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Abstract
We address the problem of finding a multiscale embedding
of documents from a given corpus. Our approach is based
on a recently introduced multiscale matrix analysis frame-
work called diffusion wavelets. Diffusion wavelets construct
the basis functions at each level of the hierarchy from a set
of orthogonal basis functions, typically the unit-vector bases.
Each set of basis functions at a given level is constructed from
the bases at the lower level by dilation using the dyadic pow-
ers of the matrix (powers of two). We first show that this
approach can automatically determine the number of levels
of the topical hierarchy of the corpora, as well as the topics
at each level. We then show that multiscale analysis of docu-
ment corpora can be achieved by studying the projections of
the documents onto the spaces spanned by basis functions at
different levels. Further, when the input term-term matrix is a
diffusion operator, our algorithm runs in time approximately
linear in the number of non-zero elements of the matrix. We
illustrate our approach with NIPS paper, 20 NewsGroups and
TDT2 data sets.

Introduction
The problem of analyzing text corpora has emerged as one of
the most active areas in data mining and machine learning.
The goal here is to extract succinct descriptions of the mem-
bers of a collection that enable efficient generalization and
further processing. Different from many other real world
data sets, the corpora of text documents always include the
concepts at multiple levels. Using NIPS paper data set as an
example, at the most abstract level, there are two main con-
cepts in the published papers: machine learning and neuro-
science. At the next level, there may be topics pertaining to a
number of areas, such as reinforcement learning, dimension-
ality reduction, etc. The key step to analyze the documents
at multiple levels is to find a multiscale embedding of the
documents. Such a problem can be formalized as follows:
given a collection of documents, each of which contains a
bag of words, can we discover more efficent representations
of the documents at multiple concept levels.
Topic models are an important tool to find concepts from

document corpora. They have been successfully used to an-
alyze large amounts of textual information for many tasks.
A topic could be thought as a multinomial word distribu-
tion learned from a collection of textual documents using ei-
ther linear algebra or statistical techniques. The words that

contribute more to each topic provide keywords that briefly
summarize the themes in the collection. The new representa-
tions of documents can be computed by projecting the origi-
nal documents onto the space (topic space) spanned by topic
vectors. Popularly used topic models include Latent Se-
mantic Indexing (LSI) (Deerwester et al. 1990) and Latent
Dirichlet Allocation(LDA) (Blei, Ng, & Jordan 2003). How-
ever, these models can only find concepts at one level. Re-
cently, several statistical approaches were proposed to find
topical hierarchies. One of them is hLDA (Blei et al. 2004).
Such new methods heavily depend on detailed prior infor-
mation, such as number of levels, number of topics. Infer-
ence in these graphical models is also generally intractable.
In this paper, we present a new model (Diffusion model)

to automatically find multiscale embeddings of documents
in a given corpus. Our method builds on recent work in har-
monic analysis, in particular diffusion wavelets (Coifman &
Maggioni 2006). Harmonic analysis is a well-studied area
of mathematics, which traditionally uses Fourier analysis in
continuous spaces. Recent work in harmonic analysis has
turned to wavelet methods, which produce a multiscale anal-
ysis of functions at many temporal and spatial levels. Dif-
fusion wavelets is a recent extension of wavelet methods to
functions on discrete spaces like graphs. Unlike classical
wavelets, in diffusion wavelets the basis functions at each
level of the hierarchy are constructed by dilation using the
dyadic powers of the matrix. The key strength of our ap-
proach is that it is completely data-driven, largely parameter-
free and can automatically determine the number of levels
of the topical hierarchy, as well as the topics at each level.
To our knowledge, none of the competing methods (either
parametric statistical approaches or linear algebra based) can
produce a multiscale analysis of this type. Further, when
the input term-term matrix is a diffusion operator, the al-
gorithm runs in time approximately linear in the number of
non-zero elements of the matrix. Different from the topic
vectors learned from another linear algebra based method
LSI, our topic vectors have local support. This is particu-
larly useful when the concept only involves a small group of
words. We achieve multiscale embeddings of document cor-
pora by projecting the documents onto such a hierarchical,
interpretable topic space.
Our approach is tested on three real world data

sets: the NIPS (1-12) full paper data set, which is



available at http://www.cs.toronto.edu/∼roweis/data.html,
the 20 NewsGroups data set, which is available at
http://people.csail.mit.edu/jrennie/20Newsgroups and the
TDT2 data set (http://projects.ldc.upenn.edu/TDT2). The
results show that our diffusion model can successfully iden-
tify the structure of the collection at multiple scales.

Learning Topic Spaces
Learning a topic space is in fact learning the topic vectors
spanning the concept space. In a collection of documents
(defined on a vocabulary with n terms), any document can
be represented as a vector in Rn, where each axis represents
a term. The ith element of the vector can be some function of
the number of times that the ith term occurs in the document.
There are several possible ways to define the function to be
used here (frequency, tf-idf, etc.), but the precise method
does not affect our results. In this paper, we assume A is
an n × m matrix whose rows represent terms and columns
represent documents.

Learning Topic Spaces using LDA
Latent Dirichlet Allocation (LDA) (Blei, Ng, & Jordan
2003) is a widely used probabilistic topic model and the ba-
sis for many variants. LDA treats each document as a mix-
ture of topics, where each topic is a distribution over words
in a vocabulary. To generate a document, LDA first samples
a per-document distribution over topics from a Dirichlet dis-
tribution, and then it samples a topic from the distribution
and a word from the topic. Documents in LDA are linked
only through a single Dirichlet prior, so the model makes no
attempt to find the distribution over topic mixtures. LDA is
a “flat” topic model.

Learning Topic Spaces using hLDA and others
The hLDA model (Blei et al. 2004) represents the distribu-
tion of topics within documents by organizing the topics into
a tree. Each document is generated by the topics along a path
of this tree. To learn the model from the data, we need to al-
ternately sample between choosing a new path through the
tree for each document and assigning each word in each doc-
ument a topic along the chosen path. In the hLDAmodel, the
quality of the distribution of topic mixtures depends on the
topic tree. To learn the structure of the tree, hLDA applies
a nested Chinese restaurant process (NCRP), which requires
two parameters: the number of levels of the tree and a pa-
rameter γ. When a document samples a path, at each node,
it chooses either an existing child of that node with prob-
ability proportional to the number of other documents that
have been assigned to that child, or a new child node with
probability proportional to γ. hLDA and some other meth-
ods can learn hierarchical topics, but they need detailed prior
information, such as number of levels, number of topics and
the performance of these models heavily depends on the pri-
ors. Inference in these graphical models is also generally
intractable, and typically a sampling based approach is used
to train these models, which is computationally expensive.

Learning Topic Spaces using LSI
Latent semantic indexing (LSI) (Deerwester et al. 1990) is
a well-known linear algebraic method to find topics in a text
corpus. The key idea is to map high-dimensional vectors to a
lower dimensional representation in a latent semantic space.
The goal of LSI is to find a mapping that provides informa-
tion that reveals semantical relations between the entities of
the interest. Let the singular values of A be δ1 ≥ · · · ≥ δr,
where r is the rank of A. The singular value decomposition
of A is A = UΣV T , where Σ = diag(δ1, · · · δr), U is an
n × r matrix whose columns are orthonormal, and V is an
m×r matrix whose columns are also orthonormal. LSI con-
structs a rank-k approximation of the matrix by keeping the
k largest singular values in the above decomposition, where
k is usually much smaller than r. More precisely, the best
rank-k approximation is given by Ak = UkΣkV T

k , and it
can be shown that this approximation has the smallest error
(w.r.t. Frobenius norm).
In LSI, the columns of ΣkV T

k are used to represent the
documents in a space spanned by the columns of Uk. The
space can be called LSI space of A. Each of the col-
umn vectors of Uk is related to a concept, and represents
a topic in the given collection of documents. The term-
term matrix AAT contains the dot product between any two
term vectors, and gives the correlation between terms over
the documents. From linear algebra, we know AAT =
(UΣV T )(UΣV T )T = UΣΣT UT , so the column vectors
of U (topic vectors) are exactly the eigenvectors of the term-
term matrix AAT . LSI is also a “flat” topic model, which
means it cannot find hierarchical topics.

Learning Topic Spaces using Diffusion Models
The term-term matrix AAT is a Gram matrix with non-
negative entries. Assume D is the diagonal matrix, whose
entry Dii is the sum of the entries on the i-th row of
AAT . We define the normalized term-term matrix T as
D−0.5AAT D−0.5. In fact, the normalized Laplacian oper-
ator associated with AAT is L = I − T (Chung 2005). The
Laplacian matrix has become a cornerstone of recent meth-
ods in machine learning, in areas ranging from clustering,
semi-supervised learning and dimensionality reduction.
Instead of learning the eigenvectors of T as what LSI

does, our diffusion model learns the diffusion scaling func-
tions of T with diffusion wavelets (Coifman & Maggioni
2006). This process can be interpreted geometrically as pro-
jecting data to lower dimensional space by using the scal-
ing functions while preserving the large scale information
which is inherent in the data. The method provides a mul-
tiscale embedding, which means it automatically reveals the
geometric structure of the data at different scales.
The subspace spanned by diffusion scaling functions from

T is exactly the subspace spanned by certain eigenvectors of
T (with biggest eigenvalues) up to a precision ε (Coifman &
Maggioni 2006). However, the diffusion scaling functions
are multiscale basis functions, with local support and can be
computed very efficiently. These properties make our dif-
fusion model very powerful and flexible in the application
of text mining. Detailed description of our method is in the
section of “The Main Algorithm”.



Finding a Multiscale Embedding of the
Documents from a Corpus

If a topic space S is spanned by a set of r topic vectors,
we write the set as S = (t(1), · · · , t(r)), where topic t(i)
is a column vector (t(i)1, t(i)2 · · · , t(i)n)T . Here n is the
size of the vocabulary set, ‖t(i)‖ = 1 and the value of t(i)j

represents the contribution of term j to t(i). Obviously, S is
an n × r matrix. We know the term-document matrix A (an
n × m matrix) models the corpus, where m is the number
of the documents and columns of A represent documents in
the “term” space. The low dimensional embedding of A in
the “topic” space S is then ATopic = (AT S)T . ATopic is a
r×mmatrix, whose columns are the new representations of
documents in S.
Our diffusion model returns us with the topics at multi-

ple scales, so we can compute a multiscale embedding of
the documents. The new representation of the documents at
a particular scale may significantly compress the data pre-
serving the most useful information at that scale. Since all
the topics are interpretable, we may read the topics at differ-
ent scales and select the best scale for embedding. At one
scale, we can look which topic is more relevant to our task
and skip the non-useful topics. Our diffusion model based
multiscale embedding method provides a very powerful tool
to analyze the document corpora and will be quite useful for
classification, information retrieval, clustering, etc. Later,
we will show that it is also efficient.

The Main Algorithm
The Algorithmic Procedure
Assume the term-document matrix A is already given. The
algorithmic procedure is stated below:

1. Constructing the normalized term-term matrix T :
T = D−0.5AAT D−0.5, whereD is the diagonal matrix, whose
entryDii is the sum of the entries on the i-th row of AAT .

2. Generating Diffusion Models:
{φj , ψj} = DWT (T, I, QR, J, ε).

• I is an identify matrix; J is the max step number; ε is the
desired precision.

• QR is a modified QR decomposition (Coifman & Maggioni
2006).

• φj : diffusion scaling functions at level j.
• ψj : wavelet functions at level j.

3. Computing the extended basis functions:
[φj ]φ0 , the representation of the basis functions at level j in
the original space, is computed as follows:
[φj ]φ0 = [φj ]φj−1 [φj−1]φj−2 · · · [φ1]φ0 [φ0]φ0 .

• [φj ]φ0 is a n × nj matrix. Each column vector represents a
topic at level j. Entry k on the column vector shows term k’s
contribution to this topic.

4. Computing multiscale embeddings of the corpora:
At scale j, the embedding of A is (AT [φj ]φ0)

T .

{φj , ψj} = DWT (T, φ0, QR, J, ε)

//φj : “Scaling” basis functions at scale j.
//ψj : “Wavelet” basis functions at scale j.
//QR: A function computing a sparse QR decomposition.
//J : Max number of steps to compute.
//ε: Precision.

For j = 0 to J − 1
{

([φj+1]φj , [T
2j

]
φj+1
φj

) ← QR([T 2j
]
φj

φj
, ε);

[T 2j+1
]
φj+1
φj+1

= ([T 2j
]
φj+1
φj

)([T 2j
]
φj+1
φj

)T ;
[ψj ]φj ← QR(I < φj > −[φj+1]φj [φj+1]

∗
φj

, ε);
}

Figure 1: TheDWT Procedure. J can be omitted, since the
representation of T will converge to a value at some level,
and the construction will stop there.

The DWT Procedure
In our diffusion model, diffusion wavelets are used to com-
pute multiscale basis functions, where basis functions at
longer time scales can be represented in a “compressed”
manner with respect to lower-level basis functions. The al-
gorithm assumes the given matrices to be diffusion oper-
ators, which means they are sparse and their high powers
have low numerical rank. In many applications, the normal-
ized term-term matrix T is already a diffusion operator. If
it is not, we can convert it to such a matrix. The procedure
is very simple. The basic idea is that for each term in the
collection, we only consider its most relevant k terms, since
the relationships between terms that co-occur many times
are more important. The same technique has been popularly
used in manifold learning to generate the relationship graph
from the given data examples. The algorithm is to keep the
top k entries in each row of T , and set all the other entries to
zero. The resulting matrix is not symmetric, so we need to
symmetrize it in the end. Using diffusion wavelets to learn
the compressed basis functions at multiple scales is shown
in Figure 1. It is in fact a combination of a modified QR
decomposition and multiscale representations.
We use the notation [T ]φb

φa
to indicate the matrix repre-

senting T with respect to the basis φa in the domain and
φb in the range. We use the notation [φb]φa for basis func-
tions of φb represented on basis functions φa. Assume at an
arbitrary scale i, we have ni basis functions, and length of
each function is li, then [T ]φb

φa
is a nb × la matrix, [φb]φa

is a la × nb matrix. The scaling function [φj ]φj−1 plays a
major role in this paper since it provides a mapping between
the data on large scale space and small scale space. We can
represent basis functions at level j in terms of the basis func-
tions at the next lower level (Coifman &Maggioni 2006). In
this manner, the extended basis functions can be expressed
in terms of the original bases as [φj ]φ0 = [φj ]φj−1 [φj−1]φ0 ,
so we can compute [φj ]φ0 using
[φj ]φ0 = [φj ]φj−1 [φj−1]φj−2 · · · [φ1]φ0 [φ0]φ0 . Each ele-
ment on the right hand side of the equation is created in



the DWT procedure. The elements in [φj ]φ0 are usually
much coarser and smoother than the initial elements in φ0,
which is why they can be represented in compressed form.
Given [φj ]φ0 , any function on the compressed large scale
space can be extended naturally to the original space or
vice versa. The connection between any vector in the orig-
inal space and its compressed representation at scale j is
v[φj ] = ([φj ]φ0)′v[φ0].
Interestingly, computation of such basis functions could

be done in approximately linear time, when T is a diffusion
operator (Maggioni & Mahadevan 2006). This main idea
for the proof is that each example is related to only a small
number of other elements, creating a graph with a “small”
degree in which transitions are allowed only among neigh-
boring points. The spectrum of such transition matrices de-
cay rapidly. This result is in contrast to the time needed to
compute eigenvectors, which is O(kn2).
The general idea of the DWT procedure is as follows: the

original matrix T represents the one step transition proba-
bility between data points (“terms” for our case). The QR
subroutine is a Gram-Schmidt orthogonalization routine that
finds the QR decomposition up to precision ε (at scale j),
while filtering out the “high frequency” information which
is usually “noise”. Then we learn the basis functions from
the new matrix. We usually have a smaller number of ba-
sis functions to characterize the new matrix, since a lot of
high frequency information has already been filtered out. We
use the low frequency information to compute the two time
step transition from T 2j resulting in a new representation of
T 2j+1 at the next level. The matrix of T can be thought as
a transition matrix, and the probability of transition from x
to y in j time steps is given by T j(x, y). So the procedure
described in Figure 1 is equivalent to running the Markov
chain forward in time and allows us to integrate the local ge-
ometry and therefore reveal the relevant geometric structures
of data at different scales. At scale j, the representation of
T 2j is compressed based on the amount of remaining infor-
mation and the precision we want to keep.

Comparison to Other Methods
As shown in Figure 1, the spaces at different levels are
spanned by a different number of basis functions. These
numbers reveal the dimensions of the relevant geometric
structures of data at different levels. These numbers are
completely data-driven, our approach can automatically find
such numbers and simultaneously generate the topics at each
level. In fact, once the term-document matrix A is given,
users only need to specify one parameter ε – the precision.
If the users do not want to specify even this one parame-
ter, we can simply compute the average of the non-zero en-
tries on the normalized term-term matrix T , and then take its
product with a small number like 10−5 to get ε. So our ap-
proach is essentially parameter free. To our knowledge, no
other method (either probabilistic or linear algebra based)
can simultaneously find both the number of levels and the
topics at each level in such a straightforward manner. Prior
knowledge might be quite useful for some applications. One
way to include such information in our model is to modify

the term-document matrix A by considering such prior in-
formation.
Learning hierarchical topics could be done in almost lin-

ear time, when T is a diffusion operator (Maggioni & Ma-
hadevan 2006). The main idea is that most examples defined
in the diffusion operator have “small” degrees in which tran-
sitions are allowed only among neighboring points, and the
spectrum of the transition matrix decays rapidly. This result
is in contrast to the time needed to compute k eigenvectors,
which is O(kn2).
The space spanned by topic vectors from diffusion models

are the same as the space spanned by some LSI topic vec-
tors up to a precision ε. However, the topic vectors (in fact
eigenvectors) from LSI have a potential drawback that they
detect only global smoothness, and may poorly model the
concept/topic which is not globally smooth but only piece-
wise smooth, or with different smoothness in different re-
gions. Unlike the “globalness” nature of eigenvectors, our
topic vectors are local. This can better capture some con-
cepts/topics that only involve a particular group of words.
Experiments show that most diffusion model based topics
are interpretable, such that we can interpret the topics at dif-
ferent scales and select the best scale for embedding. Fur-
ther, at the selected scale, we can check which topic is more
relevant to our application and skip the non-useful topics. In
contrast, many LSI topics are not interpretable.
The complexity of generating a diffusion model mostly

depends on the size of the vocabulary set in the corpus, but
not the number of the documents, or the number of the to-
kens. We know no matter how big the corpus is, the size
of the vocabulary set is determined, and we can always set
a threshold to filter out the terms that only appear a small
number of times. So our approach should be able to handle
a very large data set.

Experimental Results
In this section, we describe the results of our diffusion model
to corpora multiscale analysis with three real world data sets.
We use the NIPS paper data set to show what our multiscale
topics look like, and how to interpret these topics. We use
the 20 NewsGroups data and TDT2 data to show the multi-
scale embeddings of the corpora.
Since our model is parameter-free, we do not need any

special settings. The precision we used for all these exper-
iments was 10−5. One problem that is important but we
have not addressed so far is how to interpret topics learned
from our diffusion models. For any given topic vector v, we
know it is a column vector of length n, where n is the size
of the vocabulary set and ‖v‖ = 1. The entry v[i] represents
the contribution of term i to this topic. To explain the main
concept of topic v, we sort the entries on v and print out
the terms corresponding to the top 10 entries. These terms
should summarize the topics in the collection.

NIPS Paper
We generated hierarchical topics from the NIPS paper data
set, which includes 1,740 papers. The original vocabulary
set has 13,649 terms. The corpus has 2,301,375 tokens in



Table 1: Number of Topics at Different Levels (Diffusion
Model, NIPS)

Level Number of Topics
1 3413
2 1739
3 1052
4 37
5 2

total. We filtered out the terms that appear≤ 100 times in the
corpus, and only 3,413 terms were kept. The collection did
not change too much. The number of the remaining tokens
was 2,003,017. For comparison purpose, we also tested LSI
and LDA using the same data set.

DiffusionModel Our diffusion model identifies 5 levels of
topics, and the number of the topics at each level is shown
in Table 1. At the first level, each column in T is treated
as a topic. At the second level, the number of the columns
is almost the same as the rank of T . At level 4, number of
topics goes down to a reasonable number 37. Finally at level
5, the number of topics is 2. The 2 topics at level 5 are “net-
work, learning, model, neural, input, data, time, function,
figure, set” and “cells, cell, neurons, firing, cortex, synap-
tic, visual, stimulus, cortical, neuron”. Obviously, the first
is about machine learning, while the second is about neuro-
science. These two topics are exactly the real topics at the
highest level of NIPS. The 37 topics at level 4 are shown
in Table 2. Almost all these topics look good. They nicely
capture the function words.

LSI We test LSI on the same data set. LSI computes “flat”
topics only, so we compare the top 37 LSI topics to the re-
sults from our Diffusion model. The LSI topics (not shown
here) look much worse. The reason is the diffusion model
based topics are with local support, while LSI topics are
“global smooth”. Even though such vectors are spanning
the same space, they look quite different. “Local support”
is particularly important to represent a concept that only in-
volve a small number of words in document corpora.

LDA We also test LDA on this data set. To use LDA, we
need to specify the number of topics. In this test, we tried
two numbers: 2 and 37. When topic number is 2, the two
topics are “model, network, input, figure, time, system, neu-
ral, neurons, output, image” and “learning, data, training,
network, set, function, networks, algorithm, neural, error”.
They do not cover neuroscience, which is covered by our
diffusion model. Given the space constraint, we did not list
the 37 LDA topics (most of them also look good). Again, to
use LDA, users need to specify the number of topics, but in
diffusion model, we automatically learn this number.

Empirical Evaluation of Time Complexity Given the
collection with 2,003,017 tokens, our diffusion model needs
roughly 15 minutes (2G PC with 2G memory) to do the mul-
tiscale analysis. This includes data preparation, construction
of the diffusion model and computing topic vectors at all 5
levels. In contrast, we need about 4 and 6 minutes to com-
pute 37 topics using LSI and LDA on the same machine.
LSI and LDA only computes “flat” topics, but not topics at

multiple levels, and they do not need to explore the intrinsic
structure of the data set, so they are doing something much
simpler. We did not test hLDA in this paper, because it needs
a few days but not a few minutes for a problem like this.

20 NewsGroups
The 20 NewsGroups data set is a popular data set for ex-
periments in text applications. The version that we are us-
ing is a collection of 18,774 documents (11,269 for train-
ing, 7,505 for testing), partitioned evenly across 20 different
newsgroups, each corresponding to a different topic. Some
of the newsgroups are very closely related to each other,
while others are highly unrelated. The data set has 61,188
terms in the vocabulary set (stop words are not removed) and
nearly 2,500,000 tokens. We filtered out the terms that ap-
pear ≤ 100 times in the training set, and only 2,993 terms
were kept.
Using the training data, our diffusion model identifies 5

levels of topics, and the number of topics at each level is:
2993, 2992, 589, 29 and 1. Since 29 is the closest number to
the real topic number 20, we pick up level 4 for further anal-
ysis. We find 3 of the 29 topics are related to stop words.
For example, the top 10 words of one such topic are: “the,
to, of, and, in, is, that, it, for, you”. The remaining 26 topics
cover almost all 20 known topics. For example, the topic
“probe, mars, lunar, moon, missions, surface, jupiter, plane-
tary, orbit, planet” corresponds to topic “space”. LDA and
LSI were also tested. For LDA, we tried two topic numbers:
20 and 29. The number of 29 returned a better result. The
LDA topics do not look as good as the topics from the dif-
fusion model. Stop words always dominate the top words of
each topic. For example, the topic “the, and, of, to, for, key,
space, on, in, by” might be related to topic “space”, but most
of the top words are stop words. The LSI topics do not look
good either. For many applications, LSI topics might span a
good concept space, but they are hard to interpret.
To compare the low dimensional embeddings from Diffu-

sion model, LSI and LDA. We run a kNNmethod to classify
the test documents. We first represent all the documents in
the topic space using the 29 topics learned from the training
set. For each test document, we compute the similarity (dot
product) of it and all the training documents. For each news
group, we consider the top k most similar documents to the
test document. The label of the group with the largest sum
of such similarities is used to label the test document. Since
3 topics returned by our diffusion model are related to stop
words, we also ran a test using the remaining 26 topics. We
tried different k in the experiment and the results are shown
in Figure 2. From the figure, it is clear that the embeddings
coming from Diffusion model (29 topics) and LSI are simi-
lar. Both of them are better than the embedding from LDA.
It is also shown that filtering out the non-relevant topics can
improve the performance. The LSI topics are hard to inter-
pret, so we can not filter any of them out.

TDT2
The TDT2 corpus consists of data collected during the
first half of 1998 and taken from 6 sources, including 2
newswires (APW, NYT), 2 radio programs (VOA, PRI) and
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2 television programs (CNN, ABC). It consists of more than
10,000 documents which are classified into 96 semantic cat-
egories. In the data set we are using, the documents that
appearing in more than one category were removed, and
only the largest 30 categories were kept, thus leaving us with
9,394 documents in total. Using the same procedure shown
in the other tests, we identified a 5 level hierarchy (topic
number at each level is: 2800, 2793, 287, 17, 2). To better
understand what the embeddings look like, we project the
documents onto a 3D space spanned by three topic vectors
from each model (Diffusion model: top 3 topic vectors at
level 4; LDA: all topics when topic number =3; LSI: top 3
topic vectors). In this test, we plot the documents from cate-
gory 1-7 (nearly 7,000 documents in total) and each color
represents one category. The diffusion model returns the
best embedding (Figure 4). We also run a leave one out test
with kNN method (as described in the 20 NewsGroups test)
to classify each document in the collection. The results are
in Figure 3. It is also clear that the embedding from the dif-
fusion model is always the best compared to LSI and LDA.

Conclusions
In this paper, we propose a diffusion model to analyze the
given corpus of text documents at multiple scales. Experi-

Figure 4: 3D embedding of TDT2 (Diffusion Model)

Table 2: All 37 Topics (Level 4, Diffusion Model, NIPS)
Top 10 Terms

network learning model neural input data time function figure set
cells cell neurons firing cortex synaptic visual cortical stimulus response
policy state action reinforcement actions learning reward mdp agent sutton
mouse chain proteins region heavy receptor protein alpha human domains

distribution data gaussian density bayesian kernel posterior likelihood em regression
chip circuit analog voltage vlsi transistor charge circuits gate cmos
image motion images object eye visual velocity chip vision face

speech hmm word speaker phonetic recognition spike markov mixture acoustic
iiii border iii texture ill bars suppression ground bar contextual

face facial images faces image tangent spike object views similarity
adaboost margin boosting classifiers head classifier hypothesis training svm motion
dominance ocular orientation cortical development bands lgn lateral striate cortex
stress syllable song heavy linguistic vowel languages primary harmony language
motor control muscle arm controller inverse movement iiii trajectory kawato

hint hints monotonicity mostafa abu market schedules trading financial monotonic
sound auditory localization spectral sounds cochlear cue cues eeg frequency
obs obd pruning hessian stork retraining pruned weight weights stress
routing traffic load shortest paths route path node message recovery
spike spikes motion trains noise rate stress spiking time timing

tangent distance prototypes simard transformations euclidean rotation character vectors
eeg ica artifacts locked blind sources separation component components independent
clause phrase parsing sentences obs parse query documents sentence harmony
obs theorem threshold gates maass polynomial bounds functions rational face

instructions instruction scheduling schedule dec blocks execution schedules block processor
student teacher overlaps queries saad face biases generalization facial documents

vor head vestibular eye reflex cerebellum ocular spike velocity gain
oscillators oscillator oscillatory obs oscillation oscillations synchronization phase coupling wang

harmony tree smolensky parse trees student legal grammar child tensor
actor critic pendulum tsitsiklis pole barto harmony signature routing instructions
documents query document retrieval queries words relevant collection text ranking
classifier classifiers clause knn rbf tree nearest neighbor centers classification

stack symbol strings grammars string grammar automata grammatical automaton giles
song template production kohonen syllable pathway harmonic nucleus lesions motor

rat head place direction spike navigation dominance food card sharp
som gtm latent date map organizing parity kohonen manifold quantization
hme experts expert tangent gating growing tree mixtures jacobs distance

object views objects eeg adaboost view edelman instantiation viewpoint rigid

ments show that our model can successfully extract hierar-
chical regularities at multiple levels, which form semanti-
cally meaningful topics and such topics further help us find
the multiscale embeddings of the corpora.
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