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Abstract

The graphical models paradigm provides a
general framework for automatically learn-
ing hierarchical models using Expectation-
Maximization, enabling both abstract states
and abstract policies to be learned. In this
paper we describe a two-phased method for
incorporating policies learned with a graphi-
cal model to bias the behaviour of an SMDP
Q-learning agent. In the first reward-free
phase, a graphical model is trained from sam-
ple trajectories; in the second phase, policies
are extracted from the graphical model and
improved by incorporating reward informa-
tion. We present results from a simulated
grid world Taxi task showing that the SMDP
Q-learning agent using the learned policies
quickly does as well as an SMDP Q-learning
agent using hand-coded policies.

1. Introduction

Abstraction is essential to scaling reinforcement learn-
ing (RL) (Barto & Mahadevan, 2003; Dietterich, 2000;
Parr & Russell, 1998; Sutton et al., 1999). Temporal
abstraction permits structured initial exploration by
RL agents, allowing reuse of learned activities, and
simplifying human interpretation of the learned pol-
icy. Spatial abstraction decreases the number of states
that need to be experienced, reducing the amount of
memory needed, and capturing regularities in the pol-
icy structure. Given predefined state and policy ab-
stractions, for instance a task hierarchy, existing meth-
ods (Dietterich, 2000; Parr & Russell, 1998; Sutton
et al., 1999) can be used to learn the corresponding
hierarchical policy. One of the most difficult problems
in hierarchical reinforcement learning, however, is how
to automatically learn the abstractions. For instance,
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suppose a MAXQ hierarchy is desired: What should
the tasks be? How should the termination conditions
be defined?

The graphical models framework provides a power-
ful approach to automatically learning abstractions
for hierarchical RL. For example, the abstract hid-
den Markov model (AHMM) proposed by Bui et al.

(2002) is a hierarchical graphical model that encodes
abstract policies; these policies are derived from the
options framework (Sutton et al., 1999) and have asso-
ciated initiation and termination states. Alternatively,
the hierarchical hidden Markov model (HHMM) (Fine
et al., 1998) encodes abstract states.

In this work, we describe the use of graphical models to
automate hierarchical reinforcement learning using im-
itation. The method we propose takes advantage of a
mentor who provides examples of optimal behaviour in
the form of state transitions and primitive actions. We
believe humans exploit similar guidance when learning
complex skills, such as driving.

Previous approaches to automatic abstraction in RL
can be divided into two groups: methods that iden-
tify subgoals, i.e., states or clusters of states, and then
learn policies to those subgoals (McGovern & Barto,
2001; Şimşek & Barto, 2004; Mannor et al., 2004)
and methods that explicitly build a policy hierarchy
(Hengst, 2002). Key differences between our method
and previous work are that first, by modifying the
structure of the graphical model, different abstractions
can be learned; second, we learn sub-goals (termina-
tions) and policies simultaneously, rather than sepa-
rately; finally, our method provides a mechanism for
coping with partially observable state through the use
of hidden variables.

Previous work on imitation in the context of RL has
focused on learning a flat policy model. In Price and
Boutilier (2003) a mentor’s state transitions are used
to help the learner converge more quickly to a good
policy. In Abbeel and Ng (2004), the observer’s re-
ward function is unknown; instead, a mentor’s state



transitions and feature expectations are used to iden-
tify a policy with similar feature expectations, where
features are a mapping over states and feature expec-
tations partially encode the value of the policy. In
comparison, graphical models provide a mechanism for
learning by imitation where the mentor learns not to
just imitate the teacher but learns the task structure
implicit in the higher level subgoals in the mentor’s
policy. This inference involves computing a distribu-
tion over the mentor’s higher-level policies from its
state transitions and actions with higher level policy
variables treated as hidden variables. While not stud-
ied here, rewards could additionally be incorporated
into the graphical model, as in (Samejima et al., 2004).

In the rest of this paper, we define the graphical model
that we use and investigate its effectiveness in au-
tomating hierarchical RL.

2. Dynamic Abstraction Networks

Previous work in graphical models has largely focused
on studying temporal abstraction or state abstraction
in isolation. Intuitively, abstract policies are intri-
cately tied to abstract states. For instance, New York
City is both a temporal and a spatial abstraction: its
geographical location permits you to both execute such
abstract policies as visit the Metropolitan Museum of
Art or attend a Broadway play, and to define such spa-
tial abstractions as the five boroughs of New York City
or the state of New York.

In other work (Manfredi & Mahadevan, 2005) we have
proposed a new type of hierarchical graphical model,
dynamic abstraction networks (DANs), that combines
state and temporal abstraction. Jointly encoding state
and temporal abstraction permits abstract states and
policies to be learned simultaneously, unlike in the
AHMM or HHMM alone. We showed in (Manfredi
& Mahadevan, 2005) that empirically DANs seem to
learn better policy abstractions than do AHMMs.

Figure 1 shows the dynamic Bayesian network (DBN)
representation of a 2-level DAN. Informally, we can
think of DANs as a merging of a state hierarchy, rep-
resented by the HHMM, and a policy hierarchy rep-
resented by a modified version of the AHMM which
we refer to as an mAHMM. Technically we use the dy-
namic Bayesian network representations of the HHMM
and AHMM defined in (Murphy & Paskin, 2001)
and (Bui et al., 2002) respectively. We merge the
mAHMM and HHMM by adding edges from state
nodes at time t on level i to policy and policy termina-
tion nodes at time t on level i and from policy nodes
at time t on level i to state nodes at time t + 1 on

Π

Π

Π

Π

Π

Π

β2

β
1

1

β2

β1

2−Level AHMM

1−Level AHMM

Action Level

2

SO SO

OA OA

α

α0

1 1

0

SS

α

0 0

S S

SS2

1 1

2

t=2t=1

α2

α

2−Level HHMM

1−Level HHMM

HMM

α2

1

2

00

Figure 1. DBN representation of a dynamic abstraction
network. We emphasize that this is just one realization of
a dynamic abstraction network, and other configurations
are possible.

level i. One of the key ideas for developing this model
is that abstract states are useful for learning abstract
policies. Consequently, abstract states are fed into all
policy levels including the actions. We formally define
a K-level DAN as comprised of an intertwined state
hierarchy and policy hierarchy defined as follows.

Policy Hierarchy. A policy hierarchy Hπ with
K levels is given by the ordered tuple Hπ =
(OA,Π0,Π1, . . . ,ΠK).

• OA is the set of action observations. OA is only
necessary if actions are continuous or partially ob-
servable.

• Π0 is the set of primitive (one-step) actions.

• Πi is the set of abstract policies at level 1 ≤ i ≤ K,
defined in more detail below.

State Hierarchy. A state hierarchy Hs with
K levels is given by the ordered tuple Hs =
(OS , S0, S1, . . . , SK).

• OS is the set of state observations.

• Sj is the set of abstract states at levels 0 ≤ j ≤ K,
defined in more detail below.



Abstract Policies. At level i, each abstract
policy πi ∈ Πi is given by the tuple πi =<

Sπi
, Bπi

, βπi
, σπi

>.

• Selection set. Sπi
⊂ Si is the set of states in which

πi can be executed.

• Termination probability. Bπi
⊂ Si is the set of

states in which πi can terminate. βπi
: Bπi

→
(0, 1] is the probability that policy πi terminates
in state Bπi

. Note that for all termination states
that are not also selection states, policy πi termi-
nates with probability one.

• Selection probability. σπi
: Πi+1:K × Sπi

→ [0, 1]
is the probability with which a policy πi ∈ Πi

can be initiated when executing abstract policies
πi+1 ∈ Πi+1, . . . , πK ∈ ΠK in state sπi

∈ Sπi
.

Abstract States. At level j, each abstract state sj ∈
Sj is given by the tuple sj =< Πsj

, αsj
, σsj

>. Note
that an abstract state may be part of more than one
higher level state; for instance, states at level j may
be letters while states at level j + 1 are words.

• Entry set. Πsi
⊂ Πi is the set of policies which

enter state si.

• Exit probability. αsj
: Sj → (0, 1] is the proba-

bility that the agent exits state sj ∈ Sj when in
states sj+1 ∈ Sj+1, . . . , sK ∈ SK .

• Transition probability. σsj
: Sj+1:K × Πj × Sj →

[0, 1] is the probability that the agent transitions
to state st+1

j ∈ Sj from state st
j ∈ Sj when in

parent states st
j+1 ∈ Sj+1, . . . , s

t
K ∈ SK and exe-

cuting policy πt
j ∈ Πj .

For the policy hierarchy, Π nodes encode the selec-

tion sets Sπ and the selection probabilities σπ, while β

nodes encode the termination probabilities βπ. For the
state hierarchy, S nodes encode the entry sets Πs and
the transition probabilities σs, while α nodes encode
the exit probabilities αs. At level i, choosing policy
πi ∈ Πi depends in part on state si ∈ Si but executing
πi ∈ Πi, by choosing policy πi−1 ∈ Πi−1, depends in
part on state si−1 ∈ Si−1. That is, choosing a policy
at level i depends on the state at level i, but executing
a policy at level i depends on the state at level i − 1.

3. Hierarchical Reinforcement Learning

In this section, we show how DANs can be applied to
the problem of automating hiearchical RL.

3.1. Approach

There are two phases to our approach. In the first
phase, the DAN is constructed and trained. Like
MAXQ (Dietterich, 2000), our approach requires that
the number of levels and the number of policies and
states at each level be specified. However, unlike
MAXQ, the dependencies between policies and states
at different levels are unknown. Instead, all poli-
cies (states) at one level are connected to all policies
(states) in the adjacent levels to permit any possible
set of dependencies to be learned. Sequences of state-
action pairs obtained from a mentor are then used
to train the model with Expectation-Maximization
(EM) (Dempster et al., 1977). Unlike other approaches
for learning hierarchies, by reducing the problem to pa-
rameter estimation, all levels of the state and policy
hierarchies are learned simultaneously through joint
inference on the model. Learning in the first phase is
on-policy; consequently, the quality of the sample tra-
jectories used to train the model will affect the quality
of the policies learned.

In the second phase, the learned policies are obtained
from the DAN and improved using RL. Once the DAN
has been trained, the policy hierarchy is extracted.
The options framework (Sutton et al., 1999) fits most
naturally with the DAN policy hierarchy. Changing
the policy hierarchy would permit other types of pol-
icy hierarchies, such as HAMs (Parr & Russell, 1998)
or MAXQ task graphs (Dietterich, 2000), to be used.
An option consists of (1) a set of states in which it can
be initiated, (2) a set of states in which it terminates,
(3) a probability distribution over termination states
for each option, and (4) a probability distribution over
actions (or lower-level options) for each state. Define
a 1-level option to be a policy over options. Then an i-
level option is encoded within an DAN: Π nodes encode
(1), (2), and (4), while β nodes encode (3). Various
methods could be used, but we use reward to improve
the extracted policies by using semi-Markov decision
process (SMDP) Q-learning (Sutton et al., 1999) to
estimate the value function. We discuss this further in
the Experiments section.

We note that like DANs, MAXQ similarly encodes
state abstractions with associated policy abstractions
(task decompositions). However, unlike DANs, these
abstractions are hand-specified rather than learned.

3.2. Experiments

The Taxi domain (Dietterich, 2000) is used to illus-
trate the proposed approach. The Taxi domain (Di-
etterich, 2000) consists of a five-by-five grid with four
taxi terminals, R, G, Y , and B, see Figure 2. The goal
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Figure 2. Taxi grid.

of the agent is to pick up a passenger from one termi-
nal, and deliver her to another one (possibly the same
one). There are six actions: north (N), south (S), east
(E), west (W), pick up passenger (PU), and put down
passenger (PD). 80% of the time N, S, E, and W work
correctly; for 10% of the time the agent goes right and
10% of the time the agent goes left. The agent’s state
consists of the taxi location (TL), the passenger loca-
tion (PL), and the passenger destination (PD). Note
that PL = 1 when the passenger has been picked up
and PD = 1 when the passenger has been delivered.

We generated 1000 training sequences from an hier-
archical RL mentor trained in the Taxi domain using
SMDP Q-learning over hand-coded policies. Each se-
quence is the trajectory of states visited and actions
taken in one episode as the RL mentor uses its learned
policy to reach the goal. Examples were of variable
lengths. A learning rate of α = 0.1, an exploration
rate of ε = 0.01, and a discount rate of γ = 0.9 were
used. Bayes Net Toolbox (Murphy, 2001) was used to
implement and train the mAHMM and DAN models
in Figure 3 using Expectation-Maximization (Demp-
ster et al., 1977). All distributions were multinomials
and except for the β1, α0, α1, Π1, S0, and S1 distribu-
tions, were initialized randomly. For the Taxi data we
set |S1| = 5, |S0| = 25, |TL| = 25, |PL| = 5, |PD| = 5,
|Π1| = 6, |Π0| = 6, |α0| = 2, |α1| = 2, and |β1| = 2.

For all experiments, higher level states and policies
were biased to change more slowly than lower level
states and policies; e.g., the floor you are on should
not change more frequently than the room you are in.
This was done by initializing the β1, α0, α1, Π1, S0,
and S1 distributions as follows, where i = 0, 1 and
Ot

S = {TLt, PLt, PDt}.

P (βt
1 | Πt

0, Π
t
1, S

t
1) =

{

0.95 if βt
1 = continue

0.05 otherwise

P (αt
0 | St

0, O
t
S) =

{

0.95 if αt
0 = continue

0.05 otherwise

P (αt
1 | αt

0, S
t
0, S

t
1) =











1 if αt
1 = αt

0 = continue
0.5 if αt

1 = continue and
αt

0 = end
0 otherwise
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Figure 3. (a) 1-Level mAHMM and (b) 1-Level DAN for
Taxi domain; shaded nodes are observed. Note that Π0

represents actions.

P (Πt+1
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P (St+1
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t+1
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t
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=
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=
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1 =end
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Given the trained mAHMM, policies were extracted
and improved using SMDP Q-learning as follows.
Once an option (policy) was chosen using an ε-greedy
exploration strategy, the learned probability distribu-
tion P (Π0|Π1, TL, PL, PD) from the mAHMM was
used to probabilistically select an action, π0. Given
the trained DAN, policies were again extracted and
improved using SMDP Q-learning. However, in order
to use the learned probability distributions, we must
first compute the most likely abstract state, s0, with,

P (S0|TL, PL, PD) =

∑

S1

P (TL|S0)P (PL|S0)P (PD|S0)P (S1)P (S0|S1)
∑

S0,S1

P (TL|S0)P (PL|S0)P (PD|S0)P (S1)P (S0|S1)

Then given the abstract policy π1 that was selected
using the ε-greedy strategy, we can select an action π0

directly from the conditional probability distribution,



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

N
um

be
r 

of
 T

im
e 

St
ep

s 
to

 G
oa

l

Episode

1-Level EM Results Averaged Over 10 RL Runs

C

B

A

A - AHMM
B - Flat QL
C - SMDP

(a) mAHMM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  500  1000  1500  2000

N
um

be
r 

of
 T

im
e 

St
ep

s 
to

 G
oa

l

Episode

1-Level EM Results Averaged Over 10 RL Runs

C

B

A

A - DAN
B - Flat QL
C - SMDP

(b) DAN

Figure 4. (a) 1-Level mAHMM results. (b) 1-Level DAN
results.

P (Π0|Π1 = π1, S0 = s0). Other approaches could be
used as well: for instance the full machinery of infer-
ence could be used to ascertain how the selected ac-
tion will affect the predicted distributions over future
states. We note that for both the mAHMM and DAN,
we permitted options (policies) to be interrupted dur-
ing SMDP Q-learning. This prevented looping be-
haviour due to bad policies.

3.3. Results

Figure 4 compares how well the learned mAHMM and
DAN policies do against the hand-coded policies and
a flat Q-learning agent. What Figure 4 shows is that
within about the first fifty timesteps, the SMDP Q-
learning agent using the learned policies does as well
or better than the SMDP Q-learning agent using the
hand-coded policies. We note that the performance of
the agent is slightly noisier when it uses the mAHMM
rather than the DAN policies.
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Figure 5. Level 1 policies and states for two sample se-
quences from the Taxi data. The TL, PL, and PD state
values and Π0 actions are shown for both models; the S0

abstract states are shown for the DAN.



Figure 5 shows the probability of each level 1 pol-
icy and state for two sample Taxi sequences for the
mAHMM and DAN. What we see from Figure 5 is
that the mAHMM has difficulty identifying a single
most likely policy with high probability, while the
DAN model is able to identify a unique most likely
policy with high probability. As shown in Figure 5,
the mAHMM performs particularly poorly on the sec-
ond sequence, never identifying a single policy as most
likely for more than a couple of timesteps. Note that
while the mAHMM has difficulty identifying a single
policy as most likely, this is not a consequence of the
policies themselves being poorly learned. Rather, be-
cause the mAHMM has learned every policy over the
entire state space (due to the structure of the model),
all policies are equally good, so any can be used. In
essence only a single global policy has been learned.
The problem with this is that it cannot be reused, un-
like the more local policies learned by the DAN. In
particular we see from the DAN graphs in Figure 5
that Policy 1 is used for part or all of both sequences.

4. Conclusions

We have presented a general method for automating
hierarchical reinforcement learning. The first phase
of our method trains a hierarchical graphical model;
the second phase uses the learned policies in an hier-
archical reinforcement learning agent. Assuming the
graphical model in the first phase encodes the appro-
priate policy structure, other hierarchical reinforce-
ment learning methods besides SMDP Q-learning can
be used for the second phase. In future work we would
like to incorporate both phases into an actor-critic ar-
chitecture. The main disadvantages to our approach
are the cost of Expectation-Maximization and having
to specify the number of levels and the number of pa-
rameters within each level. In future work we plan to
explore methods for approximate inference and model
selection as applied to dynamic abstraction networks.
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