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Hlaváčková-Schindler

Received: 5 January 2023

Revised: 11 March 2023

Accepted: 22 March 2023

Published: 27 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Universal Causality
Sridhar Mahadevan

Adobe Research, 345 Park Avenue, San Jose, CA 95110, USA; smahadev@adobe.com

Abstract: Universal Causality is a mathematical framework based on higher-order category theory,
which generalizes previous approaches based on directed graphs and regular categories. We present
a hierarchical framework called UCLA (Universal Causality Layered Architecture), where at the
top-most level, causal interventions are modeled as a higher-order category over simplicial sets
and objects. Simplicial sets are contravariant functors from the category of ordinal numbers ∆ into
sets, and whose morphisms are order-preserving injections and surjections over finite ordered sets.
Non-random interventions on causal structures are modeled as face operators that map n-simplices
into lower-level simplices. At the second layer, causal models are defined as a category, for example
defining the schema of a relational causal model or a symmetric monoidal category representation
of DAG models. The third layer corresponds to the data layer in causal inference, where each
causal object is mapped functorially into a set of instances using the category of sets and functions
between sets. The fourth homotopy layer defines ways of abstractly characterizing causal models
in terms of homotopy colimits, defined in terms of the nerve of a category, a functor that converts
a causal (category) model into a simplicial object. Each functor between layers is characterized
by a universal arrow, which define universal elements and representations through the Yoneda
Lemma, and induces a Grothendieck category of elements that enables combining formal causal
models with data instances, and is related to the notion of ground graphs in relational causal models.
Causal inference between layers is defined as a lifting problem, a commutative diagram whose
objects are categories, and whose morphisms are functors that are characterized as different types of
fibrations. We illustrate UCLA using a variety of representations, including causal relational models,
symmetric monoidal categorical variants of DAG models, and non-graphical representations, such as
integer-valued multisets and separoids, and measure-theoretic and topological models.

Keywords: artificial intelligence; higher-order category theory; causality; machine learning; statistics

1. Introduction

Applied category theory [1] has been used to design algorithms for dimensionality
reduction and data visualization [2], resolve impossibility theorems in data clustering [3]
and propose schemes for knowledge representation [4]. Universal Causality (UC) is a
mathematical framework based on applied higher-order category theory, which applies
to graph-based [5] and non-graphical representations [6–8], and statistical [9] and non-
statistical frameworks [10,11] (see Table 1 and Figure 1). Ordinary categories are defined as
a collection of objects that interact pairwise through a collection of morphisms. Higher-order
categories, such as simplicial sets [12], quasicategories [13] and ∞-categories [14], model
higher-order interactions among groups of objects, and generalize both directed graphs and
ordinary categories. Our approach builds extensively on categories over functors. Causal
interventions are defined over the functor category of simplicial objects, mapping ordinal
numbers into sets or category objects. Causal inference is defined over the functor category
of presheafs HomC(−, c), mapping an object c in category C into the set of morphisms into
it. Adjoint functors define a pair of opposing functors between categories. Causal models
are often characterized in terms of their underlying conditional independence structures.
We model this relationship by adjoint functors between the category of conditional inde-
pendence structures [15], based on algebraic representations such as separoids [10], and
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the category of causal models, defined by graphical approaches [16] or non-graphical ap-
proaches, such as integer-valued multisets [8] or measure-theoretic information fields [6,7].
We build extensively on universal constructions, such as colimits and limits, defined through
lifting diagrams [17].

Table 1. Category theory provides a unifying mathematical framework for relating the diverse
formalisms used to study causal inference.

Representation Objects Morphisms Citation

Rank-ordered statistics Plants Total ordering Darwin [18]

Structural equation models Variables Algebraic equations Wright [19]

Potential outcomes Humans Drug effects Imbens and Rubin [9]

Directed Acyclic Graphs Vertices Paths Pearl [5]

Distributive lattices Subsets Joins/Meets Beerenwinkel et al. [20]

Relational causal models Database schemas Database relations Maier et al. [21]

Information fields Measurable Spaces Measurable functions Witsenhausen [6]

Resource Models Monoidal resources Profunctors Fong and Spivak [1]

Universal Decision Models UDM States UDM morphisms Mahadevan [22]

Counterfactual logic Propositions Proofs Lewis [11]

Variational inequalities Consumers/Producers Trade Nagurney [23]

Discourse sheaves Users Communication Hansen and Ghrist [24]

String diagram surgery Tensored objects Tensored morphisms Jacobs et al. [25]

Mean embeddings RKHS embeddings Mean maps Muandet et al. [26]

Universal Causality
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(a) Example relational schema for an organization consisting of employees working on products, which are
funded by specific business units within a corporation.
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(b) Example fragment of a relational skeleton. Roger and Sally are employees, both of whom develop the
Laptop product, but, of the two, only Sally works on product Tablet. Both products Laptop and Tablet are
funded by business unit Devices. For convenience, we depict attribute placeholders on each entity instance.

Figure 2.1: An example relational schema and skeleton for the organization domain.

applies d -separation to the model structure in an attempt to derive conditional independen-
cies to test. However, applying d -separation directly to the structure of relational models
may not correctly derive conditional independencies, violating the Markov condition. If
the analyst were to discover significant and substantive e↵ects, he may believe the model
structure is incorrect and needlessly search for alternative dependencies.

Näıvely applying d -separation to the model in Figure 2.2(a) suggests that employee
competence is conditionally independent of the revenue of business units given the success
of products:

Employee.Competence ?? Business-Unit.Revenue | Product.Success

To see why this approach is flawed, we must consider the ground graph. A necessary
precondition for inference is to apply a model to a data instantiation, which yields a ground
graph to which d -separation can be applied. For a Bayesian network, a ground graph
consists of replicates of the model structure for each data instance. In contrast, a relational
model defines a template for how dependencies apply to a data instantiation, resulting in a
ground graph with varying structure. See Section 4 for more details on ground graphs.

Figure 2.2(b) shows the ground graph for the relational model in Figure 2.2(a) ap-
plied to the relational skeleton in Figure 2.1(b). This ground graph illustrates that, for a
single employee, simply conditioning on the success of developed products can activate a
path through the competence of other employees who develop the same products—we call

5
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Figure 1. UC is a representation-independent framework that can be applied to many causal representations.

Over the past 150 years, causality has been studied using diverse formalisms (Table 1).
While causal effects are inherently directional, differing from symmetric statistical models
of correlation and invertible Bayesian inference, many causal discovery methods rely on
querying a (symmetric) conditional independence oracle on submodels resulting from
interventions on arbitrary subsets of variables (such as a separating set [27,28]). Abstractly,
we can classify the causal representations in Table 1 using category theory in terms of
their underlying objects and their associated morphisms. Causal morphisms can be alge-
braic, graph-based, logical, measure-theoretical, probabilistic or topological. For example,
counterfactual mean embeddings [26] generalizes Rubin’s potential outcome model to
reproducing kernel Hilbert spaces (RKHS), where the kernel mean map is used to embed
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a distribution in an RKHS, and the average treatment effect (ATE) is computed using
mean maps. As Figure 1 emphasizes, UC is representation agnostic, and while it is related
to category-theoretic approaches of causal DAG models that use symmetric monoidal
categories [25,29,30], it differs substantially in many ways. UC introduces many novel
ideas into the study of causal inference, including higher-order categorical structures based
on simplicial sets and objects [12–14,31], adjoint functors mapping categories based on
algebraic models of conditional independence [10] into actual causal models, lifting dia-
grams [17], and Grothendieck’s category of elements that generalizes the notion of ground
graphs in relational causal models [32]. As we show later, any category, including symmetric
monoidal categories, can be converted into simplicial objects by using the nerve functor,
but its left adjoint that maps a simplicial set into a category is lossy, and preserves structure
only up to n ≤ 2-simplices. Higher-order category structures can be useful in modeing
causal inference under interference [33], where the traditional stable unit treatment value
assumption (SUTVA) is violated. Higher-order categories can also help model hierarchical
interventions over groups of objects.

As Studeny [8] points out, Bayesian DAG models capture only a small percentage of
all conditional independence structures. In particular, the space of DAG models grows
exponentially in the number of variables, whereas the number of conditional independence
structures grows super-exponentially proportional to the number of Boolean functions.
Consequently, UC is intended to be a general framework that applies to representations
that are more expressive than DAG models. In particular, UC can be used to analyze recent
work on relational causal models [21,32]. The notion of a ground graph in relational causal
models is a special case of the Grothendieck category of elements that plays a key role in
the UCLA architecture. UC applies equally well to non-graphical algebraic representations
that are much more expressive than DAG models, including integer-valued multisets [8],
separoids [10], as well as measure-theoretic representations, such as causal information
fields [6,7], that have been shown to generalize Pearl’s d-separation calculus [5].

Specifically, taking the simple example of a collider in Figure 1, in the Bayesian DAG
parameterization, a well-established theoretical framework [34] specifies how to decompose
the overall probability distribution into a product of local distributions. In contrast, in
causal information fields [6,7], each variable is defined as a measurable space over a discrete
or continuous set, and each local function is defined as a measurable function over its
information field. For example, the information field IC for variable C is defined to be
some measurable subset over a product σ-algebra that includes the σ-algebras UA and UB
over its parents A and B, but the information field of C cannot depend on its own values,
hence its local σ-algebra is defined as {∅,UC}, where UC is the space of possible values
of C. A full discussion of causal information fields is given in [7], who show it generalizes
d-separation to models that include cycles and other more complex structures. Similarly,
Studeny [8] proposed an algebraic framework called integer-valued multisets (imsets) for
representing conditional independence structures far more expressive than DAG models.
For the specific case of a DAG model G = (V, E), an imset in standard form [8] is defined as

uG = δV − δ∅ + ∑
i∈V

(δPai
− δi∪Pai

)

where each δV term is the characteristic function associated with a set of variables V. Finally,
separoids [10] is an algebraic framework for characterizing conditional independence as an
abstract property, defined by a join semi-lattice equipped with a partial ordering ≤, and a
ternary property ⊥⊥ over triples of elements such that X ⊥⊥ Y|Z defines the property that
X is conditionally independent of Y given Z. It is worth pointing out that separoids are
more general than the graphoid axiomatization [16] that underpins causal DAG models,
since as Studeny [8] shows, graphoids are defined in terms of disjoint subsets of variables,
which seriously limits their expressiveness. All these non-graphical representations can be
naturally modeled within the UC framework. One of the unique aspects of UC is that causal
interventions are themselves modeled as a (higher-order) category. Many approaches to



Entropy 2023, 25, 574 4 of 37

causal discovery use a sequence of interventions, which naturally compose and form a
category. To achieve representation independence, we model interventions as a higher-
order category defined by simplicial sets and objects [12]. One strength of the simplicial
objects framework for modeling causal interventions is that it enables modeling hierarchical
interventions over groups of objects.

UC builds on the concept of universal arrows [35] to illuminate in a representation-
independent manner the central abstractions employed in causal inference. Figure 2
explains this concept with an example, which also illustrates the connection between
categories and graphs. For every (directed) graph G, there is a universal arrow from G to
the “forgetful” functor U mapping the category Cat of all categories to Graph, the category
of all (directed) graphs, where for any category C, its associated graph is defined by U(C).
Intuitively, this forgetful functor “throws” away all categorical information, obliterating for
example the distinction between the primitive morphisms f and g vs. their compositions
g ◦ f , both of which are simply viewed as edges in the graph U(C). To understand this
functor, consider a directed graph U(C) defined from a category C, forgetting the rule for
composition. That is, from the category C, which associates to each pair of composable
arrows f and g, the composed arrow g ◦ f , we derive the underlying graph U(C) simply
by forgetting which edges correspond to elementary arrows, such as f or g, and which are
composites. For example, consider a partial order as the category C, and then define U(C)
as the directed graph that results from the transitive closure of the partial ordering.

The universal arrow from a graph G to the forgetful functor U is defined as a pair
〈C, u : G → U(C)〉, where u is a “universal” graph homomorphism. This arrow possesses
the following universal property: for every other pair 〈D, v : G → H〉, where D is a category,
and v is an arbitrary graph homomorphism, there is a functor f ′ : C → D, which is
an arrow in the category Cat of all categories, such that every graph homomorphism
φ : G → H uniquely factors through the universal graph homomorphism u : G → U(C)
as the solution to the equation φ = U( f ′) ◦ u, where U( f ′) : U(C) → H (that is, H =
U(D)). Namely, the dotted arrow defines a graph homomorphism U( f ′) that makes
the triangle diagram “commute”, and the associated “extension” problem of finding this
new graph homomorphism U( f ′) is solved by “lifting” the associated category arrow
f ′ : C → D. This property of universal arrows, as we show in the paper, provide the
conceptual underpinnings of universal causality in the UCLA architecture, leading to the
defining property of a universal causal representation through the Yoneda Lemma [35].
Recent work on causal discovery of DAG models [27,28] can be seen as restricted ways of
defining adjoint functors between causal categories of DAG models and their underlying
graphs, assuming access to a conditional independence oracle that can be queried on causal
sub-models resulting from interventions on arbitrary subsets of variables.

Universal causal models are defined in terms of universal constructions, such as the
pullback, pushforward, (co)equalizer, and (co)limits. Figure 3 illustrates how universal
causal models are functors that map from some indexing category of abstract diagrams
into an actual causal model. For instance, COVID-19 Lockdown caused a reduction in
Traffic and Agricultural Fires, which in turn caused a significant reduction in Pollution.
In UC, we are interested in a deeper question, namely whether the pullback of Traffic
and Agricultural Fires could have been some other common cause that mediated between
COVID-19 Lockdown and its effects. If such a common cause exists, it will be viewed as a
limit of an abstract causal diagram, a functor that maps from the indexing category of all
diagrams to the actual causal model shown.
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D

Universal Arrow: G to U
Defined by <C, u: G -> U(C)>

Figure 2. Universal arrows play a central role in the UCLA framework. In this example, the forgetful
functor U between Cat, the category of all categories, and Graph, the category of all (directed) graphs,
maps any category into its underlying graph, forgetting which arrows are primitive and which
are compositional. The universal arrow from a graph G to the forgetful functor U is defined as
a pair 〈C, u : G → U(C)〉, where u is a “universal” graph homomorphism. The universal arrow
property asserts that every graph homomorphism φ : G → H uniquely factors through the universal
graph homomorphism u : G → U(C), where U(C) is the graph induced by category C defining
the universal arrow property. In other words, the associated extension problem of “completing” the
triangle of graph homomorphisms in the category of Graph can be uniquely solved by “lifting” the
associated category arrow h : C → D.

Pollution in New Delhi, India

Normal condition
COVID-19
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Traffic Agricultural
Fires

Lung Infections

Actual Causal Model

Overpopulation

Asthma
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Farming 
Practices
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Indexing Category of Abstract Diagrams
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Figure 3. A causal model of climate change and COVID-19 lockdown. Universal causality defines
causal models as functors mapping from an indexing category of abstract diagrams to the actual
causal model.

Figure 4 illustrates the concept of causal simplicial structures. Here, X denotes a
causal structure represented as a category. X[0] represents the “objects” of the causal
structure, defined formally as the contravariant functor X[0] : [0]→ X from the simplicial
category ∆ to the causal category X. The arrows representing causal effects are defined as
X[1] : [1]→ X. Note that since [1] = {0, 1} is a category by itself, it has one (non-identity)
arrow 0→ 1 (as well as two identity arrows). The mapping of this arrow onto X defines the
“edges” of the causal model. Similarly, X2 represents oriented “triangles” of three objects.
Note that there is one edge from X0 to X1, labeled by s0. This is a co-degeneracy operator
from the simplicial layer that maps each object A into an identity edge 1A. Similarly, there
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are two edges marked d0 and d1 from X1 to X0. These are co-face operators that map an
edge to its source and target vertices correspondingly. Notice also that there are three
edges from X2 to X1, marked d0, d1, and d2. These are the “faces” of each 2-simplex as
shown. Consider the fragment of the causal DAG model from Figure 3 shown on the right
in Figure 4. The order complex of a DAG forms a simplicial object as shown, where the
simplices are represented by the nonempty chains. In particular, each path of length n
defines a simplex of size n. For example, the path from O (representing Overpopulation) to
T (representing Traffic) to P (representing Pollution) defines a simplex of size 2, shown as
the green shaded triangle. Note the simplices are oriented, which is not shown for simplicity
in Figure 4. Thus, the 2-simplex formed from the chain from O to T to P is oriented such
that O “points to” T, which in turn “points to” P. This mapping from chains over DAGs to
simplicial objects is a special case of a more general construction discussed later in the paper,
based on constructing the nerve of a category that provides a faithful functor embedding
any (causal) category as a simplicial object. For example, the symmetric monoidal category
representations of causal DAG models [25,29,30] can be faithfully embedded as simplicial
objects by constructing their nerve.

O C F

T A

P

O

T

P

C

A

F

Causal DAG Model Causal Simplicial Object
From Order Complex

Figure 4. (Left) generic structure of a simplicial set. (Right) an oriented simplicial complex formed
from the order complex of nonempty chains of the DAG model from Figure 3.

2. A Layered Architecture for Universal Causality

In this paper, we propose a layered architecture that defines the framework called
UCLA (Universal Causality Layered Architecture). This architecture is illustrated in Figure 5.
Table 2 describes the composition of each layer. Many variants are possible, as we will
discuss in the paper. As functors compose with each other, it is also possible to consider
“collapsed” versions of the UCLA hierarchy.

The UCLA architecture is built on the theoretical foundation of ordinary category
theory [35–38] and higher-order category theory, including quasicategories [13], and ∞-
categories [14]. As Figure 5 illustrates, at the top layer of UCLA, we model causal in-
terventions itself as a higher-order category defined over simplicial sets and objects [12].
Causal discovery often involves a sequence of interventions, which naturally compose to
form a category. Simplicial sets and simplicial objects [12] have long been a foundational
framework in algebraic topology [39]. Modeling interventions using simplicial sets permits
a hierarchical language for expressing interventions, as (co)face operators in simplicial
sets and objects operate over groups of objects of arbitrary sizes. This category-theoretic
approach of formalizing causal interventions gives an algebraic formalism that are related
to topological notions used in causal discovery methods, such as separating sets [27,28]
that can be defined in terms of lifting diagrams [17]. Although we will not delve into this
elaboration in this paper, it is possible to define causal inference over “fuzzy” simplicial
sets as well [2], which associate a real number p ∈ I = (0, 1] with each simplicial object
that denotes the uncertainty associated with a causal object or morphism. In this case, we
define a fuzzy simplicial object as the functor ∆op × I → C. Fuzzy simplicial sets have been
recently used in data visualization [2].
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Table 2. Each layer of UCLA represents a categorical abstraction of causal inference.

Layer Objects Morphisms Description

Simplicial [n] = {0, 1, . . . , n} f = [m]→ [n] Category of interventions

Relational Vertices V, Edges E s, t : E→ V Causal Model Category

Tabular Sets Functions on sets f : S→ T Category of instances

Homotopy Topological Spaces Causal equivalence Causal homotopy

Quasicategory of simplicial 
objects 

Category of causal objects

Category of Instances

Category of homotopies
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Figure 5. UCLA is a layered architecture that defines Universal Causality.

The second layer of the model represents the causal category itself, which could be a
causal DAG [5], a symmetric monoidal category defining a causal DAG [25], a semi-join
lattice defining a conditional independence structure, such as an integer-valued multiset [8],
a relational database defining a relational causal model [21], or a causal information
field [6,7], which uses a measure-theoretic notion of causality. At the third layer, we model
the actual data defining a causal model by a category of instances. Finally, at the bottom-
most layer, we use a homotopy category to define equivalences among causal models.

The Grothendieck Category of Elements (GCE) is a type of universal construction [35,37,40]
that plays a central role in the UCLA architecture. It is remarkably similar to other represen-
tations widely used in database theory, and specifically in the context of causal inference,
it is related to the ground graph used in relational causal models [21,32]. However, GCE is
far more general than the ground graph construction in that it can be used to embed any
object or indeed any category in Cat, the category of all categories.
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We use lifting diagrams [17] to formalize causal inference at each layer of the hierarchy.
A lifting problem in a category C is a morphism h : B → X in C satisfying p ◦ h = ν and
h ◦ f = µ as indicated in the commutative diagram below.

A X

B Y

f

µ

ph

ν

Lifting diagrams were shown to be capable of expressing SQL queries in relational
databases [4]. Here, we extend this approach to model causal inference under non-random
interventions, exploiting the capability of the simplicial layer to impose non-random
“surgical” operations on a causal category.

Finally, to explain the bottom-most layer in UCLA of homotopy categories, it is well
known that causal models are not identifiable from observations alone [5]. For example,
the three distinct causal DAG models over three variables A ← B → C, A → B → C
and A ← B ← C have the same conditional independence structure, and are equivalent
given a dataset of values of the variables. To model the non-distinguishability of causal
models under observation, we introduce the concept of homotopic equivalence comes
from topology, and is intended to reflect equivalence under some invertible mappings. A
homotopy from a morphism f : X → Y to another morphism g : X → Y is a continuous
function h : X × [0, 1] → Y satisfying h(0, x) = f (x) and h(x, 1) = g(x). In the category
Top of topological spaces, homotopy defines an equivalence class on morphisms. In the
application to causal inference, we can define causal homotopy [41] as finding the “quotient
space” of the category of all causal models under a given set of invertible morphisms
mapping one causal model into another equivalent model.

3. Categories, Functors, and Universal Arrows

We introduce the basic theory underlying UC in more depth now, building on relation-
ship between categories and graphs illustrated in Figure 2. Given a graph, we can define
the “free” category associated with it where we consider all possible paths between pairs
of vertices (including self-loops) as the set of morphisms between them. In the reverse
direction, given a category, we can define a “forgetful” functor that extracts the underlying
graph from the category, forgetting the composition rule.

Definition 1. A graph G (sometimes referred to as a quiver) is a labeled directed multi-graph
defined by a set O of objects, a set A of arrows, along with two morphisms s : A → O and
t : A→ O that specify the domain and co-domain of each arrow. In this graph, we define the set of
composable pairs of arrows by the set

A×O A = {〈g, f 〉| g, f ∈ A, s(g) = t( f )}

A category C is a graph G with two additional functions: id : O→ A, mapping each object
c ∈ C to an arrow idc and ◦ : A×O A→ A, mapping each pair of composable morphisms 〈 f , g〉
to their composition g ◦ f .

It is worth emphasizing that no assumption is made here of the finiteness of a graph,
either in terms of its associated objects (vertices) or arrows (edges). Indeed, it is entirely
reasonable to define categories whose graphs contain an infinite number of edges. A
simple example is the group Z of integers under addition, which can be represented as a
single object, denoted {•} and an infinite number of morphisms f : • → •, each of which
represents an integer, where composition of morphisms is defined by addition. In this
example, all morphisms are invertible. In a general category with more than one object, a
groupoid defines a category all of whose morphisms are invertible.



Entropy 2023, 25, 574 9 of 37

As our paper focuses on the use of category theory to formalize causal inference, we
interpret causal changes in terms of the concept of isomorphisms in category theory. We
will elaborate this definition later in the paper.

Definition 2. Two objects X and Y in a category C are deemed isomorphic, or X ∼= Y if and only
if there is an invertible morphism f : X → Y, namely f is both left invertible using a morphism
g : Y → X so that g ◦ f = idX, and f is right invertible using a morphism h where f ◦ h =
idY. A causally isomorphic change in a category is defined as a change of a causal object Y into
Ŷ under an intervention that changes another object X into X̂ such that Ŷ ∼= Y, that is, they are
isomorphic. A causal non-isomorphic effect is a change that leads to a non-isomorphic change
where Ŷ 6∼= Y. An alternate definition would be to define a causally isomorphic change as a change
that is an isomorphism in the category whose morphisms are causal changes.

In the category Sets, two finite sets are considered isomorphic if they have the same
number of elements, as it is then trivial to define an invertible pair of morphisms between
them. In the category Vectk of vector spaces over some field k, two objects (vector spaces)
are isomorphic if there is a set of invertible linear transformations between them. As we
will see below, the passage from a set to the “free” vector space generated by elements of
the set is another manifestation of the universal arrow property.

Functors can be viewed as a generalization of the notion of morphisms across algebraic
structures, such as groups, vector spaces, and graphs. Functors do more than functions:
they not only map objects to objects, but like graph homomorphisms, they need to also map
each morphism in the domain category to a corresponding morphism in the co-domain
category. Functors come in two varieties, as defined below.

Definition 3. A covariant functor F : C → D from category C to category D, and defined as
the following:

• An object FX (also written as F(X)) of the category D for each object X in category C.
• An arrow F( f ) : FX → FY in category D for every arrow f : X → Y in category C.
• The preservation of identity and composition: F idX = idFX and (F f )(Fg) = F(g ◦ f ) for

any composable arrows f : X → Y, g : Y → Z.

Definition 4. A contravariant functor F : C → D from category C to category D is defined
exactly like the covariant functor, except all the arrows are reversed.

3.1. Universal Arrows

This process of going from a category to its underlying directed graph embodies
a fundamental universal construction in category theory, called the universal arrow [35].
It lies at the heart of many useful results, principally the Yoneda Lemma that shows
how object identity itself emerges from the structure of morphisms that lead into (or out
of) it. The Yoneda Lemma codifies the meaning of universal causality, as it implicitly
states that any change to an object must be accompanied by a change to its presheaf
structure. Consequently, we can model UC in a representation-independent manner using
the Yoneda Lemma.

Definition 5. Given a functor S : D → C between two categories, and an object c of category C, a
universal arrow from c to S is a pair 〈r, u〉, where r is an object of D and u : c→ Sr is an arrow
of C, such that the following universal property holds true:

• For every pair 〈d, f 〉 with d an object of D and f : c → Sd an arrow of C, there is a unique
arrow f ′ : r → d of D with S f ′ ◦ u = f .

Above we used the example of functors between graphs and their associated “free”
categories and graphs to illustrate universal arrows. A central principle in the UCLA
architecture is that every pair of categorical layers is synchronized by a functor, along
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with a universal arrow. We explore the universal arrow property more deeply in this
section, showing how it provides the conceptual basis behind the Yoneda Lemma, and
Grothendieck’s category of elements. In the case of causal inference, universal arrows
enable mimicking the effects of causal operations from one layer of the UCLA hierarchy
down to the next layer. In particular, at the simplicial object layer, we can model a causal
intervention in terms of face and degeneracy operators (defined below in more detail).
These in turn correspond to “graph surgery” [5] operations on causal DAGs, or in terms
of “copy”, “delete” operators in “string diagram surgery” of causal models defined on
symmetric monoidal categories [25]. These “surgery” operations at the next level may
translate down to operations on probability distributions, measurable spaces, topological
spaces, or chain complexes. This process follows a standard construction used widely
in mathematics, for example group representations associate with any group G, a left
k-module M representation that enables modeling abstract group operations by operations
on the associated modular representation. These concrete representations must satisfy the
universal arrow property for them to be faithful. A special case of the universal arrow
property is that of universal element, which as we will see below plays an important role in
the UCLA architecture in defining a suitably augmented category of elements, based on a
construction introduced by Grothendieck.

Definition 6. If D is a category and H : D → Set is a set-valued functor, a universal element
associated with the functor H is a pair 〈r, e〉 consisting of an object r ∈ D and an element e ∈ Hr
such that for every pair 〈d, x〉 with x ∈ Hd, there is a unique arrow f : r → d of D such
that (H f )e = x.

Example 1. Let E be an equivalence relation on a set S, and consider the quotient set S/E of
equivalence classes, where p : S→ S/E sends each element s ∈ S into its corresponding equivalence
class. The set of equivalence classes S/E has the property that any function f : S→ X that respects
the equivalence relation can be written as f s = f s′ whenever s ∼E s′, that is, f = f ′ ◦ p, where the
unique function f ′ : S/E→ X. Thus, 〈S/E, p〉 is a universal element for the functor H.

3.2. The Grothendieck Category of Elements

We turn next to define the category of elements, based on a construction by Grothendieck,
and illustrate how it can serve as the basis for inference at each layer of the UCLA architec-
ture. This definition is a special case of a general construction by Grothendieck [40].

Definition 7. Given a set-valued functor δ : C → Set from some category C, the induced
Grothendieck category of elements associated with δ is a pair (

∫
δ, πδ), where

∫
δ ∈ Cat

is a category in the category of all categories Cat, and πδ :
∫

δ→ C is a functor that “projects” the
category of elements into the corresponding original category C. The objects and arrows of

∫
δ are

defined as follows:

• Ob(
∫

δ) = {(s, x)|x ∈ Ob(C), x ∈ δs}.
• Hom∫

δ((s, x), (s′, x′)) = { f : s→ s′|δ( f )(x) = x′}

Example 2. To illustrate the category of elements construction, let us consider the toy climate
change causal model shown in Figure 6. Let the category C be defined by this causal DAG model,
where the objects Ob(C) are defined by the four vertices, and the arrows HomC are defined by the
four edges in the model. The set-valued functor δ : C → Set maps each object (vertex) in C to a set
of instances, thereby turning the causal DAG model into an associated set of tables.



Entropy 2023, 25, 574 11 of 37

Climate
Change (CC)

Rainfall (R) Wind (W)

California
Wildfires (CW)

Causal Model Order Ideals

{CC, R, W, CW}

{CC, R, W}

{CC, W}{CC, R}

{CC}

{}

1 2 3

E W S

5 10 20

HML

30

Figure 6. A toy causal DAG model of climate change to illustrate the category of elements construction.
Climate Change is a discrete multinomial variable over three values 1, 2, and 3. For each of its values,
the arrow from Climate Change to Rainfall maps each specific value of Climate Change to a value
of Rainfall, thereby indicating a causal effect of climate change on the amount of rainfall in California.
Rainfall is also a multinomial discretized as low (marked “L”), medium (marked “M”), high (marked
“H”), or extreme (marked “E”). Wind speeds are binned into two levels (marked “W” for weak, and
“S” for strong). Finally, the percentage of California wildfires is binned between 5 and 30. Not all
arrows in the category of elements are shown, for clarity.

Later in the paper, we give an application of the category of elements construction to
relational causal models, where in particular, it gives a rigorous semantics for ideas such as
relational skeleton and the ground graph proposed in [21,32].

3.3. Yoneda Lemma

The Yoneda Lemma plays a crucial role in UC because it defines the concept of a
representation in category theory. We first show that associated with universal arrows is
the corresponding induced isomorphisms between Hom sets of morphisms in categories.
This universal property then leads to the Yoneda Lemma.

Theorem 1. Given any functor S : D → C, the universal arrow 〈r, u : c→ Sr〉 implies a bijection
exists between the Hom sets

HomD(r, d) ' HomC(c, Sd)

While this is a well-known result whose proof can be found in [35], the crucial point
here is its implication for causal inference. As we will see later, often in the modeling of
causal inference using symmetric monoidal categories [25,29,30], a correspondence is set
up between two categories, for example the symmetric monoidal category representing
the structure of a causal DAG model, and the category of stochastic matrices that defines
the DAG semantics. The universal arrow theorem above shows how the morphisms over
the symmetric monoidal category can be synchronized with those over the stochastic
matrices, enabling causal interventions to be tracked properly. A special case of this natural
transformation that transforms the identity morphism 1r leads us to the Yoneda Lemma.

D(r, r) C(c, Sr)

D(r, d) C(c, Sd)

D(r, f ′)

φr

C(c,S f ′)
φd

As the two paths shown here must be equal in a commutative diagram, we get the
property that a bijection between the Hom sets holds precisely when 〈r, u : c → Sr〉 is a
universal arrow from c to S. Note that for the case when the categories C and D are small,
meaning their Hom collection of arrows forms a set, the induced functor HomC(c, S−) to
Set is isomorphic to the functor HomD(r,−). This type of isomorphism defines a universal
representation, and is at the heart of the causal reproducing property (CRP) defined below.
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Lemma 1. Yoneda Lemma: If H : D → Set is a set-valued functor, and r is an object in D, there
is a bijection that sends each natural transformation α : HomD(r,−) → K to αr1r, the image of
the identity morphism 1r : r → r.

y : Nat(HomD(r,−), K) ' Kr

The proof of the Yoneda Lemma follows directly from the below commutative diagram,
a special case of the above diagram for universal arrows.

D(r, r) Kr

D(r, d) Kd

D(r, f ′)

φr

C(c,S f ′)

φd

3.4. The Universality of Diagrams and the Causal Reproducing Property

We state two key results that underly UC, and while both these results follow directly
from basic theorems in category theory, their significance for causal inference is what makes
them particularly noteworthy. The first result pertains to the notion of diagrams as functors,
and shows that for the functor category of presheaves, which is a universal representation
of causal inference, every presheaf object can be represented as a colimit of representables
through the Yoneda Lemma. This result can be seen as a generalization of the very simple
result in set theory that each set is a union of one element sets. The second result is the
causal reproducing property, which shows that the set of all causal effects between two
objects is computable from the presheaf functor objects defined by them. Both these results
are abstract, and apply to any category representation of a causal model.

Diagrams play a key role in defining UC and the UCLA architecture, as has already
become clear from the discussion above. We briefly want to emphasize the central role
played by universal constructions involving limits and colimits of diagrams, which are
viewed as functors from an indexing category of diagrams to a category. To make this
somewhat abstract definition concrete, let us look at some simpler examples of universal
properties, including co-products and quotients (which in set theory correspond to disjoint
unions). Coproducts refer to the universal property of abstracting a group of elements into
a larger one.

Before we formally the concept of limit and colimits [35], we consider some examples.
These notions generalize the more familiar notions of Cartesian products and disjoint
unions in the category of Sets, the notion of meets and joins in the category Preord of
preorders, as well as the least upper bounds and greatest lower bounds in lattices, and
many other concrete examples from mathematics.

Example 3. If we consider a small “discrete” categoryD whose only morphisms are identity arrows,
then the colimit of a functor F : D → C is the categorical coproduct of F (D) for D, an object of
category D, is denoted as

ColimitDF =
⊔
D
F (D)

In the special case when the category C is the category Sets, then the colimit of this functor is
simply the disjoint union of all the sets F(D) that are mapped from objects D ∈ D.

Example 4. Dual to the notion of colimit of a functor is the notion of limit. Once again, if we
consider a small “discrete” category D whose only morphisms are identity arrows, then the limit
of a functor F : D → C is the categorical product of F (D) for D, an object of category D, is
denoted as

limitDF = ∏
D
F (D)



Entropy 2023, 25, 574 13 of 37

In the special case when the category C is the category Sets, then the limit of this functor is
simply the Cartesian product of all the sets F(D) that are mapped from objects D ∈ D.

Pullback and Pushforward Mappings

Universal causal models in UC are defined in terms of universal constructions, which
satisfy a universal property. We can illustrate this concept using pullback and pushforward
mappings. These notions help clarify the idea of the Grothendieck category of elements,
which plays a key role in the UCLA architecture.

Z X

Y X tY

R

p

q f
h

g

i

r

An example of a universal construction is given by the above commutative diagram,
where the coproduct object X tY uniquely factorizes any mapping h : X → R, such that
any mapping i : Y → R, so that h = r ◦ f , and furthermore i = r ◦ g. Co-products are
themselves special cases of the more general notion of co-limits. Figure 7 illustrates the
fundamental property of a pullback, which along with pushforward, is one of the core ideas
in category theory. The pullback square with the objects U, X, Y and Z implies that the
composite mappings g ◦ f ′ must equal g′ ◦ f . In this example, the morphisms f and g
represent a pullback pair, as they share a common co-domain Z. The pair of morphisms f ′, g′

emanating from U define a cone, because the pullback square “commutes” appropriately.
Thus, the pullback of the pair of morphisms f , g with the common co-domain Z is the
pair of morphisms f ′, g′ with common domain U. Furthermore, to satisfy the universal
property, given another pair of morphisms x, y with common domain T, there must exist
another morphism k : T → U that “factorizes” x, y appropriately, so that the composite
morphisms f ′ k = y and g′ k = x. Here, T and U are referred to as cones, where U is the
limit of the set of all cones “above” Z. If we reverse arrow directions appropriately, we get
the corresponding notion of pushforward. So, in this example, the pair of morphisms f ′, g′

that share a common domain represent a pushforward pair. As Figure 7, for any set-valued
functor δ : S → Sets, the Grothendieck category of elements

∫
δ can be shown to be a

pullback in the diagram of categories. Here, Set∗ is the category of pointed sets, and π is a
projection that sends a pointed set (X, x ∈ X) to its underlying set X.

T

U X

Y Z

x

y

k
g′

f ′ f
g

T

∫
δ Set∗

S Set

x

y

k

δ′

πδ π

δ

Figure 7. (Left) Universal Property of pullback mappings. (Right) The Grothendieck category of
elements

∫
δ of any set-valued functor δ : S→ Set can be described as a pullback in the diagram of

categories. Here, Set∗ is the category of pointed sets (X, x ∈ X), and π is the “forgetful" functor that
sends a pointed set (X, x ∈ X) into the underlying set X.

In the category Sets, we know that every object (i.e., a set) X can be expressed as
a coproduct of its elements X ' tx∈X{x}, where x ∈ X. Note that we can view each
element x ∈ X as a morphism x : {∗} → X from the one-point set to X. The categorical
generalization of this result is called the density theorem in the theory of sheaves [36]. First,
we define the key concept of a comma category.
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Definition 8. Let F : D → C be a functor from category D to C. The comma category F ↓ C
is one whose objects are pairs (D, f ), where D ∈ D is an object of D and f ∈ HomC(F(D), C),
where C is an object of C. Morphisms in the comma category F ↓ C from (D, f ) to (D′, f ′),
where g : D → D′, such that f ′ ◦ F(g) = f . We can depict this structure through the following
commutative diagram:

F(D)

F(D′) C

F(g)
f

f ′

We first introduce the concept of a dense functor [40]:

Definition 9. Let D be a small category, C be an arbitrary category, and F : D → D be a functor.
The functor F is dense if for all objects C of C, the natural transformation

ψC
F : F ◦U → ∆C, (ψC

F )(D, f ) = f

is universal in the sense that it induces an isomorphism ColimitF↓CF ◦U ' C. Here, U : F ↓ C →
D is the projection functor from the comma category F ↓ C, defined by U(D, f ) = D.

A fundamental consequence of the category of elements is that every object in the func-
tor category of presheaves, namely contravariant functors from a category into the category
of sets, is the colimit of a diagram of representable objects, via the Yoneda Lemma. Notice
this is a generalized form of the density notion from the category Sets, as explained above.

Theorem 2. Universality of Diagrams in UC: In the functor category of presheaves SetC
op

,
every object P is the colimit of a diagram of representable objects, in a canonical way [36].

To explain the significance of this result for causal inference, note that UC represents
causal diagrams as functors from an indexing category of diagrams to an actual causal
model (as illustrated earlier in Figure 3). The density theorem above tells us that every
presheaf object can be represented as a colimit of (simple) representable objects, namely
functor objects of the form HomC(−, c).

Reproducing Kernel Hilbert Spaces (RKHS’s) transformed the study of machine learn-
ing, precisely because they are the unique subcategory in the category of all Hilbert spaces
that have representers of evaluation defined by a kernel matrix K(x, y) [42]. The repro-
ducing property in an RKHS is defined as 〈K(x,−), K(−, y)〉 = K(x, y). An analogous but
far more general reproducing property holds in the UC framework, based on the Yoneda
Lemma. The significance of the Causal Reproducing Property is that presheaves act as
“representers” of causal information, precisely analogous to how kernel matrices act as
representers in an RKHS.

Theorem 3. Causal Reproducing Property: All causal influences between any two objects X
and Y can be derived from its presheaf functor objects, namely

HomC(X, Y) ' Nat(HomC(−, X), HomC(−, Y))

Proof. The proof of this theorem is a direct consequence of the Yoneda Lemma, which states
that for every presheaf functor object F in Ĉ of a category C, Nat(HomC(−, X), F) ' FX.
That is, elements of the set FX are in 1− 1 bijections with natural transformations from the
presheaf HomC(−, X) to F. For the special case where the functor object F = HomC(−, Y),
we get the result immediately that HomC(X, Y) ' Nat(HomC(−, X),HomC(−, Y)).
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In UC, any causal influence of an object X upon any other object Y can be represented
as a natural transformation (a morphism) between two functor objections in the presheaf
category Ĉ. The CRP is very akin to the idea of the reproducting property in kernel methods.

3.5. Lifting Problems

The UCLA hierarchy is defined through a series of categorical abstractions of a causal
model, ranging from a combinatorial model defined by a simplicial object down to a
measure-theoretic or topological realization. Between each pair of layers, we can formulate
a series of lifting problems [17]. Lifting problems provide elegant ways to define basic
notions in a wide variety of areas in mathematics. For example, the notion of injective and
surjective functions, the notion of separation in topology, and many other basic constructs
can be formulated as solutions to lifting problems. Database queries in relational databases
can be defined using lifting problems [4]. Lifting problems define ways of decomposing
structures into simpler pieces, and putting them back together again.

Definition 10. Let C be a category. A lifting problem in C is a commutative diagram σ in C.

A X

B Y

f

µ

p

ν

Definition 11. Let C be a category. A solution to a lifting problem in C is a morphism
h : B→ X in C satisfying p ◦ h = ν and h ◦ f = µ as indicated in the diagram below.

A X

B Y

f

µ

ph

ν

Definition 12. Let C be a category. If we are given two morphisms f : A → B and p : X → Y
in C, we say that f has the left lifting property with respect to p, or that p has the right lifting
property with respect to f if for every pair of morphisms µ : A→ X and ν : B→ Y satisfying the
equations p ◦ µ = ν ◦ f , the associated lifting problem indicated in the diagram below.

A X

B Y

f

µ

ph

ν

admits a solution given by the map h : B→ X satisfying p ◦ h = ν and h ◦ f = µ.

Example 5. Given the paradigmatic non-surjective morphism f : ∅→ {•}, any morphism p that
has the right lifting property with respect to f is a surjective mapping. .

∅ X

{•} Y

f

µ

ph

ν

Example 6. Given the paradigmatic non-injective morphism f : {•, •} → {•}, any morphism p
that has the right lifting property with respect to f is an injective mapping. .

{•, •} X

{•} Y

f

µ

ph

ν
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4. Universal Conditional Independence in Categories

Before proceeding to further detail the UCLA architecture, we discuss the special role
played by conditional independence in causal inference. Causal models can be abstractly
characterized by their underlying conditional independences. A number of previous
axiomatizations such as graphoids [5,16], integer-valued multisets [8], and separoids [10] can be
subsumed under the category-theoretic notion of universal conditional independence [15].
Conditional independence structures have been actively studied in AI, causal inference,
machine learning, probability, and statistics for many years. Dawid [10] define separoids, a
join semi-lattice, to formalize reasoning about conditional independence and irrelevance in
many areas, including statistics. Pearl [16] introduced graphoids, a distributive lattice over
disjoint subsets of variables, to model reasoning about irrelevance in probabilistic systems,
and proposed representations using directed acyclic graphs (DAGs). Studeny [8] proposed
a lattice-theoretic model of conditional independences using integer-valued multisets to
address the intrinsic limitations of DAG-based representations.

In particular, we want to show how it is possible to define universal conditional in-
dependence [15], a representation of conditional independence in any category. We build
specifically on the notion of separoids [10], an algebraic characterization of conditional inde-
pendence. Recent work by Fritz and Klingler [30] has proposed a symmetric monoidal cate-
gory representation of DAG type causal models, and an associated categorical probabilistic
representations of d-separation. Our goals are to construct a more abstract representation
of conditional independence based on non-graphical representations, like separoids [10] as
well as integer-valued multisets [8].

Conditional independence plays a key role in causal discovery as it is often used
as an oracle in causal discovery from data. Consider the problem of causal discovery as
inferring a directed acyclic graph (DAG) G = (V, E) from data, where the conditional
independence ⊥⊥ property is defined using the graph property of d-separation [16]. A
given DAG G can be characterized in two ways: one parameterization specifies the DAG G
in terms of the vertices V and edges E, which corresponds to specifying the objects and
morphisms of a category defining the DAG. The second way to parameterize a DAG is by
its induced collection of conditional independence properties, as defined by d-separation.
For example, the serial DAG over three variables, A → B → C, can be defined using
its two edges A → B and B → C, but also by its conditional independences, namely
A ⊥⊥ C|B using the theory of d-separation. We are thus given two possibly redundant
parameterizations of the same algebraic structure. However, multiple DAG models can
define the same conditional independences. For example, the serial model A→ B→ C, as
well as the “diverging” model A ← B → C and the “reverse” serial model A ← B ← C
all capture the same conditional independence property (A ⊥⊥ C|B). This non-uniqueness
property arises because Bayes rule can be used to map any one of these three DAGs into
the form represented by one of the other DAGs.

4.1. The Category of Separoids

A separoid (S ,≤,⊥⊥) [10] is defined as a semi-lattice S , where the join ∨ operator over
the semi-lattice S defines a preorder ≤, and the ternary relation ⊥⊥ is defined over triples
of the form (x ⊥⊥ y|z) (which are interpreted to mean x is conditionally independent of y
given z). We show briefly how to define a category for universal conditional independence,
where each object is a separoid, and the morphisms are homomorphisms from one separoid
to another. It is possible to define “lattice” objects in any category by interpreting an arrow
f : x → y as defining the partial ordering [36].

Definition 13. A separoid [10] defines a category over a preordered set (S ,≤), namely ≤ is
reflexive and transitive, equipped with a ternary relation ⊥⊥ on triples (x, y, z), where x, y, z ∈ S
satisfy the following properties:

• S1: (S ,≤) is a join semi-lattice.
• P1: x ⊥⊥ y | x
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• P2: x ⊥⊥ y | z ⇒ y ⊥⊥ x |z
• P3: x ⊥⊥ y | z and w ≤ y ⇒ x ⊥⊥ w |z
• P4: x ⊥⊥ y | z and w ≤ y ⇒ x ⊥⊥ y | (z ∨ w)
• P5: x ⊥⊥ y | z and x ⊥⊥ w | (y ∨ z) ⇒ x ⊥⊥ (y ∨ w) | z

A strong separoid also defines a categoroid. A strong separoid is defined over a lattice S has
in addition to a join ∨, a meet ∧ operation, and satisfies an additional axiom:

• P6: If z ≤ y and w ≤ y, then x ⊥⊥ y | z and x ⊥⊥ y | w ⇒ x ⊥⊥ y | z ∧ w

To define a category of separoids, we have to define the notion of a homomorphism
between separoids [10]:

Definition 14. Let 〈S ,≤,⊥⊥〉 and 〈S ′,≤′,⊥⊥′〉 be two separoids. A map f : S → S ′ is a
separoid homomorphism if:

1. It is a join-lattice homomorphism, namely f (x ∨ y) = f (x) ∨′ f (y), which implies that
x ≤ y→ f (x) ≤′ f (y).

2. x ⊥⊥ y |z→ f (x) ⊥⊥′ f (y) | f (z).
3. In case both S and S’ are strong separoids, we can define the notion of a strong separoid

homomorphism to additionally include the condition: f (x ∧ y)→ f (x) ∧′ f (y).

With this definition, we can now define the category of separoids and a representation-
independent characterization of universal conditional independence as follows:

Theorem 4. The category of separoids is defined as one where each object in the category is defined
as a separoid 〈S ,≤,⊥⊥〉, and the arrows are defined as (strong) separoid homomorphisms. The
category of separoids provides an axiomatization of universal conditional independence, namely that
it enables a universal representation through the use of universal arrows and Yoneda Lemma.

Proof. First, we note that the category of separoids indeed forms a category as it straightfor-
wardly satisfies all the basic properties. The (strong) separoid homomorphisms compose,
so that g ◦ f as a composition of two (strong) separoid homomorphisms produces another
(strong) separoid homomorphism. The universal property derives from the use of the
Yoneda Lemma to define a category of presheaves that map from the category of separoids
to the category Sets.

4.2. Adjoint Functors in Causal Discovery

First, we need to review the basic concept of adjoint functors, which will be helpful in
modeling several aspects of causal inference in this paper.

Definition 15. A pair of adjoint functors is defined as F : C → D and G : D → C, where F is
considered the right adjoint, and G is considered the left adjoint,

D C.
G

F
>

must satisfy the property that for each pair of objects C of C and D of D, there is a natural
transformation between the two sets of morphisms

φC,D : HomC(C, G(D)) ' HomD(F(C), D)

An important property of adjoint functors is connected to the concepts of limits and
colimits reviewed above.
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Theorem 5. If F and G are a pair of adjoint functors

D C.
G

F
>

then the functor G preserves colimits and the functor F preserves limits.

Notice the similarity of this definition to the one earlier where the universal arrow
property induced a bijection of Hom sets that then led to universal elements, Grothendieck
category of elements, and the Yoneda Lemma.

We now introduce the perspective of adjoint functors for causal discovery (see Figure 8).
Many causal discovery algorithms [27] that use a conditional independence oracle to query
conditional independence properties from a dataset can be viewed in this perspective as
using adjoint functors between the category of separoids and the category of the causal
model itself. We can design functors that map from the category of all separoids into the
category of causal models (in particular, for example, the category of graphs, or the category
of integer-valued multisets [8]). Shown in the figure is one particular separoid object with a
single conditional independence property stating that A and B are dependent conditional
on knowing the value of C), which can realized in two ways: one using a collider DAG
A → C ← B, and the other as a integer-valued multiset. These pair of functors are an
example of the general case of adjoint functors between “forgetful” and “free” functors [40].
To make this more precise, let us define the “forgetful” functor R between a causal model
on the right to its underlying set of conditional independences on the left, so that R(M) is
the separoid object that represents the conditional independence in a causal model M. Note
that R is a “forgetful” functor, in that it “throws away” structural information, including
for example, whether the causal model is a causal DAG or an integer-valued multiset. On
the other hand, the “free” functor L(M), its left adjoint, maps a given separoid object to any
of its associated “free” objects, namely causal models that represent it, irrespective of their
formalism. Within the category of causal models, morphisms enable translation between
different representations.

B

A C

Category of Separoids Category of Causal Models

Adjoint
Functors
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Figure 8. Adjoint functors between the category of separoids and the category of causal models. Here,
a causal “collider" DAG over three random variables A, B, and C, and its associated integer-valued
multiset, can both be viewed as “free" objects associated with a separoid conditional independence
object, whereas the latter can be viewed in terms of a forgetful functor that throws away the causal
DAG or integer-valued multiset structure.

5. Layers 1 and 2: Category of Causal Interventions over Simplicial Objects

We now discuss Layers 1 and 2 in UCLA architecture, describing the top simplicial
objects layer, and how it interacts with the causal category structure (layer 2). Simplicial sets
are higher-dimensional generalizations of directed graphs, partially ordered sets, as well as
regular categories themselves. Importantly, simplicial sets and simplicial objects form a
foundation for higher-order category theory [13,14]. By using simplicial sets and objects
at the top layer, UCLA enables a powerful machinery to define a higher-order category
for representing a rich class of causal interventions over a very expressive set of causal
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models, including relational causal models [32], and perform abstract “diagram surgery”,
for example “graph surgery” [5] or “string diagram surgery” [25].

Simplicial objects have long been a foundation for algebraic topology [12,39], and more
recently in higher-order category theory [13,14,43]. The category ∆ has non-empty ordinals
[n] = {0, 1, . . . , n] as objects, and order-preserving maps [m]→ [n] as arrows. An important
property in ∆ is that any many-to-many mapping is decomposable as a composition of
an injective and a surjective mapping, each of which is decomposable into a sequence of
elementary injections δi : [n] → [n + 1], called coface mappings, which omits i ∈ [n], and
a sequence of elementary surjections σi : [n] → [n − 1], called co-degeneracy mappings,
which repeats i ∈ [n]. The fundamental simplex ∆([n]) is the presheaf of all morphisms
into [n], that is, the representable functor ∆(−, [n]). The Yoneda Lemma [35] assures us
that an n-simplex x ∈ Xn can be identified with the corresponding map ∆[n]→ X. Every
morphism f : [n]→ [m] in ∆ is functorially mapped to the map ∆[m]→ ∆[n] in S .

Any morphism in the category ∆ can be defined as a sequence of co-degeneracy and
co-face operators, where the co-face operator δi : [n− 1]→ [n], 0 ≤ i ≤ n is defined as:

δi(j) =
{

j, for 0 ≤ j ≤ i− 1
j + 1 for i ≤ j ≤ n− 1

Analogously, the co-degeneracy operator σj : [n + 1]→ [n] is defined as

σj(k) =
{

j, for 0 ≤ k ≤ j
k− 1 for j < k ≤ n + 1

Note that under the contravariant mappings, co-face mappings turn into face map-
pings, and co-degeneracy mappings turn into degeneracy mappings. That is, for any
simplicial object (or set) Xn, we have X(δi) := di : Xn → Xn−1, and likewise, X(σj) := sj :
Xn−1 → Xn.

The compositions of these arrows define certain well-known properties [12,40]:

δj ◦ δi = δi ◦ δj−1, i < j

σj ◦ σi = σi ◦ σj+1, i ≤ j

σj ◦ δi(j) =


σi ◦ σj+1, for i < j
1[n] for i = j, j + 1
σi−1 ◦ σj, for i > j + 1

Example 7. The “vertices” of a simplicial object Cn are the objects in C, and the “edges” of C are
its arrows f : X → Y, where X and Y are objects in C. Given any such arrow, the degeneracy
operators d0 f = Y and d1 f = X recover the source and target of each arrow. Also, given an object
X of category C, we can regard the face operator s0X as its identity morphism 1X : X → X.

Example 8. Given a category C, we can identify an n-simplex σ of a simplicial set Cn with
the sequence:

σ = Co
f1−→ C1

f2−→ . . .
fn−→ Cn

the face operator d0 applied to σ yields the sequence

d0σ = C1
f2−→ C2

f3−→ . . .
fn−→ Cn

where the object C0 is “deleted” along with the morphism f0 leaving it. The “edge intervention”
model in [44] effectively can be viewed as deleting the vertex from which the edge originates.
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Example 9. Given a category C, and an n-simplex σ of the simplicial set Cn, the face operator dn
applied to σ yields the sequence

dnσ = C0
f1−→ C1

f2−→ . . .
fn−1−−→ Cn−1

where the object Cn is “deleted” along with the morphism fn entering it. Note this face operator can
be viewed as analogous to interventions on leaf nodes in a causal DAG model.

Example 10. Given a category C, and an n-simplex σ of the simplicial set Cn the face operator
di, 0 < i < n applied to σ yields the sequence

diσ = C0
f1−→ C1

f2−→ . . . Ci−1
fi+1◦ fi−−−−→ Ci+1 . . .

fn−→ Cn

where the object Ci is “deleted” and the morphisms fi is composed with morphism fi+1. Note that
this process can be abstractly viewed as intervening on object Ci by choosing a specific value for it
(which essentially “freezes” the morphism fi entering object Ci to a constant value).

Example 11. Given a category C, and an n-simplex σ of the simplicial set Cn, the degeneracy
operator si, 0 ≤ i ≤ n applied to σ yields the sequence

siσ = C0
f1−→ C1

f2−→ . . . Ci
1Ci−→ Ci

fi+1−−→ Ci+1 . . .
fn−→ Cn

where the object Ci is “repeated” by inserting its identity morphism 1Ci .

Definition 16. Given a category C, and an n-simplex σ of the simplicial set Cn, σ is a degenerate
simplex if some fi in σ is an identity morphism, in which case Ci and Ci+1 are equal.

5.1. Simplicial Subsets and Horns

We now describe more complex ways of extracting parts of causal structures using
simplicial subsets and horns. These structures will play a key role in defining suitable
lifting problems.

Definition 17. The standard simplex ∆n is the simplicial set defined by the construction

([m] ∈ ∆) 7→ Hom∆([m], [n])

By convention, ∆−1 := ∅. The standard 0-simplex ∆0 maps each [n] ∈ ∆op to the single
element set {•}.

Definition 18. Let S• denote a simplicial set. If for every integer n ≥ 0, we are given a subset
Tn ⊆ Sn, such that the face and degeneracy maps

di : Sn → Sn−1 si : Sn → Sn+1

applied to Tn result in
di : Tn → Tn−1 si : Tn → Tn+1

then the collection {Tn}n≥0 defines a simplicial subset T• ⊆ S•

Definition 19. The boundary is a simplicial set (∂∆n) : ∆op → Set defined as

(∂∆n)([m]) = {α ∈ Hom∆([m], [n]) : α is not surjective}

Note that the boundary ∂∆n is a simplicial subset of the standard n-simplex ∆n.
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Definition 20. The Horn Λn
i : ∆op → Set is defined as

(Λn
i )([m]) = {α ∈ Hom∆([m], [n]) : [n] 6⊆ α([m]) ∪ {i}}

Intuitively, the Horn Λn
i can be viewed as the simplicial subset that results from

removing the interior of the n-simplex ∆n together with the face opposite its ith vertex.

5.2. Example: Causal Intervention and Horn Filling of Simplicial Objects

Let us illustrate this abstract discussion above by instantiating it in the context of
causal inference. Figure 9 instantiates the abstract discussion above in terms of an example
from causal inference. We are given a simple 3 variable DAG, on which we desire to
explore the causal effect of variable A on C. Using Pearl’s backdoor criterion, we can
intervene on variable A by freezing its value do(A = 1), for example, which will eliminate
the dependence of A on B. Consider now the lifting problem where we want to know if
there is a completion of this simplicial subset Λ2

2, which is a “outer horn”.

B

A C

B

A C

Figure 9. Causal interventions can be related to horns of a simplicial object.

We can view the causal intervention problem in the more abstract setting of a class of
lifting problem, shown with the following diagrams. Consider the problem of composing
1-dimensional simplices to form a 2-dimensional simplicial object. Each simplicial subset
of an n-simplex induces a a horn Λn

k , where 0 ≤ k ≤ n. Intuitively, a horn is a subset of
a simplicial object that results from removing the interior of the n-simplex and the face
opposite the ith vertex. Consider the three horns defined below. The dashed arrow 99K
indicates edges of the 2-simplex ∆2 not contained in the horns.

{0}

{1} {2}

{0}

{1} {2}

{0}

{1} {2}

The inner horn Λ2
1 is the middle diagram above, and admits an easy solution to the

“horn filling” problem of composing the simplicial subsets. The two outer horns on either
end pose a more difficult challenge. For example, filling the outer horn Λ2

0 when the
morphism between {0} and {1} is f and that between {0} and {2} is the identity 1 is
tantamount to finding the left inverse of f up to homotopy. Dually, in this case, filling
the outer horn Λ2

2 is tantamount to finding the right inverse of f up to homotopy. A
considerable elaboration of the theoretical machinery in category theory is required to
describe the various solutions proposed, which led to different ways of defining higher-
order category theory [13,14,43].

5.3. Higher-Order Categories

We now formally introduce higher-order categories, building on the framework pro-
posed in a number of formalisms [13,14,43]. We briefly summarize various approaches to
the horn filling problem in higher-order category theory.

Definition 21. Let f : X → S be a morphism of simplicial sets. We say f is a Kan fibration if,
for each n > 0, and each 0 ≤ i ≤ n, every lifting problem.
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Λn
i X

∆n S

σ0

fσ

σ̄

admits a solution. More precisely, for every map of simplicial sets σ0 : Λn
i → X and every n-simplex

σ̄ : ∆n → S extending f ◦ σ0, we can extend σ0 to an n-simplex σ : ∆n → X satisfying f ◦ σ = σ̄.

Example 12. Given a simplicial set X, then a projection map X → ∆0 that is a Kan fibration is
called a Kan complex.

Example 13. Any isomorphism between simplicial sets is a Kan fibration.

Example 14. The collection of Kan fibrations is closed under retracts.

Definition 22 ([14]). An ∞-category is a simplicial object S• which satisfies the following condi-
tion:

• For 0 < i < n, every map of simplicial sets σ0 : Λn
i → S• can be extended to a map

σ : ∆n → Si.

This definition emerges out of a common generalization of two other conditions on a
simplicial set Si:

1. Property K: For n > 0 and 0 ≤ i ≤ n, every map of simplicial sets σ0 : Λn
i → S• can

be extended to a map σ : ∆n → Si.
2. Property C: for 0 < 1 < n, every map of simplicial sets σ0 : Λn

i → Si can be extended
uniquely to a map σ : ∆n → Si.

Simplicial objects that satisfy property K were defined above to be Kan complexes.
Simplicial objects that satisfy property C above can be identified with the nerve of a
category, which yields a full and faithful embedding of a category in the category of sets.
Definition 22 generalizes both of these definitions, and was called a quasicategory in [13]
and weak Kan complexes in [43] when C is a category. We will use the nerve of a category
below in defining homotopy colimits as a way of characterizing a causal model.

5.4. Example: Simplicial Objects over Integer-Valued Multisets

To help ground out this somewhat abstract discussion above on simplicial objects
and sets, let us consider its application to two other examples. Our first example comes
from a non-graphical representations of conditional independence, namely integer-valued
multisets [8], defined as an integer-valued multiset function u : ZP(Z) → Z from the power
set of integers, P(Z) to integers Z. An imset is defined over partialy ordered set (poset),
defined as a distributive lattice of disjoint (or non-disjoint) subsets of variables. The bottom
element is denoted ∅, and top element represents the complete set of variables N. A full
discussion of the probabilistic representations induced by imsets is given [8]. We will only
focus on the aspects of imsets that relate to its conditional independence structure, and its
topological structure as defined by the poset. A combinatorial imset is defined as:

u = ∑
A⊂N

cAδA

where cA is an integer, δA is the characteristic function for subset A, and A potentially
ranges over all subsets of N. An elementary imset is defined over (a, b ⊥⊥ A), where a, b are
singletons, and A ⊂ N \ {a, b}. A structural imset is defined as one where the coefficients
can be rational numbers. For a general DAG model G = (V, E), an imset in standard
form [8] is defined as

uG = δV − δ∅ + ∑
i∈V

(δPai
− δi∪Pai

)
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The space of all possible imset representations over n variables defines a lattice [8],
where the top of the lattice corresponds to the “discrete" causal model with no non-trivial
morphisms, and the bottom of the lattice corresponds to the complete model with mor-
phisms between every pair of objects. Each candidate imset defines a causal horn, a sim-
plicial subobject of the complete simplex, and the process of causal structure discovery
can be viewed in terms of the abstract horn filling problem defined above for higher-
order categories.

5.5. Example: Simplicial Objects over String Diagrams

We now illustrate the above formalism of simplicial objects by illustrating how it
applies to the special case where causal models are defined over symmetric monoidal
categories [25,29,30]. For a detailed overview of symmetric monoidal categories, we
recommend the book-length treatment by Fong and Spivak [1]. Symmetric monoidal
categories (SMCs) are useful in modeling processes where objects can be combined together
to give rise to new objects, or where objects disappear. For example, Coecke et al. [45]
propose a mathematical framework for resources based on SMCs. We focus on the work of
Jacobs et al. [25]. It is important to point out that monoidal categories can be defined as
a special type of Grothendieck fibration [40]. We discuss one specific case of the general
Grothendieck construction in the next section construction, and refer the reader to [40] for
how the structure of monoidal categories itself emerges from this construction.

Our goal in this section is to illustrate how we can define simplicial objects over the
SMC category CDU category SynG constructed by Jacobs et al. [25] to mimic the process of
working with an actual Bayesian network DAG G For the purposes of our illustration, it is
not important to discuss the intricacies involved in this model, for which we refer the reader
to the original paper. Our goal is to show that by encapsulating their SMC category in the
UCLA framework, we can extend their approach as described below. In particular, we can
solve an associated lifting problem that is defined by the functor mapping the simplicial
category ∆ to their SMC category. They use the category of stochastic matrices to capture
the process of working with the joint distribution as shown in the figure. Instead, we show
that one can use some other category, such as the category of Sets, or Top (the category of
topological spaces), or indeed, the category Meas of measurable spaces.

Recall that Bayesian networks [16] define a joint probability distribution

P(X1, . . . , Xn) =
n

∏
i=1

P(Xi|Pa(Xi)],

where Pa(Xi) ⊂ {X1, . . . , Xn} \ Xi represents a subset of variables (not including the
variable itself). Jacobs et al. [25] show Bayesian network models can be constructed using
symmetric monoidal categories, where the tensor product operation is used to combine
multiple variables into a “tensored” variable that then probabilistically maps into an
output variable. In particular, the monoidal category Stoch has as objects finite sets, and
morphisms f : A → B are |B| × |A| dimensional stochastic matrices. Composition of
stochastic matrices corresponds to matrix multiplication. The monoidal product ⊗ in
Stoch is the cartesian product of objects, and the Kronecker product of matrices f ⊗ g.
Jacobs et al. [25] define three additional operations, the copy map, the discarding map, and
the uniform state.

Definition 23. A CDU category (for copy, discard, and uniform) is a SMC category (C, ⊗, I),
where each object A has a copy map CA : A → A⊗ A, and discarding map DA : A → I, and a
uniform state map UA : I → A, satisfying a set of equations detailed in Jacobs et al. [25]. CDU
functors are symmetric monoidal functors between CDU categories, preserving the CDU maps.

The key theorem we are interested in is the following from the original paper [25]:
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Theorem 6. There is an isomorphism (1-1 correspondence) between Bayesian networks based on a
DAG G and CDU functors F : SynG → Stoch.

The significance of this theorem for the UCLA architecture is that it shows how the
SMC category of CDU objects can be defined as Layer 2 of the UCLA hierarchy, whereas the
category Stoch can be viewed as instantiating the Layer 3 of the UCLA hierarchy. Notice
that this theorem in effect defines a universal arrow between the CDU category and the
category of stochastic matrices, which is a central unifying principle in UC.

5.6. Nerve of a Category

An important concept that will play a key role in Layer 4 of the UCLA hierarchy is
that of the nerve of a category [40]. The nerve of a category C enables embedding C into the
category of simplicial objects, which is a fully faithful embedding.

Definition 24. Let F : C → D be a functor from category C to category D. If for all arrows f the
mapping f → F f

• injective, then the functor F is defined to be faithful.
• surjective, then the functor F is defined to be full.
• bijective, then the functor F is defined to be fully faithful.

Definition 25. The nerve of a category C is the set of composable morphisms of length n, for
n ≥ 1. Let Nn(C) denote the set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

The set of n-tuples of composable arrows in C, denoted by Nn(C), can be viewed as a
functor from the simplicial object [n] to C. Note that any nondecreasing map α : [m]→ [n]
determines a map of sets Nm(C)→ Nn(C). The nerve of a category C is the simplicial set
N• : ∆→ Nn(C), which maps the ordinal number object [n] to the set Nn(C).

The importance of the nerve of a category comes from a key result [40], showing it
defines a full and faithful embedding of a category:

Theorem 7. The nerve functor N• : Cat → Set is fully faithful. More specifically, there is a
bijection θ defined as:

θ : Cat(C, C ′)→ Set∆(N•(C), N•(C ′)

Using this concept of a nerve of a category, we can now state a theorem that shows
it is possible to easily embed the CDU symmetric monoidal category defined above that
represents Bayesian Networks and their associated “string diagram surgery” operations
for causal inference as a simplicial set.

Theorem 8. Define the nerve of the CDU symmetric monoidal category (C, ⊗, I), where each
object A has a copy map CA : A→ A⊗ A, and discarding map DA : A→ I, and a uniform state
map UA : I → A as the set of composable morphisms of length n, for n ≥ 1. Let Nn(C) denote the
set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

The associated nerve functor N• : Cat→ Set from the CDU category is fully faithful. More
specifically, there is a bijection θ defined as:

θ : Cat(C, C ′)→ Set∆(N•(C), N•(C ′)
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This theorem is just a special case of the above theorem attesting to the full and faithful
embedding of any category using its nerve, which then makes it a simplicial set. We can
then use the theoretical machinery at the top layer of the UCLA architecture to manipulate
causal interventions in this category using face and degeneracy operators as defined above.

Note that the functor G from a simplicial object X to a category C can be lossy. For
example, we can define the objects of C to be the elements of X0, and the morphisms of C as
the elements f ∈ X1, where f : a→ b, and d0 f = a, and d1 f = b, and s0a, a ∈ X as defining
the identity morphisms 1a. Composition in this case can be defined as the free algebra
defined over elements of X1, subject to the constraints given by elements of X2. For example,
if x ∈ X2, we can impose the requirement that d1x = d0x ◦ d2x. Such a definition of the left
adjoint would be quite lossy because it only preserves the structure of the simplicial object
X up to the 2-simplices. The right adjoint from a category to its associated simplicial object,
in contrast, constructs a full and faithful embedding of a category into a simplicial set. In
particular, the nerve of a category is such a right adjoint.

6. Layers 2 and 3 of UCLA: The Category of Elements in Causal Inference

Next, we turn to describe the second (from top) and third layers of the UCLA architec-
ture, which pertain to the category of causal models (for example, a graph or a symmetric
monoidal category), and the database of instances that support causal inferences. Drawing
on the close correspondences between between categories and relational database schemes
(see [4] for details), we can view causal queries over data as analogous to database queries,
which can then be formulated by corresponding lifting problems. That is, each object
in the model, e.g., a variable indicating a patient, maps into actual patients, and a vari-
able indicating outcomes from COVID-19 exposure, maps into actual outcomes for that
individual. The causal arrow from the patient variable into the exposure variable then
maps into actual arrows for each patient. Causal queries of exposure to COVID-19 then
become similar to database queries. In the next section, we will generalize this perspective,
showing that we can map into a topological category and answer more abstract questions
relating to the geometry of a dataset, or map into a category of measurable spaces to answer
probabilistic queries. The structure of the lifting problem remains the same, what changes
are the specifics of the underlying categories.

6.1. Grothendieck Category of Elements in Relational Causal Models

The Grothendieck category of elements is related to the notion of ground graphs used
in relational causal models [32]. Using the example in their papers, we are given three
generic objects, Employee, Product, and Business-Unit, and several morphisms, including
Develops, Funds, Salary, Competence, Revenue and Budget. We can view a relational
schema as shown as a category, following the approach shown in [46,47]. Note each object,
such as Employee, maps using a functor into the category Sets into actual employees, such
as Paul or Sally. Each morphism in the category, for example Develops must accordingly
also be mapped by this functor into a set-valued function. So, as illustrated, we have that
Sally is involved in developing a Laptop, and Paul is involved in developing a Case, both
of which of course are instances of Product. The GCE for this relational causal model is
strongly related to the so-called relational skeleton and ground graph explored in relational
causal models [21,32].

A full discussion of these connections is beyond the scope of this paper, but there are
some interesting differences to be noted. In their approach, relations such as Develops
are depicted as undirected, whereas in our case, we model these as directional properties
(which seems natural in this example). Ahsan et al. [32] develop a notion of relational
d-separation in their work, and it would be interesting to construct a categorified version
of that notion, an interesting problem for future work. We turn instead to discuss how
GCE plays a key role in lifting problems associated with causal inference in UCLA. These
provide a rigorous semantics to their use in relational causal models as well, which might
be a fruitful avenue to explore in subsequent work.
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6.2. Lifting Problems in Causal Inference

Many properties of Grothendieck’s construction can be exploited (some of these are
discussed in the context of relational database queries in [4]), but for our application to
causal inference, we are primarily interested in the associated class of lifting problems that
define queries in a causal model.

Definition 26. If S is a collection of morphisms in category C, a morphism f : A → B has the
left lifting property with respect to S if it has the left lifting property with respect to every
morphism in S. Analogously, we say a morphism p : X → Y has the right lifting property with
respect to S if it has the right lifting property with respect to every morphism in S.

We now turn to sketch some examples of the application of lifting problems for
causal inference. Many problems in causal inference on graphs involve some particular
graph property. To formulate it as a lifting problem, we will use the following generic
template, following the initial application of lifting problems to database queries proposed
by Spivak [4].

Q
∫

δ

R C
f

µ

ph

ν

Here, Q is a generic query that we want answered, which could range from a database
query, as in the original setting studied by Spivak [4], but more interestingly, it could be
a particular graph property relating to causal inference (as illustrated by the following
two examples), but as we will show later, it could also be related to the combinatorial
category of simplicial objects used to model causal intervention, and finally, it could also be
related to questions relating to the evaluation of causal models using a measure-theoretic or
probability space. By suitably modifying the base category, the lifting problem formulation
can be used to encode a diverse variety of problems in causal inference. R represents
a fragment of the complete causal model C, and δ is the category of elements defined
above. Finally, h gives all solutions to the lifting problem. Some examples will help clarify
this concept.

Example 15. Consider the category of directed graphs defined by the category G, where Ob(G) = {V, E},
and the morphisms of G are given as HomG = {s, t}, where s : E → V and t : E → V define
the source and terminal nodes of each vertex. Then, the category of all directed graphs is precisely
defined by the category of all functors δ : G → Set. Any particular graph is defined by the functor
X : G → Set, where the function X(s) : X(E) → X(V) assigns to every edge its source vertex.
For causal inference, we may want to check some property of a graph, such as the property that
every vertex in X is the source of some edge. The following lifting problem ensures that every vertex
has a source edge in the graph. The category of elements

∫
δ shown below refers to a construction

introduced by Grothendieck, which will be defined in more detail later.

V(•)
∫

δ

{E(•) s−→ V(•)} G

f

µ

p
h

ν

Example 16. As another example of the application of lifting problems to causal inference, let us con-
sider the problem of determining whether two causal DAGs, G1 and G2 are Markov equivalent [48].
A key requirement here is that the immoralities of G1 and G2 must be the same, that is, if G1 has a
collider A → B ← C, where there is no edge between A and C, then G2 must also have the same
collider, and none others. We can formulate the problem of finding colliders as the following lifting
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problem. Note that the three vertices A, B and C are bound to an actual graph instance through the
category of elements

∫
δ (as was illustrated above), using the top right morphism µ. The bottom left

morphism f binds these three vertices to some collider. The bottom right morphism ν requires this
collider to exist in the causal graph G with the same bindings as found by µ. The dashed morphisms
h finds all solutions to this lifting problem, that is, all colliders involving the vertices A, B and C.

{A(•), B(•), C(•)}
∫

δ

{A(•)→ B(•)← C(•)} G
f

µ

p
h

ν

If the category of elements is defined by a functor mapping a database schema into a
table of instances, then the associated lifting problem corresponds to familiar problems like
SQL queries in relational databases [4]. In our application, we can use the same machinery
to formulate causal inference queries by choosing the categories appropriately. To complete
the discussion, we now make the connection between universal arrows and the core notion
of universal representations via the Yoneda Lemma.

6.3. Modeling Causal Interventions as Kan Extension

It is well known in category theory that ultimately every concept, from products and
co-products, limits and co-limits, and ultimately even the Yoneda Lemma (see below),
can be derived as special cases of the Kan extension [35]. Kan extensions intuitively are a
way to approximate a functor F so that its domain can be extended from a category C to
another category D. Because it may be impossible to make commutativity work in general,
Kan extensions rely on natural transformations to make the extension be the best possible
approximation to F along K. We want to briefly show Kan extensions can be combined
with the category of elements defined above to construct causal “migration functors” that
map from one causal model into another. These migration functors were originally defined
in the context of database migration [4], and here we are adapting that approach to causal
inference. By suitably modifying the category of elements from a set-valued functor δ : C →
Set, to some other category, such as the category of topological spaces, namely δ : C → Top,
we can extend the causal migration functors into solving more abstract causal inference
questions. We explore the use of such constructions in the next section on Layer 4 of the
UCLA hierarchy. Here, for simplicity, we restrict our focus to Kan extensions for migration
functors over the category of elements defined over instances of a causal model.

Definition 27. A left Kan extension of a functor F : C → E along another functor K : C → D,
is a functor LanKF : D → E with a natural transformation η : F → LanF ◦ K such that for any
other such pair (G : D → E , γ : F → GK), γ factors uniquely through η. In other words, there is
a unique natural transformation α : LanF =⇒ G.

C E

D

K

F

LanK F

G

∃!
η

A right Kan extension can be defined similarly. To understand the significance of Kan
extensions for causal inference, we note that under a causal intervention, when a causal
category S gets modified to T, evaluating the modified causal model over a database of
instances can be viewed as an example of Kan extension.

Let δ : S → Set denote the original causal model defined by the category S with
respect to some dataset. Let ε : T → Set denote the effect of a causal intervention abstractly
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defined as some change in the category S to T, such as deletion of an edge, as illustrated in
Figure 10. Intuitively, we can consider three cases: the pullback ∆F along F, which maps the
effect of a causal intervention back to the original model, the left pushforward ΣF and the
right pushforward ∏F, which can be seen as adjoints to the pullback ∆F.

B

A C

B

A C

Category of InstancesCategory of Instances

Original Causal Model S Causal Model under Intervention
Causal Migration Functors

Figure 10. Kan extensions are useful in modeling the effects of a causal intervention, where in this
example of a causal model over three objects A, B, and C, the object A is intervened upon, eliminating
the morphism into it from object B.

Following [4], we can define three causal migration functors that evaluate the impact of
a causal intervention with respect to a dataset of instances.

1. The functor ∆F : ε → δ sends the functor ε : T → Set to the composed functor
δ ◦ F : S→ Set.

2. The functor ΣF : δ → ε is the left Kan extension along F, and can be seen as the left
adjoint to ∆F.
The functor ∏F : δ → ε is the right Kan extension along F, and can be seen as the
right adjoint to ∆F.

To understand how to implement these functors, we use the following proposition
that is stated in [4] in the context of database queries, which we are restating in the setting
of causal inference.

Theorem 9. Let F : S → T be a functor. Let δ : S → Set and ε : T → Set be two set-valued
functors, which can be viewed as two instances of a causal model defined by the category S and T. If
we view T as the causal category that results from a causal intervention on S (e.g., deletion of an
edge), then there is a commutative diagram linking the category of elements between S and T.∫

δ
∫

ε

S T

πδ πε

F

Proof. To check that the above diagram is a pullback, that is,
∫

δ ' S×T
∫

δ, or in words,
the fiber product, we can check the existence of the pullback component wise by comparing
the set of objects and the set of morphisms in

∫
δ with the respective sets in S×T

∫
ε.

For simplicity, we defined the migration functors above with respect to an actual
dataset of instances. More generally, we can compose the set-valued functor δ : S→ Set
with a functor T : Set→ Top to the category of topological spaces to derive a Kan extension
formulation of the definition of a causal intervention. We discuss this issue in the next
section on causal homotopy.

7. Layer 4 of UCLA: Causal Homotopy

Finally, we turn to discuss the role of the causal homotopy layer. To understand
the reason for considering homotopy in causal inference, note that causal models can
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only be determined up to some equivalence class from data, and while many causal dis-
covery algorithms assume arbitrary interventions can be carried out, e.g., on separating
sets [27], to discover the unique structure, such interventions are generally impossible to
do in practical applications. The concept of essential graph [48] and chain graph [49] are
attempts to formulate the notion of a “quotient space” of graphs, but similar issues arise
more generally for non-graph based models as well. Thus, it is useful to understand how
to formulate the notion of equivalent classes of causal models in an arbitrary category.
For example, given the conditional independence structure A ⊥⊥ B|C, there are at least
three different symmetric monoidal categorical representations that all satisfy this con-
ditional independence [25,29,30], and we need to define the quotient space over all such
equivalent categories.

In our previous work on causal homotopy [41], we exploited the connection between
causal DAG graphical models and finite topological spaces [50,51]. In particular, for a DAG
model G = (V, E), it is possible to define a finite space topology T = (V,O), whose open
sets O are subsets of the vertices V such that each vertex x is associated with an open set
Ux defined as the intersection of all open sets that contain x. This structure is referred to an
Alexandroff topology [52]. An intuitive way to construct an Alexandroff topology is to define
the open set for each variable x by the set of its ancestors Ax, or by the set of its descendants
Dx. This approach transcribes a DAG graph into a finite topological space, upon which the
mathematical tools of algebraic topology can be applied to construct homotopies among
equivalent causal models. Our approach below generalizes this construction to simplicial
objects, as well as general categories.

7.1. The Category of Fractions: Localizing Invertible Morphisms in a Category

A principal challenge in causal discovery is that models can be inferred from data only
up to an equivalence class. We can view the morphisms between equivalent causal models
as “invertible” arrows, which defines a construction called an “essential” graph [48]. The
problem of defining a category with a given subclass of invertible morphisms, called the
category of fractions [53], is another concrete illustration of the close relationships between
categories and graphs. It is also useful in the context of causal inference, as for example,
in defining the Markov equivalence class of directed acyclic graphs (DAGs) as a category
that is localized by considering all invertible arrows as isomorphisms. Borceux [54] has a
detailed discussion of the “calculus of fractions”, namely how to define a category where
a subclass of morphisms are to be treated as isomorphisms. The formal definition is
as follows:

Definition 28. Consider a category C and a class Σ of arrows of C. The category of fractions
C(Σ−1) is said to exist when a category C(Σ−1) and a functor φ : C → C(Σ−1) can be found with
the following properties:

1. ∀ f , φ( f ) is an isomorphism.
2. If D is a category, and F : C → D is a functor such that for all morphisms f ∈ Σ, F( f ) is an

isomorphism, then there exists a unique functor G : C(Σ−1)→ D such that G ◦ φ = F.

A detailed construction of the category of fractions is given in [54], which uses the
underlying directed graph skeleton associated with the category. The characterization of
the Markov equivalent class of acyclic directed graphs is an example of the abstract concept
of category of fractions [48]. Briefly, this condition states that two acyclic directed graphs
are Markov equivalent if and only if they have the same skeleton and the same immoralities.
In our previous work [41], we explored constructing homotopically invariant causal models
over finite Alexandroff topological spaces, which can be seen as a special case of the UCLA
framework since finite topological (Alexandroff) spaces define a category [52].
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7.2. Homotopy of Simplicial Objects

We will discuss homotopy in categories more generally now. This notion of homotopy
generalizes the notion of homotopy in topology, which defines why an object like a coffee
cup is topologically homotopic to a doughnut (they have the same number of “holes”).

Definition 29. Let C and C′ be a pair of objects in a category C. We say C is a retract of C′ if
there exists maps i : C → C′ and r : C′ → C such that r ◦ i = idC .

Definition 30. Let C be a category. We say a morphism f : C → D is a retract of another
morphism f ′ : C → D if it is a retract of f ′ when viewed as an object of the functor category
Hom([1], C). A collection of morphisms T of C is closed under retracts if for every pair of
morphisms f , f ′ of C, if f is a retract of f ′, and f ′ is in T, then f is also in T.

Definition 31. Let X and Y be simplicial sets, and suppose we are given a pair of morphisms
f0, f1 : X → Y. A homotopy from f0 to f1 is a morphism h : ∆1×X → Y satisfying f0 = h|0×X
and f1 = h1×X .

7.3. Singular Homology

Our goal is to define an abstract notion of a causal model in terms of its underlying
classifying space as a category, and show how it can be useful in defining causal homotopy.
We will also clarify how it relates to determining equivalences among causal models,
namely homotopical invariance, and also how it sheds light on causal identification. First,
we need to define more concretely the topological n-simplex that provides a concrete way
to attach a topology to a simplicial object. Our definitions below build on those given
in [14]. For each integer n, define the topological space |∆n| realized by the object ∆n as

|∆n| = {t0, t1, . . . , tn ∈ Rn+1 : t0 + t1 + . . . + tn = 1}

This is the familiar n-dimensional simplex over n variables. For any causal model,
its classifying space |N•(C)| defines a topological space. We can now define the singular
n-simplex as a continuous mapping σ : |∆N | → |N•(C)|. Every singular n-simplex σ
induces a collection of n− 1-dimensional simplices called faces, denoted as

diσ(t0, . . . , tn−1) = (t0, t1, . . . , ti−1, 0, ti, . . . , tn−1)

Note that as discussed above, a causal intervention on a variable in a DAG can be
modeled as applying one of these degeneracy operators di. The above definition shows
that every such intervention has an effect on the topology associated with the causal model.
Define the set of all morphisms Singn(X) = HomTop(∆n, |N•(C)|) as the set of singular
n-simplices of |N•(C)|.

Definition 32. For any topological space defined by a causal model |N•(C)|, the singular homol-
ogy groups H∗(|N•(C)|; Z) are defined as the homology groups of a chain complex

. . . ∂−→ Z(Sing2(|N•(C)|))
∂−→ Z(Sing1(|N•(C)|))

∂−→ Z(Sing0(|N•(C)|))

where Z(Singn(|N•(C)|)) denotes the free Abelian group generated by the set Singn(|N•(C)|) and
the differential ∂ is defined on the generators by the formula

∂(σ) =
n

∑
i=0

(−1)idiσ

Intuitively, a chain complex builds a sequence of vector spaces that can be used to
construct an algebraic invariant of a causal model from its classifying space by choosing
the left k module Z to be a vector space. Each differential ∂ then becomes a linear transfor-
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mation whose representation is constructed by modeling its effect on the basis elements in
each Z(Singn(X)).

Example 17. Let us illustrate the singular homology groups defined by an integer-valued multi-
set [8] used to model conditional independence. Imsets over a DAG of three variables N = {a, b, c}
can be viewed as a finite discrete topological space. For this topological space X, the singular
homology groups H∗(X; Z) are defined as the homology groups of a chain complex

Z(Sing3(X))
∂−→ Z(Sing2(X))

∂−→ Z(Sing1(X))
∂−→ Z(Sing0(X))

where Z(Singi(X)) denotes the free Abelian group generated by the set Singi(X) and the differential
∂ is defined on the generators by the formula

∂(σ) =
4

∑
i=0

(−1)idiσ

The set Singn(X) is the set of all morphisms HomTop(|∆n|, X). For an imset over the three
variables N = {a, b, c}, we can define the singular n-simplex σ as:

σ : |∆4| → X where |∆n| = {t0, t1, t2, t3 ∈ [0, 1]4 : t0 + t1 + t2 + t3 = 1}

The n-simplex σ has a collection of faces denoted as d0σ, d1σ, d2σ and d3σ. If we pick the
k-left module Z as the vector space over real numbers R, then the above chain complex represents a
sequence of vector spaces that can be used to construct an algebraic invariant of a topological space
defined by the integer-valued multiset. Each differential ∂ then becomes a linear transformation
whose representation is constructed by modeling its effect on the basis elements in each Z(Singn(X)).
An alternate approach to constructing a chain homology for an integer-valued multiset is to use
Möbius inversion to define the chain complex in terms of the nerve of a category (see our recent work
on categoroids [15] for details).

7.4. Classifying Spaces and Homotopy Colimits

Building on the intuition proposed above, we now introduce a formal way to define
causal effects in our framework, which relies on the construction of a topological space
associated with the nerve of a category. As we saw above, the nerve of a category is a full
and faithful embedding of a category as a simplicial object.

Definition 33. The classifying space of a causal model defined as a category C is the topological
space associated with the nerve of the category |N•C|.

To understand the classifying space |N•C| of a causal model defined as a category C,
let us go over some simple examples to gain some insight.

Example 18. For any set X, which can be defined as a discrete category CX with no non-trivial
morphisms, the classifying space |N•CX | is just the discrete topology over X (where the open sets
are all possible subsets of X).

Example 19. If we take a causal model defined as a partially ordered set [n], with its usual order-
preserving morphisms, then the nerve of [n] is isomorphic to the representable functor δ(−, [n]), as
shown by the Yoneda Lemma, and in that case, the classifying space is just the topological space ∆n
defined above.

Example 20. In our earlier work on causal homotopy [41], we associated with any finite causal
DAG G, a finite Alexandroff topological space, where the open sets of the topology corresponding to
the down sets or upsets of descendants or ancestors, respectively. Since any causal DAG model G



Entropy 2023, 25, 574 32 of 37

induces a partial ordering, we can then define the classifying space of a causal DAG in terms of the
topological space associated with the nerve of the DAG, namely |N•G|.

Example 21. Witsenhausen [6] defined a measure-theoretic notion of causality called the intrinsic
model. An intrinsic modelM = (α, Uα, Iα)α∈A, where the parameters of the intrinsic causal
model over n variables A are defined in terms of a collection of measurable functions over each
variable’s information field Iα (a subfield of the product σ-algebra over all variables upon which it
depends), where Uα is the space over which α takes its values. Heymann et al. [7] showed recently
that Witsenhausen’s intrinsic model generalizes Pearl’s d-separation condition, and can be used to
define a rich set of causal models that includes cycles and feedback, as well as more refined notions of
conditional d-separation. The definition of causality in an intrinsic model is based on structuring
the information fields of every variable in such a way that it is possible to sequentially order them
for any particular instance of the underlying sample space. It is possible to define a topology on the
underlying variables (which Witsenhausen referred to as agents), by defining subystem of variables
B ⊆ A such that every variable α ∈ B has an information field that only depends on the information
fields of members in its subset B, that is ∀α ∈ B, the condition states that Iα ⊆ FB, where FB is
the induced product information field over the subset of variables B. Witsenhausen proves that the
collection of subsystems forms a finite topology on A. We can then define the classifying space of an
intrinsic causal model to be the topological space associated with the nerve of an intrinsic modelM,
namely |N•M|.

We now want to bring in the set-valued functor mapping each causal category C
to the actual experiment used, e.g., in a clinical trial [9], to evaluate average treatment
effect or quantify the effect of a do calculus intervention [5] We can then compute the
topological space prior to intervention, and subsequent to intervention, and compare the
two topological spaces in terms of their algebraic invariants (e.g., the chain complex, as
described below).

Definition 34. The homotopy colimit of a causal model defined as nerve of the category of
elements associated with the set-valued functor δ : C → Set mapping the causal category C to a
dataset, namely N•(

∫
δ).

In general, we may want to evaluate the homotopy colimit of a causal model not
only with respect to the data used in a causal experiment, but also with respect to some
underlying topological space or some measurable space. We can extend the above definition
straightforwardly to these cases using an appropriate functor T : Set→ Top, or alternatively
M: Set→Meas. These augmented constructions can then be defined with respect to a
more general notion called the homotopy colimit [40] of a causal model.

Definition 35. The topological homotopy colimit hocolimT ◦δ of a causal model associated
with a category C, along with its associated category of elements associated with a set-valued functor
δ : C → Set, and a topological functor T : Set→ Top is isomorphic to topological space associated
with the nerve of the category of elements, that is hocolimT ◦δ ' |N•(

∫
δ)|.

Example 22. The classifying space |N•CCDU | associated with CDU symmetric monoidal category
encoding of a causal Bayesian DAG is defined using the monoidal category (C, ⊗, I), where each
object A has a copy map CA : A→ A⊗ A, and discarding map DA : A→ I, and a uniform state
map UA : I → A, is defined as the topological realization of its nerve. As before, the nerve Nn(C)
of the CDU category is defined as the set of sequences of composable morphisms of length n.

{Co
f1−→ C1

f2−→ . . .
fn−→ Cn | Ci is an object in C, fi is a morphism in C}

Note that the CDU category was associated with a CDU functor F : SynG → Stoch to the
category of stochastic matrices. We can now define the homotopy colimit hocolimF of the CDU
causal model associated with the CDU category C, along with its associated category of elements
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associated with a set-valued functor δ : C → Set, and a topological functor F : Set → Stoch
is isomorphic to topological space associated with the nerve of the category of elements over the
composed functor, that is hocolimF◦δ.

7.5. Defining Causal Effect

Finally, we turn to defining causal effect using the notion of classifying space and
homotopy colimits, as defined above. Space does not permit a complete discussion of this
topic, but the basic idea is that once a causal model is defined as a topological space, there
are a large number of ways of comparing two topological spaces from analyzing their chain
complexes, or using a topological data analysis method such as UMAP [2].

Definition 36. Let the classifying space under “treatment” be defined as the topological space
|N•C1| associated with the nerve of category C1 under some intervention, which may result in a
topological deformation of the model (e.g., deletion of an edge). Similarly, the classifying space
under “no treatment” be defined as the |N•C0| under a no-treatment setting, with no intervention.
A causally non-isomorphic effect exists between categories C1 and C0, or C1 6∼= C0 if and only if
there is no invertible morphism f : |N•C1| → N•(C0| between the “treatment” and “no-treatment”
topological spaces, namely f must be both left invertible and right invertible.

There is an equivalent notion of causal effect using the homotopy colimit definition
proposed above, which defines the nerve functor using the category of elements. This
version is particularly useful in the context of evaluating a causal model over a dataset.

Definition 37. Let the homotopy colimit hocolim1 = |N•(
∫

δ1)| be the topological space associated
with a causal category C1 under the “treatment’ condition be defined with respect to an associated
category of elements defined by a set-valued functor δ1 : C → Set over a dataset of “treated”
variables, and corresponding “no-treatment” hocolim0 = |N•(

∫
δ0)| be the topological space of

a causal model associated with a category C0 be defined over an associated category of elements
defined by a set-valued functor δ0 : C → Set over a dataset of “placebo” variables. A causally
non-isomorphic effect exists between categories C1 and C0, or C1 6∼= C0 if and only if there is
no invertible morphism f : |N•(

∫
δ1)| → |N•(δ0)| between the “treatment” and “no-treatment”

homotopy colimit topological spaces, namely f must be both left invertible and right invertible.

We can define an equivalent “do-calculus” like version of the causal effect defini-
tions above for the case when a causal model defined as a graph structure is manipu-
lated by an intervention that deletes an edge, or does some more sophisticated type of
“category” surgery.

8. Contributions of Our Paper

We summarize the principal contributions of our paper. Our principal contribution is
the development of the notion of “universal causality”, a representation-independent defi-
nition whose goal is to elucidate the “universal’ properties of causal inference. Our work is
inspired by other work, for example separoids [10] elucidates the concept of conditional
independence in a representation-independent manner, which applies to conditional inde-
pendence in probability theory, statistics, and geometry. Another example is the concept
of Grothendieck topology [36], which defines topology abstractly in the context of any cate-
gory. Implicit in these constructions is the abstraction of a specific construct—conditional
independence or topology–in a manner that lets it be studied across a wide range of
representations. Similarly, UC is intended to be an abstract characterization of causality.

1. Universal Arrow: We used universal arrows as a unifying principle in UC, which
allows synchronizing causal changes at different levels of the UCLA hierarchy. Uni-
versal arrows set up a correspondence between a “forgetful” functor and its left
adjoint“free” functor. In the application to causal inference, universal arrows, for
example, define forgetful and free functors between the category of conditional in-
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dependence structures, such as separoids, from the category of actual causal models
(e.g., as symmetric monoidal categories of causal DAG models [25,29,30]).

2. Causal reproducing property: The universal arrow property leads to the powerful
Yoneda Lemma, which provides the foundational result embodied in the causal
reproducing property. The CRP implies that all causal influences between two objects
X and Y in a category C are representable in the functor category of presheaves, namely

HomC(X, Y) ' Nat(HomC(−, X), HomC(−, Y))

3. Causal interventions as a higher-order category: Most causal discovery algorithms
require a sequence of interventions, which naturally compose to form a category. We
introduced the framework of higher-order category theory using simplicial sets and
objects to define a category over causal interventions. Simplicial objects provides
an elegant and general way of extracting parts of a compositional structure, and its
associated lifting problems define when a partial fragment of a causal model can be
“put back” together into a complete model.

4. Nerve of a causal model: We used the nerve construction to set up a functor between a
casual category and its associated simplicial object, which is a fully faithful embedding
of any category as a simplicial object. Its left adjoint functor, which maps a simplicial
set into a category, is a lossy representation that only preserves structure up to n ≤ 2
simplices. Simplicial sets suggest a way to define higher-order causal models, a topic
for future work.

5. Relational causal models: The Grothendieck category of elements is closely related to
the notion of ground graphs in relational causal models [32], which gives a rich source
of applications of causal inference. Any relational database defines a category [4],
and our paper shows how to formulate causal inference in the rich space of relational
enterprise datasets.

6. Lifting Problem: Associated with each pair of layers of the UCLA hierarchy is a lifting
problem over a suitable category of elements, from simplicial category of elements,
to a category of elements over a dataset, to a category of elements over a topological
space. In general, the Grothendieck category of elements is a way to embed each
object in a category into the category of all categories Cat. This construction has many
elegant properties, which deserves further exploration in a subsequent paper.

7. Homotopy colimits and Classifying Spaces: We defined causal effect in terms of
the classifying space associated with the nerve of a causal category, and with the
homotopy colimit of the nerve of the category of elements. These structures have
been extensively explored in the study of homotopy in category theory [40], and there
are many advanced techniques that can be brought to bear on this problem, such as
model categories [55].

9. Future Work

There are many directions for future work, and we summarize a few of them below.

1. Higher-order causality: Our use of simplicial sets and objects suggests a way of defin-
ing higher-order causality, as simplicial sets generalize directed graphs, categories,
and partial orders. Simplicial sets permit modeling the interaction between groups of
objects, which naturally applies to cases of causal inference with interference, where
the stable unit treatment value assumption (SUTVA) [9] is violated. Zigler and Pa-
padogeorgou [33] explores an application to causal interference, where the treatment
units (e.g., power plants) and response units (e.g., people living close to power plants)
have a complex set of interactions, where a particular treatment may affect many
individuals. These types of problems can be studied using higher-order degeneracy
operators over oriented n-simplexes.

2. Causal Discovery from Conditional Independence Oracles: The problem of causal
discovery can then be rigorously formulated as a lifting problem as well, where the
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conditional independence oracle is defined as a solution to a lifting problem. More
specifically, it is possible to define a Grothendieck category of elements for a functor
F: Graph→ Separoids mapping the category of directed graphs into the category of
separoids, which define its equivalent set of conditional independence statements.
The Grothendieck fibration in this case maps the category of elements, combining
conditional independence properties and graph objects, into the category Graph.
Algorithms proposed in the literature, such as [27], can be seen as queries in a lifting
problem, analogous to the lifting problems defined for the UCLA hierarchy. This
approach can be extended to causal discovery over higher-order categories.

3. Grothendieck Topology: Analogous to the representation-independent definition of
conditional independence using separoids, our longstanding goal has been to define
causality purely in terms of a categorical structure. The Grothendieck topology J
for any category, which leads to the concept of a site [36], is defined such that for any
object c in C, a sieve S is a family of morphisms, all with co-domain c such that

f ∈ S→ f ◦ g ∈ S

for any g where the composition is defined. A Grothendieck topology J on category
C defines a sieve J(c) for each object c such that the following properties hold: (i) the
maximal sieve tc = { f |cod( f ) = c} is in J(c). There is an additional stability condition
and a transitive closure condition. An interesting problem for future work is to
define causal inference over sheaves of a site, using the concept of Grothendieck
topologies. Any causal intervention that, for instance, deletes an edge, would change
the Grothendieck topology embodied in the structure of sieves.

4. Gröbner Causal Models: Another direction for future work is to construct Gröb-
ner representations of causal categories. Sam and Snowden [56] define a general
Gröbner representation for combinatorial categories, which apply to causal models
as well. Specifically, denote Repk(C) as the category of representations of a causal
model C, where k is a non-zero ring, and Modk is the category of left-k modules.
Thus, we can define a representation of a causal category C as a functor C → Modk.
Let x be an object of C. Define a representation Px of C as a left k-module, where
Px(y) = k[HomC(x, y)], that is, Px(y) is the free left k-module with basis HomC(x, y).
For any particular morphism f : x → y, let e f denote the corresponding element
of Px(y). Broadly speaking, this approach generalizes the work on modeling graph-
ical models as algebraic varieties [20,57,58], and ideals on partially ordered sets
(posets) [59]. The intuitive idea is that a representation of a category can be defined as
an abstract Gröbner basis over an ideal defined on a module whose basis is defined
using the free algebra generated by the set of all morphisms out of an object. This
approach provides an alternative way of parameterizing causal models defined as
combinatorial categories.

10. Summary

In this paper, we proposed a framework called Universal Causality (UC) for causal
inference using the tools of category theory. Specifically, we described a layered hierarchical
architecture called UCLA (Universal Causality Layered Architecture), where causal infer-
ence is modeled at multiple levels of categorical abstraction. At the top-most level, causal
inference is modeled using a higher-order category of simplicial sets and objects, defined
as contravariant functors from the category of ordinal numbers ∆, whose objects are the
ordered natural numbers [n] = {0, . . . , n}, and whose morphisms are order-preserving
injections and surjections. Causal “surgery” is then modeled as the action of a contravariant
functor from the category ∆ into a causal model. At the second layer, causal models are
defined by a category consisting of a collection of objects, such as the entities in a relational
database, and morphisms between objects can be viewed as attributes relating entities. The
third categorical abstract layer corresponds to the data layer in causal inference, where
each causal object is mapped into a set of instances, modeled using the category of sets and
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morphisms are functions between sets. The fourth layer comprises of additional structure
imposed on the instance layer above, such as a topological space, a measurable space or
a probability space, or more generally, a locale. Between every pair of layers in UCLA
are functors that map objects and morphisms from the domain category to the co-domain
category. Each functor between layers is characterized by a universal arrow, which defines
an isomorphism between every pair of categorical layers. These universal arrows define
universal elements and representations through the Yoneda Lemma, and in turn lead to a
new category of elements based on a construction introduced by Grothendieck. Causal in-
ference between each pair of layers is defined as a lifting problem, a commutative diagram
whose objects are categories, and whose morphisms are functors that are characterized
as different types of fibrations. We defined causal effect in the UCLA framework using
the notion of homotopy colimits associated with the nerve of a category. We illustrate the
UCLA architecture using a diverse set of examples.
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