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Abstract

Automatically constructing novel representations of sask
from analysis of state spaces is a longstanding fundamental
challenge in Al. | review recent progress on this problem for
sequential decision making tasks modeled as Markov deci-
sion processes. Specifically, | discuss three classes d-rep
sentation discovery problems: finding functional, state] a
temporal abstractions. | describe solution techniquegnvgr
along several dimensions: diagonalization or dilationhmet
ods using approximate or exact transition models; reward-
specific vs reward-invariant methods; global vs. local eepr
sentation construction methods; multiscale vs. flat disopv
methods; and finally, orthogonal vs. redundant representa-
tion discovery methods. | conclude by describing a number
of open problems for future work.

Introduction

ing. In particular, | summarize recent work on autonomous
representation discovery in the area of sequential decisio
making based on Markov decision processes (MDPs) and
their variants. MDPs are widely useddperations research
(Bertsekas and Tsitsiklis 1996; Puterman 19949babilis-
tic planning (Boutilier, Dean, and Hanks 199%kinforce-
ment learning(Sutton and Barto 1998), andbot learning
(Connell and Mahadevan 1993).

| describe three categories of representation discovery
problems in MDPs: finding functional abstractions, state
abstractions, and temporal abstractions. Functionatatbst
tions correspond to finding a compressed representation of
the space of functions on a state (action) space, such as re-
ward functions, state transition functions, and value func
tions. State abstractions partition the state space isjoidt
sets that preserve some property, such as respecting eward
and transition dynamics, the optimal policy, or the optimal

A common practice in designing Al systems in many ar- value function. Temporal abstractions are based on discov-
eas is to assume that human designers provide the essenering task hierarchies, which enable multiscale appraache
tial knowledge structures such as features or a task hier- to solving MDPs. | review solution methods to these prob-
archy, constraining the search space where optimal or sat- lems along four dimensions: diagonalization vs. dilation
isficing solutions may be found; the machine implements methods; reward-sensitive vs. reward-independent method
an efficient search strategy for finding solutions within the flat vs. multiscale methods; and finally, orthogonal vs. re-
given space. This division of labor between human and ma- dundant representation discovery methods. | conclude with
chine is sensible for single-task environments, where con- a list of challenges that constitute key directions forHert
siderable engineering and fine-tuning of the input represen research.

tation is possible. It becomes increasingly difficult to mai

tain this paradigm for agents that are faced with solving Markov Decision Processes

a novel collection of problems. Representation discovery \arkov decision processes (MDPs) are a widely used model
is an area of Al research that involves designing methods ot sequential decision making in Al (Puterman 1994). An
for automatically constructing novel representationsieks MDP M = (S, A, P%,, R® ) is defined by a set of states

that facilitate their solution. Early research on repré@en 5 set of actionsd. a transition modeP® specifying the dis-

tion discovery in Al includes the pioneering work of Saul  ihytion over future state€ when an actiom is performed

Amarel (1968), who adyocated designing agents. that dis- j, states, and a corresponding reward modg,, specify-
cover novel representations through global analysis ®€sta jng 5 scalar cost or reward. A state can be a discrete atomic
spaces. By finding bottlenecks and symmetries, Amarel out- gntity such as a number; a factored object such as a vector
lined ways in which agents could collapse and shrink state ¢ oy state variables; or a structured object defined by a se
spaces. Amarel focused on deterministic state space prob-of predicates or relations. Abstractly, a value functioa is
lems, such as the missionaries and cannibal problem. mappingS — R, or equivalently a vectoe RIS/ (when the

In this paper, | focus on representation discovery meth- .o space is discrete). A deterministic policy S — A
qu forstochastlcpro_bler_ns, which are more representa- s o fnctional mapping from states to actions, whereas a
tive of real-world applications such as robotics and schedu  i,chastic policy induces a distribution over actions. Any

policy induces a value functio¥i™, specifying the expected
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in any given state when actions are chosen using the pol-
icy. Any optimal policym* defines the same unique optimal
value functionV*, which satisfies the Bellman equation:

V' i(s) = méixz @, (R, +~yV*(s")).

Classical techniques for solving MDPs includkdue itera-
tion andpolicy iteration(Puterman 1994). In small MDPs, it

as Bellman error basis functions (BEBFs) (Keller, Mannor,
and Precup 2006; Parr et al. 2007) and Drazin bases (Ma-
hadevan 2009) vs. reward-invariant bases such as proto-
value functions (PVFs) (Mahadevan and Maggioni 2007)
and geodesic Gaussian kernels (Sugiyama et al. 2008).
Reward-invariant methods exploit the intuition that value
functions are generallgmoothfunctions on the state space,

, / : and can be represented sparsely using a small set of care-
is possible to store value functions exactly as a table. érarg fully constructed bases. Reward-sensitive methods asctstr

problems require the use of a function approximator to gen- pases that exploit specific knowledge of the task, and ysuall
eralize estimated values across the state space. Temporalne policy as well.

difference learning (TD) (Sutton and Barto 1998) has been

shown to be an effective sampling-based method for solv- State Abstraction

ing large MDPs, when combined with a suitable function  siate abstraction methods induce a discrete mapping by par-
approximator. Nonlinear approximation methods such as ijiioning the state (action) space into equivalence ciasse
neural nets have led to significant empirical successes with \hich the value function assumes a constant value. State
TD (Tesauro 1992), but suffer from convergence problems nariitioning methods can be viewed as a special case of

(Bertsekas and Tsitsiklis 1996). More recent methods, such
as least-squares policy iteration (Lagoudakis and Par8200
and linear programming (Guestrin et al. 2003), are based
on alinear function approximation architecture using a set
of k£ < |S| handcodedasis functiong ¢, ..., ¢}, such

as orthogonal polynomials (Lagoudakis and Parr 2003) and
radial basis functions (RBFs). Hierarchical RL methods
are based orsemi-MDPs(SMDPs), which allow tempo-
rally extended actions like “exiting a room” or “driving
home”, which correspond to executing a hierarchical pol-
icy over a portion of the state space (Barto and Mahade-
van 2003). The MDP framework has also been extended
to richer state descriptions using first-order represemst
(FOMDPs) (Boutilier, Reiter, and Price 200Partially ob-
servable MDPgor POMDPs) address the problem of acting
when the underlying state is hidden (Kaelbling, Littmard an
Cassandra 1998).

Representation Discovery Problems

| discuss three representation discovery problems in MDPs:
finding functional abstractions, state space abstractan
discovering temporal abstractions.

Functional Abstraction
One general class of algorithms for constructing noveleepr

functional abstraction defined by a basis matbof size

|S| by k, where the embedding of a statés) ¢ R” is

a binary row vector with exactly a singleindicating the
unique partition containing the state. Two statesds’ are
considered equivalent by a state abstraction method if and
only if ¢(s) = ¢(s’). The set of all state abstraction meth-
ods forms a partially ordered hierarchy, which can be orga-
nized into aattice structure (Li, Walsh, and Littman 2006),
based on the coarseness of the induced partition. Partition
ing methods can be categorized into several classes: those
that are model-preserving in that they respect the reward
function and the transition dynamics (Givan and Dean 1997,
Ravindran and Barto 2003); those that preserve the (action)
value function for all (or only optimal) policies; and fingll
those that preserve the optimal action. Pattern databases
in deterministic search problems can be viewed as a spe-
cial type ofadditive state abstractiothat yield admissible
heuristics (Yang et al. 2008). A linear programming based
approachto learning admissible heuristics by featurenglisc

ery is described in (Petrik and Zilberstein 2008).

Temporal Abstraction

Finally, a third class of representation discovery mettods
MDPs is based on learning temporal abstractions. One ap-
proach is to learn an abstraction hierarchy over the set of

sentations is to find task-dependent basis functions defined state variables, based on frequency of change (Hengst 2002)
on the state (action) space that span linear subspaces con-or causal dependencies among state variables (Jonsson and
taining the optimal solution. This approach can be viewed Barto 2005). Another approach is to learn reusable policy
as compressing the space of all (value) functigns RIS! fragments orskills, based on finding bottlenecks (Simsek
into those that can be represented as a linear combination of and Barto 2004). Recent work on discovery of temporal hi-
basis functions erarchies in POMDPs is based on nonlinear quadratic pro-
f= Z w; P; gramming (Charlin, Poupart, and Shioda 2007).
i€l

wherel is a set of indices specifying the selected bases. The Representation Discovery Algorithms

set of basis functions can be grouped together to form a ma- In this section, | categorize algorithms for representeadiis-

trix ® of size|S| by k, where each column correspondsto a covery into four categories: whether representationsate c
basis functionp;, andk < |S|. Each row of this matrix de- structed by dilation or diagonalization; whether repréaen
fines a set of features(s) € R*, which can be viewed asa  tions are reward-sensitive or reward-independent; whethe
real-valued vector embedding of the original state. Thexmai flat or multiscale representations are constructed; anififina
idea here is to exploit problem-specific information in con- whether a minimal or overcomplete set of representations is
structing basis functions. Two general approaches to con- constructed. These categories not intended to be exhaustiv
structing basis functions include reward-sensitive bageh however, but rather reflect recent work in the field.



Dilation vs. Diagonalization Methods

A general strategy for constructing representations isdas
on diagonalization or dilation of an exact or approximate
transition modelKrylov methods (Petrik 2007; Poupart and
Boutilier 2003) are based on dilating the reward function
using powers of the transition matriX™. The Krylov space

is the smallest subspace invariant under the reward functio
R™ and transition matrix°™, which can be constructed by
orthogonalizing the vectors

{R™, P"R™,(P™)*R"™,...,(P™)"'R™}.
BEBF representations are an incremental variant of Krylov

bases, which use the (sampled) Bellman error as basis vec-

tors. The concept of dilation can be generalized to firseord
MDPs, where it is referred to as tiegressionof a reward
function over a specific action (Boutilier, Reiter, and Eric
2001).

Diagonalizationmethods are based on finding the eigen-
vectorsg; of a transition matrixP™, whereP™¢; = \;¢;.
Since the diagonalization of arbitrary transition matsice
may not yield real-valued or orthogonal eigenvectors, it is

often expedient to use a reversible approximafith such

Orthogonal vs. Redundant Representations

Representation discovery methods that construct orthogo-
nal representations can be contrasted with those that con-
struct redundant representations. Orthonormal baseh, suc
as proto-value functions, represent value functions (er re
ward functions) uniquely as a weighted linear combination
of basis elements, where the weighting is giver By, ¢;),

the projection ofi’™ onto thei*” basis element:

VT =3 (VT )i
el

Overcomplete basis representations, such as diffusion
wavelets, can represent a given value function in many dif-
ferent ways, in which case an additiomedularizationstep

can be used to find sparserepresentation (Johns and Ma-
hadevan 2009; Kolter and Ng 2009).

Learning Representation and Control

One framework for combining the learning of representation

as the natural random walk on a state space graph inducedand control is called Representation Policy Iteration (RPI

by the policynr, where two states andj are connected by
an undirected edge if there exists some actiosuch that
P, > 0orP¢; > 0 (Mahadevan and Maggioni 2007). In
this case, the reversible random walk stochastic matrix is
defined byP™ = D~'W, whereW is the induced connec-
tivity matrix and D is a diagonal matrix of its row sums. Itis
more tractable to use the spectrally similar symmetric “nor
malized” Laplacian matrix. = I — D~z W D™z, an object

of much recent study in machine learning.

Reward-Specific vs. Reward-Invariant Approaches

Reward-respecting state abstraction methods consider two
statess and s’ equivalent (or(s) = ¢(s’)) if and only if
R(s,a) = R(s',a) under each action. Similarly, reward-
sensitive basis construction methods, like Krylov bases,
use knowledge of the reward function to find representa-
tions of subspaces that contain the (approximately) optima

(Mahadevan and Maggioni 2007), where the outer loop finds
a functional abstraction based on a specific policy (or re-
ward function), and the inner policy evaluation loop finds
the closest (least-squares regularized) approximatitrimwi

the span of the constructed bases. An alternative approach
is to construct representations during the control le@nin
phase itself (Parr et al. 2007). The space of such hy-
brid representation-and-control learning architectumessds

to be explored further.

Challenges

One significant challenge is how to scale representatien dis
covery algorithms to high-dimensional problems. Some di-
rections include low-rank matrix approximation (Johns-Ma
hadevan, and Wang 2007), exploiting pre-defined task hi-
erarchies (Osentoski and Mahadevan 2010), and using re-

value function. Reward-invariant approaches, such as PVFs lational representations (Wu and Givan 2007). The scal-
or geodesic Gaussian kernels, construct basis functions ability of these methods to much larger discrete MDPs,
reusable across multiple reward functions on the same statesuch as Tetris (Bertsekas and Tsitsiklis 1996) or backgam-
(action) space. Petrik (Petrik 2007) proposed combining mon (Tesauro 1992), and continuous state and action MDPs,
reward-specific Krylov bases with reward-invariant proto- such as helicopter control (Ng et al. 2004), needs to
value functions as a way of integrating localized reward- be explored further. Much of the work on representa-

specific and more global eigenvector representations. tion discovery has been in fully observable MDPs. Re-
search on constructing novel representations in POMDPs

Flat vs. Multiscale Methods is ongoing (Poupart and Boutilier 2003; Li et al. 2007;

Multiscale methods construct a variable resolution spatia Charlin, Poupart, and Shioda 2007). Finally, constructing
or tempora] abstraction hierarchy_ One approach uses arepresentations that transfer across tasks remains am-impo
hierarchical matrix approximation method called diffusio  tant challenge (Taylor, Kuhimann, and Stone 2008).
wavelets (Coifman and Maggioni 2006), which constructs a
sparse representation of dyadic powers of a transition ma-
trix. Similarly, Hengst (Hengst 2002) constructs a multi-
scale state hierarchy by partitioning the state varialdset This research was supported in part by the National Sci-
on their frequency of change. In contrast, flat methods con- ence Foundation under grants NSF 11S-0534999 and NSF
struct a single-level abstraction, such as eigenvectdroast 11S-0803288. | thank Jeff Johns, George Konidaris, and the
like proto-value functions, or Krylov bases. anonoymous reviewers for their feedback on this paper.
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