 Learning Topic Spaces using LDA
Latent Dirichlet Allocation (LDA) [Blei, Ng, & Jordan, 2003]
is a widely used probabilistic topic model and the basis for
many variants. LDA treats each document as a mixture of
topics, where each topic is a distribution over words in a vo-
cabulary. To generate a document, LDA first samples a per-
document distribution over topics from a Dirichlet distribu-
tion, and then it samples a topic from the distribution and
a word from the topic. Documents in LDA are linked only
through a single Dirichlet prior, so the model makes no at-
tempt to find the distribution over topic mixtures. LDA is a
“flat” topic model.

2.2 Learning Topic Spaces using hLDA and others
The hLDA model [Blei et al., 2004] represents the distribu-
tion of topics within documents by organizing the topics into
a tree. Each document is generated by the topics along a path
of this tree. To learn the model from the data, we need to
alternately sample between choosing a new path through the
tree for each document and assigning each word in each doc-
ument a topic along the chosen path. In the hLDA model, the
quality of the distribution of topic mixtures depends on the
topic tree. To learn the structure of the tree, hLDA applies

a nested Chinese restaurant process (NCRP), which requires
two parameters: the number of levels of the tree and a pa-
rameter γ. hLDA and some other methods can learn hierar-
chical topics, but they need detailed prior information, such
as number of levels, number of topics and the performance
of these models heavily depends on the priors. Inference in
these graphical models is also generally intractable, and typi-
cally a sampling based approach is used to train these models,
which is computationally expensive.

2.3 Learning Topic Spaces using LSI

Latent semantic indexing (LSI) [Deerwester et al., 1990] is
a well-known linear algebraic method to find topics in a text
corpus. The key idea is to map high-dimensional vectors to a
lower dimensional representation in a latent semantic space.
The goal of LSI is to find a mapping that provides informa-
tion that reveals semantical relations between the entities of
the interest. Let the singular values of A be δ1 ≥ · · · ≥ δr,
where r is the rank of A. The singular value decomposition
of A is A = UΣV T , where Σ = diag(δ1, · · · δr), U is an
n × r matrix whose columns are orthonormal, and V is an
m× r matrix whose columns are also orthonormal. LSI con-
structs a rank-k approximation of the matrix by keeping the
k largest singular values in the above decomposition, where
k is usually much smaller than r. LSI is also a “flat” topic
model, which means it cannot find hierarchical topics.

The term-term matrix AAT gives the correlation between
terms over the documents. AAT = (UΣV T )(UΣV T )T =
UΣΣTUT , so the column vectors of U (topic vectors) are
also the eigenvectors of the term-term matrix AAT .

2.4 Learning Topic Spaces using Diffusion Models

The term-term matrix AAT is a Gram matrix with nonnega-
tive entries. Define D as a diagonal matrix, whose entry Dii

is the sum of the entries on the i-th row of AAT . We define
the normalized term-term matrix T as D−0.5AATD−0.5. In
fact, the normalized Laplacian operator associated withAAT

is L = I − T . The Laplacian matrix has become a corner-
stone of recent methods in machine learning, in areas ranging
from clustering, semi-supervised learning and dimensionality
reduction. Instead of learning the eigenvectors of T , multi-
scale diffusion analysis involves learning the diffusion scal-
ing functions of T using diffusion wavelets [Coifman & Mag-
gioni, 2006]. This process can be interpreted geometrically
as projecting data to lower dimensional spaces by using the
scaling functions while preserving the large scale informa-
tion which is inherent in the data. The method provides a
multiscale embedding, which means it automatically reveals
the geometric structure of the data at different scales. The
subspace spanned by diffusion scaling functions from T is
exactly the subspace spanned by certain eigenvectors of T
(with largest eigenvalues) up to a precision ε [Coifman &
Maggioni, 2006]. However, the diffusion scaling functions
are multiscale basis functions, with local support and can be
computed efficiently. These properties make our multiscale
diffusion approach attractive in applications to text mining.
A detailed description is in Sec 4.



3 Finding a Multiscale Embedding of the
Documents from a Corpus

If a topic space S is spanned by a set of r topic vectors, we
write the set as S = (t(1), · · · , t(r)), where topic t(i) is a
column vector (t(i)1, t(i)2 · · · , t(i)n)T . Here n is the size
of the vocabulary set, ‖t(i)‖ = 1 and the value of t(i)j rep-
resents the contribution of term j to t(i). Obviously, S is an
n×r matrix. We know the term-document matrixA (an n×m
matrix) models the corpus, wherem is the number of the doc-
uments and columns of A represent documents in the “term”
space. The low dimensional embedding of A in the “topic”
space S is then ATopic = STA. ATopic is an r ×m matrix,
whose columns are the new representations of documents in
S.

A diffusion model extracts topics at multiple scales, yield-
ing a multiscale embedding of the documents. The new rep-
resentation of the documents at a particular scale may signif-
icantly compress the data preserving the most useful infor-
mation at that scale. Since all the topics are interpretable, we
may read the topics at different scales and select the best scale
for embedding. At one scale, we can determine which topic
is more relevant to our task and discard the non-useful top-
ics. Our diffusion model based multiscale embedding method
provides a very powerful tool to analyze the document cor-
pora and will be quite useful for classification, information
retrieval, clustering, etc. Later, we will show that it is also
efficient.

4 The Main Algorithm
In the main algorithm below and Figure 1, the notation [T ]φb

φa

denotes the matrix representation of operator T , where the
column space or range of T is represented with respect to the
basis φb, and the row space or input space is represented using
the basis φa. The subscripts in φb or φa denote the scale. The
notation [φb]φa

denotes basis φb written on the basis φa.

4.1 The Algorithmic Procedure
Assume the term-document matrix A is already given. The
algorithmic procedure is stated below (some of the notation
given below is explained in Section 4.3):

1. Constructing the normalized term-term matrix T :
T = D−0.5AATD−0.5, where D is a diagonal matrix, whose
entry Dii is the sum of the entries on the i-th row of AAT .

2. Generating Diffusion Models:
{φj , ψj} = DWT (T, I,QR, J, ε).

• I is an identify matrix; J is the max step number; ε is
the desired precision. QR is a modified QR decomposi-
tion [Coifman & Maggioni, 2006].

• φj : diffusion scaling functions at level j. ψj : wavelet
functions at level j.

3. Computing the extended basis functions:

• [φj ]φ0
, the representation of the basis functions at level j

in the original space, is computed as follows:
[φj ]φ0

= [φj ]φj−1
[φj−1]φj−2

· · · [φ1]φ0
[φ0]φ0

.

{φj , ψj} = DWT (T, φ0, QR, J, ε)
//φj : “Scaling” basis functions at scale j.
//ψj : “Wavelet” basis functions at scale j.
//QR: A function computing a sparse QR decomposition.
//J : Max number of steps to compute. ε: Precision.
//∗: Transpose conjugate.
For j = 0 to J − 1 {

([φj+1]φj
, [T 2

j

]
φj+1

φj
)← QR([T 2

j

]
φj

φj
, ε);

[T 2
j+1

]
φj+1

φj+1
= ([T 2

j

]
φj+1

φj
)([T 2

j

]
φj+1

φj
)∗;

[ψj ]φj
← QR(I < φj > −[φj+1]φj

[φj+1]
∗

φj
, ε);

}

Figure 1: The DWT Procedure. J can be omitted, since the
representation of T will converge to a scalar value at some
level, and the construction will terminate.

• [φj ]φ0
is an n × nj matrix. Each column vector repre-

sents a topic at level j. Entry k on the column vector
shows term k’s contribution to this topic.

4. Computing multiscale embeddings of the corpora:
At scale j, the embedding of A is ([φj ]φ0

)TA.

4.2 High Level Explanation
Instead of using the document-document matrix ATA, as is
done in [Coifman & Maggioni, 2006], we run the multi-
scale algorithm on the term-term matrix AAT , which mod-
els the co-occurrence relationship between any two term vec-
tors over the documents in the given corpora. In fact, al-
most all state of the art approaches learn topics from such
co-occurrence information. Our algorithm starts with the nor-
malized term-term co-occurrence matrix and then repeatedly
applies QR decomposition to learn the topics at the current
level while at the same time modifying the matrix to focus
more on low-frequency indirect co-occurrences for the next
level. Our approach is in spirit similar to LSI, but goes be-
yond LSI to naturally generate topics in multiple resolutions
through progressively constructing a matrix to model the low
frequency indirect co-occurrences.

4.3 The DWT Procedure
The diffusion wavelets algorithm is summarized in Figure 1.
Assume at an arbitrary scale i, we have ni basis functions,
and length of each function is li, then [T ]φb

φa
is an nb× la ma-

trix, [φb]φa
is an la×nb matrix. The scaling function [φj ]φj−1

plays a major role in this paper since it provides a mapping
between the data at coarse scale and fine scale spaces. We can
represent basis functions at level j in terms of the basis func-
tions at the next lower level. In this manner, the extended ba-
sis functions can be expressed in terms of the original bases as
[φj ]φ0

= [φj ]φj−1
[φj−1]φ0

, so we can compute [φj ]φ0
using

[φj ]φ0
= [φj ]φj−1

[φj−1]φj−2
· · · [φ1]φ0

[φ0]φ0
. Each element

on the right hand side of the equation is created in the DWT
procedure. The elements in [φj ]φ0

are usually much coarser
and smoother than the initial elements in φ0, which is why
they can be represented in compressed form. Given [φj ]φ0

,
any function on the compressed large scale space can be ex-



tended naturally to the original space or vice versa. The con-
nection between any vector in the original space and its com-
pressed representation at scale j is v[φj ] = ([φj ]φ0

)T v[φ0].
The DWT procedure is as follows: the original matrix T

represents the one step transition probability between data
points (“terms” for our case). The QR subroutine is a Gram-
Schmidt orthogonalization routine that finds the QR decom-
position up to precision ε (at scale j), while filtering out the
“high frequency” noise. Then we construct the basis func-
tions from the new matrix. We usually have a smaller number
of basis functions to characterize the new matrix, since a lot of
high frequency information has already been filtered out. We
use the low frequency information to compute the two time
step transition from T 2j

resulting in a new representation of
T 2j+1

at the next level. The matrix of T can be thought as a
transition matrix, and the probability of transition from x to
y in j time steps is given by T j(x, y). So the procedure de-
scribed in Figure 1 is equivalent to running the Markov chain
forward in time and allows us to integrate the local geome-
try and therefore reveal the relevant geometric structures of
data at different scales. At scale j, the representation of T 2j

is compressed based on the amount of remaining information
and the precision we want to keep.

4.4 Comparison to Other Methods
As shown in Figure 1, the spaces at different levels are
spanned by a different number of basis functions. These num-
bers reveal the dimensions of the relevant geometric struc-
tures of data at different levels. These numbers are com-
pletely data-driven: the diffusion-wavelet approach can auto-
matically find the number of levels and simultaneously gen-
erate the number of topics at each level. In fact, once the
term-document matrix A is given, users only need to specify
one parameter ε – the precision. In fact, this parameter can be
automatically set by computing the average of the non-zero
entries on the normalized term-term matrix T , and taking its
product with a small number like 10−5 to get ε. So, our ap-
proach is essentially parameter free, a significant advantage
over competing methods. To incorporate prior knowledge,
the term-document matrix A can be suitably modified.

Learning hierarchical topics could be done in almost lin-
ear time, when T is a “local” diffusion operator [Coifman &
Maggioni, 2006; Maggioni & Mahadevan, 2006]. The main
idea is that most examples defined in the diffusion operator
have “small” degrees in which transitions are allowed only
among neighboring points, and the spectrum of the transition
matrix decays rapidly. This result is in contrast to the time
needed to compute k eigenvectors, which isO(kn2). In many
applications, the normalized term-term matrix T is already a
localized diffusion operator. If it is not, we can simply con-
vert it to such a matrix: for each term in the collection, we
only consider its most relevant k terms since the relationships
between terms that co-occur many times are more important.
The same technique has been widely used in manifold learn-
ing to generate the relationship graph from the given data ex-
amples. The algorithm is modified to retain the top k entries
in each row of T , and all other entries are set to 0. The result-
ing matrix is not symmetric, so we need to symmetrize it in

the end.
The space spanned by topic vectors from diffusion models

are the same as the space spanned by some LSI topic vec-
tors up to a precision ε. However, the topic vectors (in fact
eigenvectors) from LSI have a potential drawback that they
detect only global smoothness, and may poorly model the
concept/topic which is not globally smooth but only piece-
wise smooth, or with different smoothness in different re-
gions. Unlike the global nature of eigenvectors, our topic
vectors are local (sparse). This can better capture some con-
cepts/topics that only involve a particular group of words. Ex-
periments show that most diffusion model based topics are
interpretable, such that we can interpret the topics at different
scales and select the best scale for embedding. Further, at the
selected scale, we can check which topic is more relevant to
our application and skip the non-useful topics. In contrast,
many LSI topics are not interpretable.

Topic vectors from diffusion models are orthonormal to
each other. In other words, for any two topics ti and tj at an
arbitrary level, we have ti · tj = 0 and ‖ti‖ = ‖tj‖ = 1. This
means the information encoded using diffusion model topics
is not redundant and representation of documents in the topic
space is unique. This property does not hold for parametric
statistical approaches (like LDA, hLDA).

The complexity of generating a diffusion model mostly de-
pends on the size of the vocabulary set in the corpus, but not
the number of the documents, or the number of the tokens.
We know no matter how large the corpus is, the size of the
vocabulary set is determined. So our approach should be scal-
able to large data sets.

5 Experimental Results
In this section, we describe the results of multiscale analysis
on three real world data sets. We use the NIPS conference
paper data set to show what the resulting multiscale analy-
sis look like, and how to interpret these topics. We use the
20 NewsGroups data and TDT2 data to show the multiscale
embeddings of the corpora.

Since our model is parameter-free, we do not need any spe-
cial settings. The precision we used for all these experiments
was 10−5. One problem that is important but we have not
addressed so far is how to interpret topics learned from our
diffusion models. For any given topic vector v, we know it
is a column vector of length n, where n is the size of the
vocabulary set and ‖v‖ = 1. The entry v[i] represents the
contribution of term i to this topic. To explain the main con-
cept of topic v, we sort the entries on v and print out the terms
corresponding to the top 10 entries. These terms summarize
the topics in the collection.

5.1 NIPS Paper
We generated hierarchical topics from the NIPS paper data
set, which includes 1,740 papers. The original vocabulary
set has 13,649 terms. The corpus has 2,301,375 tokens in
total. We filtered out the terms that appear ≤ 100 times in the
corpus, and only 3,413 terms were kept. The collection did
not change too much. The number of the remaining tokens
was 2,003,017. For comparison purpose, we also tested LSI,
LDA and hLDA using the same data set.



Table 1: Number of topics at different levels (diffusion model,
NIPS)

Level Number of Topics
1 3413
2 1739
3 1052
4 37
5 2

Table 2: Some topics at level 4 (diffusion model, NIPS)
Top 10 Terms

policy state action reinforcement actions learning reward mdp agent sutton
mouse chain proteins region heavy receptor protein alpha human domains

distribution data gaussian density bayesian kernel posterior likelihood em regression
chip circuit analog voltage vlsi transistor charge circuits gate cmos

speech hmm word speaker phonetic recognition spike markov mixture acoustic
iiii border iii texture ill bars suppression ground bar contextual

face facial images faces image tangent spike object views similarity
adaboost margin boosting classifiers head classifier hypothesis training svm motion

stress syllable song heavy linguistic vowel languages primary harmony language
routing traffic load shortest paths route path node message recovery

actor critic pendulum tsitsiklis pole barto harmony signature routing instructions
documents query document retrieval queries words relevant collection text ranking

classifier classifiers clause knn rbf tree nearest neighbor centers classification
stack symbol strings grammars string grammar automata grammatical automaton giles
song template production kohonen syllable pathway harmonic nucleus lesions motor

Multiscale Diffusion Model identifies 5 levels of topics,
and the number of the topics at each level is shown in Ta-
ble 1. At the first level, each column in T is treated as a topic.
At the second level, the number of the columns is almost the
same as the rank of T . At level 4, number of topics goes down
to a reasonable number 37. Finally at level 5, the number of
topics is 2. The 2 topics at level 5 are “network, learning,
model, neural, input, data, time, function, figure, set” and
“cells, cell, neurons, firing, cortex, synaptic, visual, stimu-
lus, cortical, neuron”. Obviously, the first is about machine
learning, while the second is about neuroscience. These two
topics are exactly the real topics at the highest level of NIPS.
Almost all 37 topics at level 4 look semantically meaningful.
They nicely capture the function words. Some examples are
in Table 2.

LSI computes “flat” topics only, so we compare the top
37 LSI topics to the results from diffusion model. The LSI
topics (not shown here) look much worse. The reason is the
diffusion model based topics are with local support, while LSI
topics are globally “smooth”. Even though such vectors are
spanning the same space, they look quite different. “Local
support” is particularly important to represent a concept that
only involve a small number of words in document corpora.

LDA was also tested on this data set. To use LDA, we need
to specify the number of topics. In this test, we tried two num-
bers: 2 and 37. When topic number is 2, the two topics are
“model, network, input, figure, time, system, neural, neurons,
output, image” and “learning, data, training, network, set,
function, networks, algorithm, neural, error”. They do not
cover neuroscience, which is covered by our diffusion model.
Given the space constraint, we did not list the 37 LDA top-
ics (most of them also look reasonable). Again, to use LDA,
users need to specify the number of topics, but in diffusion
model, we automatically learn this number.

hLDA requires specifying the number of levels of the
topic tree (and some other parameters). In this test, we set
this number to 3. The hLDA module in MALLET (mal-

Table 3: hLDA topics (NIPS)
Node Top 10 Terms
1 task performance training data learning output algorithm time processing trained
1.1 function terms networks abstract linear case references equation set functions
1.1.1 activity brain visual response neurons cells shown model cell properties
1.1.2 posed cell soc movements contour response minimization biol orientations perpendicular
1.2 statistical distribution figure matrix approach parameters gaussian data model methods
1.2.1 neuron cells neurons synaptic inhibition cell physics american phase strength
1.2.2 function theory show result finite class called positive introduction define
1.3 finite noise gaussian constant solved terms corresponds equation exp variables
1.3.1 og obtain equations dynamics distribution matrix choice stable moore estimation

let.cs.umass.edu) was applied for this task. The resulting
topic tree is in Table 3, where the Node record shows the
path from the root to the node. Node 1 is the root of the
tree, which has 3 children (1.1, 1.2 and 1.3). Both Node 1.1
and 1.2 have two children. Node 1.3 has one child: 1.3.1.
hLDA does not cover the topic of neuroscience at level 1 and
2. Compared to diffusion models, hLDA topics are harder to
interpret. We also tested level=4, and the result did not make
much difference.

Empirical Evaluation of Time Complexity
Given the collection with 2,003,017 tokens, the multiscale
diffusion model needs roughly 15 minutes (2G PC with 2G
memory) to do the multiscale analysis. This includes data
preparation, construction of the diffusion model and comput-
ing topic vectors at all 5 levels. In contrast, we need about 4
and 6 minutes to compute 37 topics using LSI and LDA on
the same machine. LSI and LDA only computes “flat” top-
ics, but not topics at multiple levels, and they do not need to
explore the intrinsic structure of the data set, so they are do-
ing something much simpler. Running hLDA is much more
expensive than the others. It needs roughly 20 hours for this
task. Considering the time complexity, hLDA is not tested in
Sec 5.2 and 5.3.

5.2 20 NewsGroups
The 20 NewsGroups data set is a popular data set for ex-
periments in text applications. The version that we are us-
ing is a collection of 18,774 documents (11,269 for train-
ing, 7,505 for testing), partitioned evenly across 20 different
newsgroups, each corresponding to a different topic. Some of
the newsgroups are very closely related to each other, while
others are highly unrelated. The data set has 61,188 terms
in the vocabulary set (stop words are not removed) and nearly
2,500,000 tokens. We filtered out the terms that appear≤ 100
times in the training set, and only 2,993 terms were kept.

Using the training data, diffusion model identifies 5 levels
of topics, and the number of topics at each level is: 2993,
2992, 589, 29 and 1. Since 29 is the closest number to the
real topic number 20, we pick up level 4 for further analysis.
We find 3 of the 29 topics are related to stop words. For
example, the top 10 words of one such topic are: “the, to, of,
and, in, is, that, it, for, you”. The remaining 26 topics cover
almost all 20 known topics. For example, the topic “probe,
mars, lunar, moon, missions, surface, jupiter, planetary, orbit,
planet” corresponds to topic “space”. LDA and LSI were
also tested. For LDA, we tried two topic numbers: 20 and
29. The number of 29 returned a better result. The LDA
topics do not look as good as the topics from the diffusion
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Figure 2: Classification results with different embeddings.

model. Stop words always dominate the top words of each
topic. For example, the topic “the, and, of, to, for, key, space,
on, in, by” might be related to topic “space”, but most of the
top words are stop words. The LSI topics do not look good
either. For many applications, LSI topics might span a good
concept space, but they are hard to interpret.

To compare the low dimensional embeddings generated
from the diffusion model with LSI and LDA, we used a kNN
method to classify the test documents. We first represent all
the documents in the topic space using the 29 topics learned
from the training set. For each test document, we compute the
similarity (dot product) of it and all the training documents.
For each news group, we consider the top k most similar doc-
uments to the test document. The label of the group with the
largest sum of such similarities is used to label the test doc-
ument. Since 3 topics returned by our diffusion model are
related to stop words, we also ran a test using the remaining
26 topics. We tried different k in the experiment and the re-
sults are shown in Figure 2. From the figure, it is clear that
the embeddings coming from diffusion model (29 topics) and
LSI are similar. Both of them are better than the embedding
from LDA. It is also shown that filtering out the non-relevant
topics can improve the performance. The LSI topics are hard
to interpret, so we can not filter any of them out.

5.3 TDT2
The TDT2 corpus consists of data collected during the first
half of 1998 and taken from 6 sources, including 2 newswires
(APW, NYT), 2 radio programs (VOA, PRI) and 2 television
programs (CNN, ABC). It consists of more than 10,000 doc-
uments which are classified into 96 semantic categories. In
the data set we are using, the documents that appearing in
more than one category were removed, and only the largest 30
categories were kept, thus leaving us with 9,394 documents
in total. Using the same procedure shown in the other tests,
we identified a 5 level hierarchy (topic number at each level
is: 2800, 2793, 287, 17, 2). To better understand what the
embeddings look like, we project the documents onto a 3D
space spanned by three topic vectors from each model (Dif-
fusion model: top 3 topic vectors at level 4; LDA: all topics
when topic number =3; LSI: top 3 topic vectors). In this test,
we plot the documents from category 1-7 (nearly 7,000 doc-
uments in total) and each color represents one category. The
diffusion model returns the best embedding (Figure 4). We
also run a leave one out test with kNN method (as described
in the 20 NewsGroups test) to classify each document in the
collection. The results are in Figure 3. It is also clear that the
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Figure 3: Classification results with different embeddings

Figure 4: 3D embedding of TDT2 (diffusion model)

embedding from the multiscale diffusion model is better than
LSI and LDA.

6 Conclusions
In this paper, we propose a multiscale diffusion model to ex-
tract semantic structure of real-world corpora of text docu-
ments at multiple scales. Experimental results show this ap-
proach successfully extracts hierarchical regularities at mul-
tiple levels. The hierarchy yields semantically meaningful
topics, and efficient multiscale embeddings for classification.
The same technique can also be applied to social network
analysis and author-topic modeling.
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