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Abstract

Partially Observable Markov Decision Processes
(POMDPs) are a well-established and rigorous frame-
work for sequential decision-making under uncertainty.
POMDPs are well-known to be intractable to solve
exactly, and there has been significant work on finding
tractable approximation methods. One well-studied ap-
proach is to find a compression of the original POMDP
by projecting the belief states to a lower-dimensional
space. We present a novel dimensionality reduction
method for POMDPs based on locality preserving
non-negative matrix factorization. Unlike previous
approaches, such as Krylov compression and regular
non-negative matrix factorization, our approach pre-
serves the local geometry of the belief space manifold.
We present results on standard benchmark POMDPs
showing improved performance over previously
explored compression algorithms for POMDPs.

Introduction

Partially Observable Markov Decision Processes (POMDPs)
provide a rigorous mathematical framework for sequential
decision making under uncertainty (Smallwood and Sondik
1973). A POMDP formalizes how agents can act optimally
in the presence of noisy observations and stochastic actions.
Due to partial observability, an agent can use belief states
or probability distributions over the true states S of the
POMDP to represent the history of past observations and
actions. Belief states constitute a sufficient statistic, in that
they are Markov and allow the agent to predict next belief
states from the current one. This property allows formu-
lating the problem of solving a POMDP as an |S| — 1 di-
mensional continuous belief state Markov Decision Process.
The dimensionality of the belief space makes the problem
computationally intractable. The computational complexity
of optimally solving a POMDP in the finite-horizon setting

with ¢ steps lookahead can be shown to be O(dfll) (Cassan-
dra 1998), where Z is the set of possible observations and ¢;
is the space complexity of the value function at the i*" iter-
ation. The space complexity of representing a value func-
tion gets worse as the belief space dimensionality increases.

There have also been results showing that some POMDPs
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can be intrinsically hard to approximate to within a constant
factor (Lusena, Goldsmith, and Mundhenk 2001). Despite
this result, there has been significant progress on approxima-
tion algorithms for solving POMDPs, such as point-based
value iteration (PBVI) (Pineau, Gordon, and Thrun 2006;
Spaan and Vlassis 2005). There has also been theoretical
work to explain the apparent successes of PBVI-based meth-
ods (Hsu, Lee, and Rong 2007) in terms of covering num-
bers, the number of e-sized balls needed to cover the be-
lief space. Essentially, approximately optimal solutions to
POMDPs can be computed in time polynomial in the cover-
ing number.

Dimensionality reduction in POMDPs can be achieved by
belief compression, which projects the high-dimensional be-
lief space to a lower-dimensional one, thereby reducing the
policy computation time, while taking care to not signifi-
cantly degrade the quality of the policy. When dimension-
ality reduction is done in a linear fashion, then one can pro-
duce a low dimensional POMDP model and use most exist-
ing policy computation algorithms for POMDPs. Two ap-
proaches in the literature to linear dimensionality reduction
include Krylov bases (Poupart and Boutilier 2002) and or-
thogonal non-negative matrix factorization (ONMF) (Li et
al. 2007). While the first approach computes a low dimen-
sional subspace by solving a set of linear programs, the sec-
ond approach uses non-negative matrix factorization over a
sample of belief points.

In this paper, we extend the NMF approach with an ad-
ditional locality preserving constraint, which requires that
if two points are geometrically close in the original space
they should also be geometrically close in the reduced space.
Our idea to preserve locality is motivated by the fact that
in the finite-horizon setting, POMDP value functions are
piecewise-linear and convex, whereas in the infinite-horizon
setting, POMDP value functions are convex. Indeed, an im-
portant property of POMDP value functions is that they sat-
isfy a Lipschitz continuity property over the belief space:
specifically, if two belief states are within ¢ of each other
(in Ly distance), then the optimal value function changes
by at most J times a constant factor (which is Ii’jif) (Hsu,
Lee, and Rong 2007). Therefore, a reduction that preserves
the locality of points should be able to better capture the
original value function on the uncompressed space. To im-
plement our approach we apply a newly proposed algorithm




called locality preserving non-negative matrix factorization
(LPNMF) (Cai et al. 2009). This approach uses a graph
Laplacian on the sampled (belief) space as a regularizer to
enforce locality preservation of the embedding. Nonlinear
dimensionality reduction methods based on the graph Lapla-
cian have been widely explored in machine learning (Belkin
and Niyogi 2003), but this approach has not been studied
in the context of POMDPs, to the best of our knowledge.
We validate LPNMF on a set of benchmark problems and
demonstrate significantly better compression than the previ-
ously studied ONMF approach.

Here is a roadmap to the remainder of the paper. First,
we give an overview of POMDPs and describe linear di-
mensionality reduction methods. Subsequently, we discuss
non-negative matrix factorization methods, and specifically
describe the locality preserving NMF method. We then de-
scribe how this approach is used to solve POMDPs. Finally
we present our experimental results, and conclude with a
discussion of future work.

Review of POMDPs

Partially observable Markov decision processes (POMDPs)
provide a rigorous mathematical framework for planning
under uncertainty in both actions and observations (Kael-
bling, Littman, and Cassandra 1998; Smallwood and Sondik
1973; 1978). A POMDP is defined as a six tuple
(S, A, Z,T,0, R), where S is a set of states, A is a set of
actions, Z is a set of observations, 7" is a stochastic transi-
tion function, O is the stochastic observation function, and
R the reward function. At each discrete time step, the en-
vironment is in some state s € S; an agent takes action
a € A from which it receives a reward R(s,a). As a con-
sequence, the environment transitions to state § € S with
probability P($|s,a) = T(s,a,$), and the agent observes
z € Z with probability P(z|$,a) = O($,a,z). The goal
of POMDP planning is to find a policy that, based upon the
previous sequence of actions and observations, chooses ac-
tions that maximize the expected discounted sum of rewards
oo oV R(st, ar), where v € [0, 1) is a discount factor.

In a POMDP the states are not observed directly. Instead
the agent maintains an internal belief state b, defined as the
probability distribution over states given past actions and ob-
servations. It is well known that the belief state is a suffi-
cient statistic for a given history of actions and observations
(Smallwood and Sondik 1973), and it is updated at each time
step by incorporating the latest action and observation via
Bayes rule:

b () = O(8,a,2) Y ,csT(s,a,8)b(s) .
@ Yoies 0(3,a,2) 3 s T(s,a,$)b(s)’

where b2 denotes the belief state updated from b by taking
action a and observing z.

The dynamic behavior of the belief state is itself a
discrete-time continuous-state Markov process (Smallwood
and Sondik 1973), and a POMDP can be recast as a com-
pletely observable MDP with a (|.S| — 1)-dimensional con-
tinuous state space. Based on these properties, several
exact algorithms (Cassandra, Littman, and Zhang 1997;
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Kaelbling, Littman, and Cassandra 1998) have been devel-
oped. However, because of the exponential worst-case com-
plexity (Lusena, Goldsmith, and Mundhenk 2001), these al-
gorithms typically are limited to solving small problems.

Point-based Value Iteration

The poor scalability of exact algorithms has led to the de-
velopment of an approximate solution method called Point
Based Value Iteration (PBVI) (Pineau, Gordon, and Thrun
2006; Spaan and Vlassis 2005). Unlike exact algorithms,
which plan over the entire belief simplex, PBVI algorithms
approximate the exact solution by planning only over a fi-
nite set of belief points B. They utilize the fact that most
practical POMDP problems assume an initial belief by, and
concentrate planning resources on regions of the simplex
that are reachable from by. Based on this idea, Pineau et
al. (2006) proposed a PBVI algorithm that first collects a fi-
nite set of belief points B by forward simulating the POMDP
model. The algorithm then computes over those belief states
aset I' of a vectors that represent the POMDP solution. Fig-
ure 1 describes how the point-based backup operation com-
putes an « vector for every belief state b. During execution,
for a given belief state b, a POMDP agent chooses the action
a such that a = arg max,,, o - b.

Inputs:
I', current set of o vectors
B, set of sampled belief states
Algorithm:
for eachb € B
of = argmaxger o - b2, foreverya € A,z € Z
aq(s) = R(s,a) + v, ;T(s,a,$)0(5,a,2)ai(5)
& = argmaxq, 0 - b
ifd ¢TI, then] —I'+ &, end
end
Output:

f‘, new set of alpha vectors

Figure 1: Point-based backup of the PBVI algorithm

Linear Dimensionality Reduction in POMDPs

Coupled with the idea of approximately solving a POMDP
using a point-based method, we can further simplify the
problem of solving a POMDP by seeking to compress the
belief space reachable from the initial state. Thus, approxi-
mation methods such as PBVI can be accelerated since their
complexity depends on the belief space dimensionality of
the underlying POMDP model. An important constraint in
dimensionality reduction is to focus the power of approx-
imation on high-value states, that is to construct a value-
directed compression method (Poupart and Boutilier 2002).
A linear variant of value-directed compression is defined by
a linear transformation matrix ' of size d x [, where d is the



original dimensionality of the POMDP belief space, and [ is
the reduced one.

In lossless dimensionally reduction, the value function
of a policy at any state in the reduced space should be
equal to the value of the corresponding state in the uncom-
pressed space. For lossless linear dimensionality reduction,
the following two equations need to be satisfied (Poupart and
Boutilier 2002; Li et al. 2007):

R=F-R )

G»* . F=F-G%* Va,z, (3)

where the transition function G is defined for every action a
and observation z as:

Gi7 =T(si,a,5;)0(s),a,2).

Defining F'' as the pseudo inverse of F, we can use Equa-
tions 2 and 3 to compute the compressed reward and transi-
tion functions as: ~

R=F"-R )

G=F".G-F 5)

When these equations are satisfied, F' provides a new ba-
sis that provides a compressed representation of the value
function. The columns of F' span a subspace containing the
reward function, which is invariant with respect to the transi-
tion matrix. These properties in effect generate two paths for
simulating the POMDP, as shown in Figure 2: first compress
the belief state, and then compute the next belief state, or al-
ternatively, compute the next belief state and then compress
1t.

Figure 2: The figure shows two different paths for getting

to an unnormalized belief state IN)tH from an unnormalized
belief state b;.

Once a linear compression matrix has been found, the
POMDP can be solved by running the point-based value iter-
ation algorithm in Figure 1 on the compressed POMDP. The
belief set B to be used with the algorithm is projected from
the original space as B = B - F'. Once the reduced POMDP
is solved and an & solution is computed, we can execute
the policy in the original POMDP by choosing actions such
as @ = argmaxg, O, - b - F. Poupart and Boutilier (2002)
show that such an I’ can be thought of as the minimal Krylov

subspace, which is invariant with respect to F’ and contains
R. Computing the Krylov subspace that achieves a speci-
fied amount of lossy compression can be time consuming,
involving a large number of linear programming problems.

An alternative to computing the minimal Krylov space
was proposed in (Li et al. 2007), using a novel orthogo-
nal non-negative matrix factorization algorithm to compute
FT. Non-negative matrix factorization (NMF) is a technique
to factorize a matrix X into two non-negative matrices, U
and V, such that X ~ U - VT (Lee and Seung 2001). The
factorization can either be done to minimize the Euclidean
distance between the points in the reconstructed and original
space or to minimize the KL-divergence.

The ONMF approach described in (Li et al. 2007) first
samples a set of n belief points and stores them in a matrix
B of dimensions n x d. Then, the ONMEF algorithm is used
to factor

BT = (FH)T . BT, (6)

This directly gives the pseudo inverse F'T, which can be
used to estimate R in Equation 4. In addition, the al-
gorithm enforces that the matrix is orthogonal, such that
(FHT . FT = I. Having an orthogonal reduction makes
it trivial to compute F' = (FT)7.

Review of Non-negative Matrix Factorization

Non-negative matrix factorization (Lee and Seung 1999) is a
dimensionality reduction method that decomposes data ma-
trices whose elements are non-negative into a product of
lower-rank non-negative matrices. This type of decomposi-
tion provides an intuitively more meaningful “parts-of” de-
composition compared with other approaches that generate
decompositions with negatively valued elements. In partic-
ular, since the space of belief states consists of non-negative
vectors, NNMF seems an appropriate method to use. Given
a data matrix X = [z; ;] € R™*", where there are n points
of dimensionality m, NMF aims to find two non-negative
matrices U = [u; ;] € R™*" and V = [v; 5] € R™** which
minimize the following objective function:

0= ii <:L” log v

i=1 j=1 Yi,

L —mij+ y1j> o (D
J

where Y = [y; ;] = U - V™. The above objective function is
lower bounded by zero, and vanishes if and only if X =Y.
Also it is convex in U only or V' only, but not both variables
together. Therefore it is difficult to design an efficient algo-
rithm to find the global minimum of O. Lee and Seung (Lee
and Seung 2001) proved that the iterative updating of Equa-
tions 8 and 9 converges at a local minimum of the objective
function:

22 (@ijvik)/ Dk (Wi kvj k)
Zj Vs, k

> (@i i)/ 305 (Ui kv k)
Zj Uik )

®)

Uik < Uik
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Vij < Uik



Locality Preserving NMF

To preserve the Lipschitz continuity property of POMDP
value functions over the belief space, belief states that are
close to each other should ideally be embedded in the lower-
dimensional space close to each other as well. Although
NMF by itself does not enforce such a constraint, it is pos-
sible to design a hybrid algorithm that combines the idea
of non-negative matrix factorization and locality preserving
projections (Cai et al. 2009). In the standard NMF the goal
is to find a basis that is optimized for the linear approxi-
mation of the data. In the locality preserving NMF (LP-
NMF) approach, the optimization ensures that if two points
are geometrically close in the original space, then they are
also geometrically close in the projected space. Specifically,
given a data matrix X = [z;;] € R™*", LPNMF aims
to find two non-negative matrices U = [u; ;] € ™! and
V = [v;] € R"** which minimize the following objective
function:

0= ii (m” log z

i
i=1 j=1 Yi,

Jl — x5+ yi,j> + AR;

J

where A is the regularization parameter. While the first part
is the standard NMF optimization objective for minimiz-
ing KL-divergence between the original points X and re-
constructed points Y, the R term is a constraint to ensure
that geometrical locality holds over the reduced points in V.

Specifically:
) Wiss

1 n t
R = 3 Z Z (Uj,k log
jys=1k=1
where W is the weight matrix between the points in the orig-
inal space X. Intuitively, minimizing 'R means that two
points which are close together in the original space (i.e.
W; s is large), they will also be close in the reduced space.
The following multiplicative algorithm can be used to mini-
mize O and estimate the matrices U and V:

> @i jvik)/ Dk (Wi kvj k)

+ vg,1 log

Vj k Us,k
Us, k Vj k

Uik Uik (10)
Zj Uj.k
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T vk 2 (Tatie)/ Dk (Wi k1 k)
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L Un,k' Zi(xi,nui,k)/Zk(ui,kvn,k)

where vy, is the k-th column of V and I is an n x n identity
matrix. The matrix L is the graph Laplacian (Chung 1997).

Locality Preserving NMF for POMDPs

The algorithmic steps of the overall algorithm to solve
POMDPs using locality preserving NMF can now be given:

1. Sample belief points: The algorithm first randomly sam-
ples a set of belief points B (set at 10, 000 in the experi-
ments).

2. Down-sampling: The algorithm then sub-samples the
original belief set into a smaller more manageable set B;.
To sub-sample we use the the K-nearest neighbor (KNN)
algorithm and some constant §. We include in the set B,
points that are > § apart in terms of euclidean distance.

3. Create a neighborhood graph between points: Next,
the algorithm estimates an adjacency matrix W and de-
gree matrix D. For every belief point b; € B,, W is
computed to be:

1
WiJ = { 0

where Ny (b;) denotes the set of k nearest neighbors of b;
in euclidean space. The matrix W is then symmetrized
as:

if bj S N}g(bl)
otherwise

wW=mWT+w)/2.

The degree matrix is a diagonal matrix defined by the row
sums of the weight matrix W:

|B.|

Di=> Wi
j=1

4. Compute the graph Laplacian: Compute the Laplacian
as:
L=(D-W).

5. Compress the POMDP: Given the graph Laplacian, use
the LPNMF algorithm to compute F. In practice, we
first use the standard Euclidean NMF routine (such as the

one provided in MATLABTM) to compute some initial
values for U and V. This step is useful since LPNMF
is an expectation-maximization algorithm and dependent
on good initial values for U and V. Then, we invoke the
LPNMF algorithm X ~ U - VT with input X = BT.
From the output we set T = U7 as can be derived from
Equation 6. To compute F' we use the pseudoinverse
F = (F). Alternatively, to approximate the orthogo-
nality constraint similar to the orthogonal NMF algorithm
in (Li et al. 2007), we approximate / ~ F - F' using
NMF. To do this we set X = I, V = (FT)T and in-
voke the standard NMF algorithm, where we only update
equation 8 and keep V constant. Finally, we compute R
and G according to Equations 4 and 5. Enforcing orthog-
onality ensures that the reduced transition dynamics are
non-negative and in practice gives better results than the
pseudoinverse approach, which was the major motivation
for the ONMF algorithm in (Li et al. 2007).

6. Policy computation and execution: We can compute and
execute a policy as was described in the previous section
on linear dimensionality reduction for POMDPs.

Experimental Results

We compared the LPNMF approach for compressing
POMDPs with the standard NMF and orthogonal NMF al-
gorithms. These methods were compared in terms of the

t
quality of the average discounted reward Z]J " resulting

from the policy as a function of the compression level (the




number of dimensions). We used five standard benchmark
problems from the literature: “tiger-grid”, “hallway” , “hall-
way2”, “rock-sample” and “tag-avoid”. For every problem
we randomly sampled 10, 000 belief points, which were sub-
sampled to 349, 149, 506, 829 and 921 points respectively,
using 4 values of: 0.3, 0.5, 0.3, 0.06 and 0.25. For all of our
experiments we ran the PBVI algorithm for a fixed amount
of time and measured the quality of the policy for different
dimensions. We used the Perseus algorithm as the underly-
ing PBVI algorithm (Spaan and Vlassis 2005). The A pa-
rameter for LPNMF was chosen empirically. We observed
for high dimension a small A was required, which increased
for middle dimension and then decreased again for very low
dimensions. Our results are summarized in Figures 3, 4,
5,6, and 7. Some of the empirical A values chosen for
one of the problems are shown in Table 1. In the tiger-grid,
hallway, rock-sample, and tag-avoid problems, the locality-
preserving NMF algorithm clearly outperformed the other
two methods, particularly at higher levels of compression.
The differences are less significant in the hallway2 prob-
lem, although once again, the LPNMF method is superior
at higher compression levels.

0.4
0.35
0.3
0.25
0.2 =&=NMF
~#—=0ONMF
LPNMF

Reward

0.15
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0

30 40 50 60 70 80
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Figure 3: The hallway?2 problem has |S| = 93, |A| = 5 and
|Z] = 17. The maximum time we ran each algorithm was
60 sec. In this experiment the LPNMF approach is slightly
better at lower dimensions than the regular NMF method.
The state of the art ONMF approach performs worse than
the NMF method.

Table 1: Empirical As for the hallway2 domain.

k|30]40 |50 | 60 | 70 | 80
Al 212151510302

To verify that our compression can compute better poli-
cies in less time, we looked at the “tag-avoid” benchmark
POMDP problem. The tag-avoid problem is an order of
magnitude larger than the other four POMDPs and better
demonstrates the realistic benefits of such compressions. Ta-
ble 2 shows some of the results, where we reduced the di-
mension of the tag-avoid problem from 870 to 150 states
and still got a reasonable solution, which is half-way be-
tween the optimal and what the Perseus algorithm achieves

T os ——NMF

E 0 ~#—=0NMF

LPNMF
0.5
1
-1.5
2

Dimension
Figure 4: The tiger-grid POMDP has |S| = 36, |A| = 5 and

|Z] = 17. The maximum time we ran each algorithm was
70 sec. The LPNMF approach significantly outperforms the
plain NMF and ONMF approaches.
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Figure 5: The hallway problem has |S| = 60, |A| = 5 and
|Z| = 21. The maximum time we ran each algorithm was
30 sec. The LPNMF approach again allows for higher com-
pression than plain NMF and ONMF.

for the same amount of time. !

Conclusions and Future Work

In this paper, we proposed a novel framework for dimen-
sionality reduction of POMDPs based on locality preserving
non-negative matrix factorization. The main advantage of
the proposed approach is that it constructs a linear compres-
sion of the belief space that preserves the local geometry
of the belief simplex. The experimental results show sig-
nificantly improved performance compared to the state of
the art orthogonal non-negative matrix factorization on sam-
ple benchmark POMDPs. This research can be extended
in many ways. One way to improve the scalability of the
proposed approach to larger POMDPs is to combine matrix
factorization methods with low-rank matrix approximation
methods, such as Kronecker decomposition. An analytical
characterization of the loss in solution quality using matrix
factorization methods is desirable. Finally, other nonlinear

'All of our experiments were done on a 2.6 GHz Core 2 Duo
Intel Mac.
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Figure 6: The rock-sample problem has |S| = 257, |A| =9
and | Z| = 2. The maximum time we ran each algorithm was
50 sec. The graphs show the results for different dimensions
and compression algorithms. The LPNMF approach allows
for deeper compression than both the NMF and ONMF al-
gorithms.

Table 2: PBVI versus LPNMF.

Time (sec) ZJ\A}‘T
tag-avoid
|S| =870, |A| =5,|Z| =17
Perseus-PBVI 2300 -6.5
500 -13.0
LPNMF (|S] = 150) 500 -9.0

dimensionality reduction methods need to be investigated as
well.
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