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1 Universal Decision Model (UDM)

2 Bisimulation in UDMs

3 UDM Functors

4 Universal Properties of UDMs
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Universal Decision Model

Unify Causal inference, Game theory, Reinforcement Learning.
Define universal properties of information structures
underlying UDMs.
Paper coming soon on Arxiv and my UMass web page:
www.cics.umass.edu/∼mahadeva
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Universal Decision Model (UDM)

UDMs are based on Witsenhausen’s Intrinsic Model
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Universal Decision Models
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Group Decision Making in Honeybees
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Decentralized Decision Making in Cloud Computing
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Universal Decision Model

UDM: 〈A, (Ω,B,P), (Uα,Fα, Iα)α∈A〉:
A: finite universe of decision points (e.g., agents,
exogenous/endogenous variables, states, time)
(Ω,B,P): probability space representing the inherent
stochastic state of nature due to randomness
(Uα,Fα): measurable space from which a decision u ∈ Uα is
chosen by α, where Fα is a σ-algebra over Uα
Product space: H = ×a∈AUα, product field F = ⊗α∈AFα ⊗ B
Policy πα : Ω× H→ Uα is a measurable function over
(Iα,Fα)
Information field Iα: subfield of the overall product field F
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Two-Player Game as a UDM

A partial information game G = 〈A, (Ω,B,P), (Uα,Fα)α∈A〉:
Set of players A, with probability space (Ω,B,P)
Decision space: (Uα,Fα)α∈A, where Fα is a partition of Ω.
Simple two-player game: A = α, β.

State of nature: Ω = {1, 2, . . . , 9}, B = 2Ω, P{i : i ∈ Ω} = 1
9 .

Information partition: Fα = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.
Information partition: Fβ = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}}.
Suppose true state of nature is ω ∈ Ω = 1
Knowledge of α: F1

α = {1, 2, 3}
Knowledge of β: F1

β = {1, 2, 3, 4}
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Causal Inference as a UDM

“Vaccine”

“Age”

“Infection”

A = {X,Y,Z},UX = UY = UZ = {0, 1}.
σ-algebras: FX = FY = FZ = {∅, {0}, {1}, {0, 1}}.
States of nature: Ω = {0, 1}3, Borel topology B = 2Ω.
Policies:
π−1
α ⊂ Fα ⊗b̸=α {∅,Ωb} ⊗b∈Pa(α) Fb ⊗b/∈Pa(α) {∅,Ub}

For more details, see [Heymann et al., Arxiv, 2021].
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Sequential UDMs

1 Probability space: (Ω,B,P)
2 Measurable decision spaces (Ut,Ft), t = 1, . . . ,T at each time

point.
3 Information fields It ⊂ B ⊗ F1 ⊗ . . .⊗FT

4 Permutation p : {1, . . . ,T} → {1, . . . ,T} such that for
t = 1, . . .T, the information field
It ⊂ B⊗Fp(1)⊗Fp(2), . . . ,Fp(t−1)⊗{∅,Fp(t)}⊗. . .⊗{∅,Fp(T)}.

5 Cost function c : (Ω× U1:T,B ⊗ F1:T)→ (R,B)
6 Objective: minimize cost function infπ E[c(ω,U1, . . . ,UT)]

exactly, or to within ϵ.
See [Nayyar et al., IEEE Trans Aut. Control, 2018]
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Solvable UDM

A UDM 〈A, (Ω,B,P), (Uα,Fα, Iα)α∈A〉 is said to be solvable if for
every state of nature ω ∈ Ω, and every policy π ∈ ΠA, the below
set of simultaneous equations has a fixed point.

uα = πα(h) ≡ πα(ω, u) (1)

Here, πα can be viewed as a projection from the joint decision h
taken by the entire ensemble of decision makers in the UDM.
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Causal UDM

An UDM 〈A, (Ω,B,P), (Uα,Fα, Iα) is said to be causal if
There exists ϕ : H→ S, where S is the set of total orderings
of decision makers in A,
such that for 1 ≤ k ≤ n, and any ordered set (α1, . . . , αk) of
distinct elements from A, the set E ⊂ H on which ϕ(h) begins
with the same ordering (α1, . . . , αk) satisfies the following
causality condition:

∀F ∈ Fαk , E ∩ F ∈ F({α1, . . . , αk−1}) (2)
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Classes of UDMs

1 Monic: A = {α}, Iα ⊂ F(∅).
2 Team: Iα ⊂ F(∅).
3 Sequential: There exists a fixed ordering {α1, . . . , αn} of

decision makers from A such that for any 1 ≤ k ≤ n, it holds
that Iαk ⊂ F({α1, . . . , αk−1}.

4 Classical: A UDM is called classical if it is sequential, and
I0 ∈ F(∅), Ik−1 ⊂ Ik, for all k = 2 . . . , n.

5 Without self-information: A UDM has no self-information if
for all decision makers α ∈ A, it holds that Iα ⊂ F(A− {α}).
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Common Knowledge in UDMs

The common knowledge for the tth decision maker in a
sequential UDM is defined as

Ct =
T∩

s=t
Is (3)

Coarsening property: Ct ⊂ It: immediate from definition.
Nestedness property: Ct ⊂ Ct+1: immediate from definition.
Common observations: There exist observations Z1, . . . ,ZT
with Zt taking values in a finite measurable space (Zt, 2Zt),
and Zt = ηt(ω,U1, . . . ,Ut−1) such that σ(Z1:t) = Ct.

See [Nayyar et al., IEEE Trans. Aut. Control, 2018]
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Category Theory

Unifying framework that revolutionized math over the past
50-60 years.
Instead of describing objects (e.g., sets), characterize their
interactions.
Functors map from one category to another (e.g.,
f : Top→ Grp).
Universal properties characterize an object uniquely up to
isomorphism
Natural transformations map between two functors
Yoneda lemma: fully faithful embedding of categorial objects
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Categories: Objects and Morphisms
A category C is

A collection of objects X,Y, . . .
A collection of morphisms f, g, . . ., where f : X→ Y is the
morphism whose domain is X and co-domain is Y.
For each pair of morphisms f, g, such that the co-domain of f
is the same as the domain of g, there is a composite
morphism g ◦ f, simply defined as the composition of g and f
(where f is applied first, followed by g), defined as gf : X→ Z.
Each object X has associated with it an identity morphism
1X : X→ X, whose composition with any other morphism
f : X→ Y is defined as 1Yf = f = f1X = f.
Associativity, whereby given morphisms
f : X→ Y, g : Y→ Z, h : Z→W, the composite morphism
hgf : X→W is associative.
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Examples of Categories

Set: Objects are sets, morphisms are mappings on sets.
Top: Topological spaces are objects, and continuous functions
as its morphisms.
Group: Groups are its objects, and group homomorphisms as
its morphisms.
Graph: Graphs are objects, and graph morphisms (mapping
vertices to vertices, preserving adjacency properties) as its
morphisms.
Poset: Partially ordered sets as its objects and
order-preserving functions as its morphisms.
Meas: Measurable spaces are its objects and measurable
functions as its morphisms.
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Categories vs. Sets

Set theory Category theory
set object

subset subobject
truth values {0, 1} subobject classifier Ω

power set P(A) = 2A power object P(A) = ΩA

bijection isomorphims
injection monic arrow
surjection epic arrow

singleton set {∗} terminal object 1
empty set ∅ initial object 0

elements of a set X morphism f : 1→ X
non-global element Y→ X

functors, nat. transformations,
limits, colimits, adjunctions
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MDPs form a Category

Objects are MDPs: 〈S,A,Ψ,P,R〉
S is a discrete set of states
A is the discrete set of actions
Ψ ⊂ S× A is the set of admissible state-action pairs
P : Ψ× S→ [0, 1] is the transition probability function
specifying the one-step dynamics of the model
R : Ψ→ R is the expected reward function
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MDP Homomorphisms

s t

s’ t’

P(., a)

P’(., a)

f f

Abstract MDP

Original MDP

Bisimulation
Morphism

s

s’

R(., a)

f R’(., a)

r
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MDP Homomorphisms

(s,a)
P

P’
(s’,a’) P’(s,a)

P(s,a) (s,a) r

(s’,a’)

hhh

R

R’
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MDP Homomorphisms [Ravindran and Barto]

An MDP homomorphism from MDP M = 〈S,A,Ψ,P,R〉 to
M′ = 〈S′,A′,Ψ′,P′,R′〉, denoted h : M ↠ M′, is defined by

A tuple of surjections 〈f, {gs|s ∈ S}〉
where f : S ↠ S′, gs : As ↠ A′

f(s)
h((s, a)) = 〈f(s), gs(a)〉, for s ∈ S
Stochastic substitution property and reward respecting
properties below are respected:

P′(f(s), gs(a), f(s′)) =
∑

s”∈[s′]f

P(s, a, s”) (4)

R′(f(s), gs(a)) = R(s, a) (5)
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Predictive State Representations

PSR (and earlier models, like multiplicity automata, observer
operator models etc.) form categories:

Finite set of actions A and observations O.
A history: sequence of actions and observations
h = a1o1 . . . akok.
A test: possible sequence of future actions and observations
t = a1o1 . . . anon.
P(t|h) is a prediction test t will succeed from history h.
State ψ: a vector of predictions of core tests {q1, . . . , qk}.
The prediction vector ψh = 〈P(q1|h) . . .P(qk|h)〉 is a sufficient
statistic. The entire predictive state of a PSR can be denoted
Ψ.
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PSR Homomorphisms [Soni et al., AAAI]

A PSR homomorphism from a PSR Ψ to another PSR Ψ′ is
defined as:

A tuple of surjections 〈f, vψ(a)〉
where f : Ψ→ Ψ′ and vψ : A→ A′ for all prediction vectors
ψ ∈ Ψ

such that

P(ψ′|f(ψ), vψ(a)) = P(f−1(ψ′)|ψ, a) (6)

for all ψ′ ∈ Ψ, ψ ∈ Ψ, a ∈ A.
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Bisimulation of Linear Dynamical Systems

We are given two linear dynamical systems Σi:

ẋi = Aixi + Biui + Gidi, xi ∈ Xi, ui ∈ U , di ∈ Di

yi = Cixi, yi ∈ Y, i = 1, 2

Bisimulation relation is a subspace R ⊂ X1 ×X2 s.t. :
(x1(0), x2(0)) ∈ R
Joint input function u1(.) = u2(.)
For every disturbance function d1(.), there exists a d2(.) s.t.
(x1(t), x2(t)) ∈ R, ∀t ≥ 0

C1x1(t) = C2x2(t), ∀t ≥ 0
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Category of UDMs
Objects are UDMs 〈A, (Ω,B,P), (Uα,Fα, Iα)α∈A〉.
Morphisms are bisimulation relationship between two UDMs
M = 〈A, (Ω,B, (Uα,Fα, Iα)α∈A and
M′ = 〈A′, (Ω′,B′, (U′

α,F ′
α, I ′α)α∈A′ , denoted as M ↠ M′, is

defined as is defined by a tuple of surjections as follows:
A surjection f : A ↠ A′ that maps decision points in A to
corresponding points in A′.
As f is surjective, it induces an equivalence class in A such that
x ∼ y, x, y ∈ A if and only if f(x) = f(y).
A surjection g : H ↠ H′, where H = Ω×

∏
α∈A Uα, with the

product σ-algebra B ⊗
∏

α∈A Fα, and H′ = Ω′ ⊗
∏

α∈A′ U′
α,

with the corresponding σ-algebra B′ ⊗
∏

α∈A′ F ′
α.

The quotient information field of a collection of agents [α]f
is defined as the join of the information fields of each agent:

I[α] =
∨

β∈[α]f

Iα (7)
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Sub UDMs form a Topology

A subset of decision makers B ⊂ A form a sub-UDM if for all
α ∈ B, Iα ⊂ F(B).
The sub-UDM 〈B, (Ω,B,P), (Uα,Fα, IαB)α∈B〉 has an
induced information subfield IαB, which is the canonical
projection of IB upon HB.
The closure of a decision maker α ∈ A in a UDM
〈A, (Ω,B,P), (Uα,Fα, Iα)α∈A〉 is the smallest sub-UDM
containing α, denoted by {α}.
The preorder relationship between decision makers, denoted
α← β is defined by the containment between the closure
sets, namely α← β if and only if {α} ⊂ {β}.
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UDM Subsystem Topology

Theorem: Sub-UDMs of a UDM 〈A, (Ω,B,P), (Uα,Fα, Iα)α∈A〉
induce a finite space topology on the space A of decision makers.
Proof:

Given two subsystems S1 and S2, if α ∈ S1 ∪ S2, then either
Iα ⊂ F(S1) or Iα ⊂ F(S2). It follows that
Iα ⊂ F(S1) ∪ F(S2) = F(S1 ∪ S2).
The proof for closure under intersection is similar.
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Covariant UDM Functors

A covariant functor F : C → D from UDM category C to category
D is defined as the following:

An object FX of the category D for each UDM object X in
category C.
A morphism F f : FX→ FY in category D for every
bisimulation morphism f : X→ Y in category C.
The preservation of identity and composition: F idX = idFX
and (Fg)(F f) = F(gf) for any composable morphisms
f : X→ Y, g : Y→ Z.
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Examples of Covariant UDM Functors

The “forgetful” functor F : CMDP → Set that maps an MDP
into its set of states S.
The “PVF” functor F : CMDP → Graph that maps an MDP
into an undirected graph over states S, with an undirected
edge between actual transitions.
The “Top” functor F : CMDP → Top that maps an MDP into
the category of topological spaces.
The “Grp” functor F : CMDP → Group that maps an MDP
into the category of groups.
The “Mod” functor F : CMDP →Modules that maps an
MDP into the category of modules.
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Contravariant UDM Functors

A contravariant UDM functor F : C → D from UDM
category C to category D is defined exactly like the covariant
UDM functor, except all the mappings are reversed.
Contravariant functor F : Cop → D, every bisimulation
morphism f : X→ Y is assigned the reverse morphism
F f : FY→ FX in category D.
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Functorial Representations of UDMs

For every UDM object X in UDM category C, there exists a
covariant functor C(X,−) : C → Set that assigns to each
UDM object Z in C the set of bisimulation morphisms C(X,Z),
and to each bisimulation morphism f : Y→ Z, the
pushforward mapping f∗ : C(X,Y)→ C(X,Z).
For every object X in UDM category C, there exists a
contravariant functor C(−,X) : Cop → Set that assigns to
each UDM object Z in C the set of bisimulation morphisms
C(X,Z), and to each bisimulation morphism f : Y→ Z, the
pullback mapping f∗ : C(Z,X)→ C(Y,X).
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Fully Faithful UDM Representations

Let F : C → D be a functor from UDM category C to category D.
If for all UDM objects X and Y in C, the map
C(X,Y)→ D(FX,FY), denoted as f 7→ F f is

injective, then the functor F is defined to be faithful.
surjective, then the functor F is defined to be full.
bijective, then the functor F is defined to be fully faithful.
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Natural Transformations in UDMs

Given two functors F ,G : C → D that map from UDM
category C to category D, a natural transformation
η : F =⇒ G consists of a morphism ηX : FX→ GX for each
object X in C.
For any two functors F ,G : C → D, let Nat(F ,G) denote the
natural transformations from F to G. If ηX : FX→ GX is an
isomorphism for each X in category C, then the natural
transformation η is called a natural isomorphism and F and
G are naturally isomorphic, denoted as F ∼= G.
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Quotients and Bisimulation morphisms
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Products and Limits
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Co-Products and Co-Limits
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Yoneda Lemma, Pre-Sheaf, and Topoi
UDM Yoneda Lemma: For every object X in UDM category C,
and every contravariant functor F : COp → Set, the set of natural
transformations from C(−,X) to F is isomorphic to FX.

One of the deepest results in category theory.
A pair of UDM objects are isomorphic X ∼= Y if and only if the
corresponding contravariant functors are isomorphic, namely
C(−,X) ∼= C(−,Y).
Given any two categories C,D, we can always define the new
category DC , whose objects are functors C → D, and whose
morphisms are natural transformations.
If we take D = Set, and consider the contravariant version
SetCOp, we obtain a category whose objects are presheafs.
Presheafs have some very nice properties, which makes them
a topos.
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Kan Extensions of UDMs

A left Kan extension of a functor H : C → E along F, another
functor F : C → D, is a functor LanFH : D → E with a natural
transformation η : H =⇒ LanFH ◦ F such that for any other such
pair (G : D → E , γ : H =⇒ G ◦ F), γ factors uniquely through η.
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UDM: Optimization to Equilibration
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Summary

We proposed Universal Decision Model (UDM)
Categorial generalization of Witsenhausen’s intrinsic model
Universal decision making objects: n-player games, MDPs,
PSRs, intrinsic models, ...
Morphisms: bisimulations across UDMs
Functors: Probe a UDM category by mapping it into a
different category
Yoneda lemma shows how to construct fully faithful UDM
embeddings

Draft paper coming soon on Arxiv and my UMass web page
(www.cics.umass.edu/ mahadeva)
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