
Constructing Basis Functions from Directed Graphs for Value

Function Approximation

Jeff Johns johns@cs.umass.edu

Sridhar Mahadevan mahadeva@cs.umass.edu

Dept. of Computer Science, Univ. of Massachusetts Amherst, 140 Governors Dr., Amherst, MA 01003 U.S.A.

Abstract

Basis functions derived from an undirected
graph connecting nearby samples from a
Markov decision process (MDP) have proven
useful for approximating value functions.
The success of this technique is attributed to
the smoothness of the basis functions with re-
spect to the state space geometry. This paper
explores the properties of bases created from
directed graphs which are a more natural fit
for expressing state connectivity. Digraphs
capture the effect of non-reversible MDPs
whose value functions may not be smooth
across adjacent states. We provide an anal-
ysis using the Dirichlet sum of the directed
graph Laplacian to show how the smooth-
ness of the basis functions is affected by the
graph’s invariant distribution. Experiments
in discrete and continuous MDPs with non-
reversible actions demonstrate a significant
improvement in the policies learned using di-
rected graph bases.

1. Introduction

Function approximation is a critical component to
solving Markov decision processes defined over con-
tinuous state spaces or large discrete state spaces. A
useful function approximator allows a reinforcement
learning agent to not only accurately represent a value
for a state it has experienced, but also generalize values
to nearby states it has not experienced. The most com-
mon technique is linear function approximation where
value functions are represented as a linear combina-
tion of basis functions. Radial basis functions, poly-
nomial state encodings, and CMACs are examples of

Appearing in Proceedings of the 24 th International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

basis functions typically used (Sutton & Barto, 1998).
Parameters associated with these basis functions can
be tuned to a specific value function (Menache et al.,
2005). These basis functions can be effective but re-
quire significant, domain specific hand-engineering. To
address this challenge, several methods have recently
been proposed to automatically construct basis func-
tions. These methods can be categorized as either pol-
icy dependent (Keller et al., 2006; Petrik, 2007) or
policy independent (Smart, 2004; Mahadevan, 2005).

Keller et al. (2006) used the Bellman error to guide
the mapping from a high dimensional state space to
a low dimensional space. Basis functions were created
by aggregating states in the low dimensional space. By
adding new basis functions tuned to the current Bell-
man error, this approach adaptively adjusts the basis
subspace to represent more of the approximate value
function. Petrik (2007) used the probability transition
function and the reward model to create basis func-
tions from Krylov space vectors (Golub & Van Loan,
1996). Both techniques assume the probability tran-
sition function and reward model are known or can
be estimated from sample trajectories. Furthermore,
they did not attempt to solve the control problem.

In contrast, the aim of policy independent basis func-
tions is to capture instrinsic domain structure which
should be useful for representing any smooth value
function. Smart (2004) proposed using manifolds to
model the topology of the state space. Charts of a
set size were allocated to cover the state space, where
each chart’s embedding function provided the bases
for representing a value function. Mahadevan (2005)
also proposed modeling the state space topology as
a manifold, but used graphs instead of charts as the
computational framework. These two frameworks are
related because the discrete graph Laplacian studied in
spectral graph theory (Chung, 1997) approximates the
Laplace-Beltrami operator on continuous manifolds.
The state space connectivity is modeled using an undi-
rected graph represented as a weight matrix W . Note

Constructing Basis Functions from Directed Graphs for Value Function Approximation

W is not estimating transition probabilities which re-
quires many samples. W is used to form either the
combinatorial or normalized graph Laplacian whose
low order eigenvectors (i.e. those associated with the
smallest eigenvalues) are used as basis functions. The
bases are well-suited to represent smooth value func-
tions (where smoothness is a byproduct of the Bellman
equation) because the Laplacian eigenvectors are the
smoothest functions defined over the graph and cap-
ture nonlinearities in the domain.

This paper builds on the policy independent Lapla-
cian framework, but considers the recently introduced
directed graph Laplacian (Chung, 2005). Directed
graphs can better reflect non-reversible actions. This
is an important property because value functions are
only smooth with respect to the dynamics of the envi-
ronment. A simple example to illustrate this point is a
cyclic graph where actions only move an agent in one
direction and a reward exists at one goal state. The
goal state and its subsequent state will have differ-
ent values due to the non-reversibility. In this paper,
we compare the performance of policies learned us-
ing the directed versus the undirected Laplacian basis
functions in a discrete and continuous MDP. Results
suggest the directed Laplacian bases provide a better
basis subspace for value function approximation. We
analyze this finding in terms of the Dirichlet sum of
the Laplacian.

2. MDPs and Least-Squares
Approximation

We briefly review MDPs and least-squares approx-
imation techniques. A MDP is defined as M =
(S,A, P a

ss′ , Ra
ss′) where S is the set of states, A is the

set of actions, and P a
ss′ is the one-step transition prob-

ability and Ra
ss′ is the expected reward for transition-

ing from state s to s′ under action a. A policy π is
a mapping from states to actions. The optimal action
value function Q∗(s, a) satisfies the Bellman equation:

Q∗(s, a) =
∑

s′

P a
ss′(Ra

ss′ + γmax
a′

Q∗(s′, a′)).

For large MDPs, an exact representation of the value
function is intractable. A linear function approxima-
tion scheme is often employed to represent the value
function with a set of k basis functions (k ! |S|× |A|)
φ(s, a)

Q̂π(s, a;w) =
k

∑

j=1

φj(s, a)wj

where the weights w are tuned to minimize the er-
ror in the approximation. The set of basis functions

Φ = [φ1, φ2, . . . , φk] are defined over all possible state-
action pairs that could be generated in the MDP.
The least squares policy iteration (LSPI) algorithm
(Lagoudakis & Parr, 2003) uses a linear approxima-
tion scheme that attempts to find a fixpoint of the
Bellman equation TπQπ ≈ Qπ, where Tπ is the Bell-
man operator. The fixpoint solution for the weight
vector is

wπ = (ΦT (Φ− γPΠπΦ))−1 (ΦT R) = A−1b,

where γ is the discount factor and PΠπ is the tran-
sition matrix defined with respect to policy π. The
weights wπ minimize the distance between the approx-
imate action value function and the function’s projec-
tion onto the subspace spanned by the basis functions.
The algorithm iterates until the weight vector con-
verges within a specified threshold. Lastly, since the
dynamics (P a

ss′ and Ra
ss′) are unknown, the LSPI al-

gorithm uses estimates based on the samples in the
training set. The matrix Â and vector b̂ are calculated
from samples via the update equations

Â(t+1) = Ât + φ(st, at)(φ(st, at) − γφ(s
′

t, π(s
′

t)))
T

b̂(t+1) = b̂t + φ(st, at)rt.

The Representation Policy Iteration (RPI) algorithm
(Mahadevan, 2005) uses the LSPI method but con-
structs the basis functions automatically from the sam-
ples. RPI builds a graph where the vertices represent
states and the edges correspond to the local neighbor-
hood relation. A spectral analysis of the graph Lapla-
cian (Chung, 1997) generates the k smoothest eigen-
functions which in turn are used as the basis functions
for approximating the value function.

3. Directed Graph Laplacian

Consider an undirected graph G = (V,E,W) with n
vertices V , edges E, and symmetric positive weights
W for each edge (i, j) ∈ E. W can be represented
as a matrix with 0 values indicating lack of edges in
the graph. The valency matrix D is a diagonal matrix
whose values are the row sums of W (Dii =

∑

k Wik).
The combinatorial graph Laplacian (Chung, 1997) is
defined as Lu = D − W and the normalized graph
Laplacian is Lu = I − D−

1
2 WD−

1
2 . Since W is sym-

metric, the eigenvectors of the Laplacian form a com-
plete orthonormal basis.

The definition of the graph Laplacian was recently gen-
eralized to the case of directed graphs (Chung, 2005)
whose weight matrices can be nonsymmetric. Before
giving the definitions, two more matrices need to be
mentioned. First, P = D−1W is the probability tran-
sition matrix associated with a random walk on the

Constructing Basis Functions from Directed Graphs for Value Function Approximation

directed graph. There are multiple ways to handle
vertices with out-degree 0 such that P is well-defined.
In this paper, we use the convention that 0 out-degree
vertices have a uniform 1

n probability of transitioning
to any state. Second, Ψ is a diagonal matrix with
Ψii = ψi, where ψ is the Perron vector of P . The
Perron-Frobenius theorem ensures that if the directed
graph is strongly connected and aperiodic, then P has
a unique left eigenvector ψ with all positive entries
such that ψT P = ρψT and all other eigenvalues have
absolute value less than ρ. Since P is stochastic, the
spectral radius ρ = 1 and ψ can be normalized such
that

∑

i ψi = 1. The vector ψ is the invariant dis-
tribution upon convergence of a random walk on the
digraph. The combinatorial (Ld) and normalized (Ld)
directed Laplacians are then defined as

Ld = Ψ−
ΨP + PTΨ

2
(1)

Ld = I −
Ψ1/2PΨ−1/2 +Ψ−1/2PTΨ1/2

2
. (2)

The undirected Laplacian is a special case of the di-
rected Laplacian. This claim is easily verified by in-
putting a symmetric weight matrix into the equations
for the directed Laplacian and simplifying (there is an
added constant due to the normalization constraint on
ψ). Both directed Laplacians are symmetric matrices,
ensuring a complete orthonormal basis of real eigen-
vectors. The symmetrization 1

2 (ΨP + P TΨ) essen-
tially creates an undirected graph with edge weights
1
2 (ψiPij + ψjPji) = 1

2 (ψi

Dii
Wij + ψj

Djj
Wji). Mahade-

van et al. (2006) proposed using three different sym-
metrization techniques: 1

2 (W + WT), WWT , and
WT W . Their first method, 1

2 (W + WT), creates an
undirected graph with edge weights 1

2 (Wij +Wji). We
will compare empirically and analytically these two
techniques: 1

2 (ΨP + P TΨ) versus 1
2 (W + WT).

Although we focus here on forming symmetric ma-
trices, it is also possible to consider nonsymmetric
Laplacian matrices (Agaev & Chebotarev, 2005) which
can have complex eigenvalues. Nonsymmetric matri-
ces may not be diagonalizable but can nevertheless be
decomposed into Jordan normal form (e.g. all non-
zero entries are on the diagonal and superdiagonal);
however, these algorithms are numerically unstable.

3.1. Calculating the Perron Vector

The properties guaranteed by the Perron-Frobenius
theorem depended on the directed graph being
strongly connected and aperiodic (note the theorem
still holds if the graph is strongly connected and pe-
riodic, but the first eigenvalue is no longer simple).

A MDP need not have these properties. One way to
ensure these two properties are met is to assume a tele-
porting random walk (Page et al., 1998). The agent
acts according to the transition matrix P with proba-
bility η and with probability (1 − η) teleports to any
vertex uniformly at random. This assumption is used
only for the purpose of creating ψ and performing the
spectral decomposition; the agent is not allowed to
teleport in the MDP. The teleporting transition ma-
trix is defined as

Pteleport = ηP + (1 − η)
11T

n

where 1 is a column vector of ones of length n. There is
a trade-off in setting η: larger values allow Pteleport to
be more similar to P , but smaller values can increase
the eigengap which is useful for computational and
stability reasons when performing spectral analysis.

Pteleport should not be explicitly formed when imple-
menting this technique since it is a full matrix while P
is typically sparse. Computing the eigenvectors of Ld

or Ld only requires access to a method for comput-
ing the matrix-vector product Ldx or Ldx; thus, the
method can handle the two components of Pteleport

separately. To see how this is useful, consider mul-
tiplication of the second component by a vector x:
1−η

n (1 1T)x = 1−η
n (

∑

i xi)1. The right-hand side of
the equation is computed in O(n) without forming the
matrix of ones. The eigendecompositions of the undi-
rected and directed Laplacians are therefore computa-
tionally equivalent.

The only added cost for the directed Laplacian is in
calculating ψ. We used the power method (Golub &
Van Loan, 1996) which is an iterative technique based
on the definition ψT Pteleport = ψT . Starting with an
initial guess for ψ, the vector is multiplied by Pteleport

to get a new estimate. The process repeats until ψ con-
verges within a specified tolerance. The convergence
rate depends on the gap between the first and second
eigenvalues. The power method converged in less than
one second in our experiments on graphs with fewer
than 1000 vertices. Although scalability is an issue for
very large graphs, several algorithms have been pro-
posed to speed up this computation (this effort is at-
tributable to the success of Google’s PageRankTMthat
calculates ψ for the web graph).

3.2. Related Work

The directed Laplacian has been applied by Zhou et al.
(2005) to perform semi-supervised learning in the con-
text of web page classification. The Rayleigh quotient
was shown to enforce smoothness of the labels assigned
to the vertices. Experiments showed a significant im-

Constructing Basis Functions from Directed Graphs for Value Function Approximation

provement in accuracy by using a directed graph com-
pared to an undirected graph. This paper investigates
whether directionality plays a similarly important role
for value function approximation.

4. Experiments

Experiments were conducted in discrete and continu-
ous domains. Samples were generated from the do-
mains using a random policy, but more intelligent
forms of exploration could also be used. A directed
graph was constructed from the samples where vertices
correspond to state variables. The digraph construc-
tion followed along the lines discussed in (Mahadevan
et al., 2006) with a slight difference for the continuous
domain (discussed in detail below). In the discrete do-
main, directed edges were added for actual state tran-
sitions seen in the training episodes. In the continuous
domain, the definition of directed edges was general-
ized to respect the effects of actions. After building
the graph, the combinatorial Laplacian was formed us-
ing the two types of symmetrization, 1

2 (ΨP + P TΨ)
and 1

2 (W + WT), with a probability of not teleport-
ing η = 0.99. Note the Laplacian basis functions cor-
respond to state embeddings φ(s); these embeddings
were copied for each action yielding φ(s, a). A policy
was learned using the RPI algorithm and then evalu-
ated to compare the two symmetrizations.

The next two sections provide domain specific details.

4.1. Discrete Grid

We tested a 200 state grid world MDP shown in Figure
1, where all actions are reversible except for the two di-
rected doorways which connect the 10×10 rooms. The
states SA and SB are labeled in the figure for ease of
exposition throughout the paper. The four directional
actions are stochastic. An action is successful with
probability 0.9, whereas a failed action results in the
agent transitioning (uniformly at random) according
to one of the other three actions. The agent receives a
reward of +100 upon reaching the goal state SG and
0 otherwise. The discount factor was set to γ = 0.95.
Although there are only two non-reversible actions in
this domain, they are in key locations which give the
agent access to large regions of the state space. The
optimal value function for this domain is shown in Fig-
ure 2. In particular, notice the large discontinuity in
the value function from state SA to SB .

The RPI learning algorithm was run with samples from
800 training episodes. Each episode began with the
agent in a random state. The agent followed a ran-
dom policy that terminated either upon reaching SG

or after 20 steps were exceeded. 800 episodes were
chosen because this often resulted in each state being
visited at least once. We varied the number of basis
functions the RPI algorithm used from 5 to 50. Since
more complex functions can be represented given a
larger basis set, the experimental results allow compar-
ison of the two symmetrizations with varying degrees
of basis space complexity.

BAG

Figure 1. Directed two room grid MDP where the arrows
represent non-reversible actions. SG is the goal state.
States SA and SB are labeled for ease of exposition.

20

40

60

80

100

Figure 2. Optimal value function for the grid MDP.

4.2. Inverted Pendulum

The inverted pendulum is a continuous control prob-
lem consisting of a pendulum attached to a cart. The
goal is to learn a policy for balancing the pendulum
by applying force to the cart. The state space can
be modeled using two dimensions: θ, the vertical an-
gle of the pendulum, and θ̇, the angular velocity of
the pendulum. There are three actions corresponding
to a force of −50, 0, and +50 Newtons with additive
noise generated from a uniform distribution over the
range −10 to +10. The dynamics are governed by the
following nonlinear equation

θ̈ =
g sin(θ) − 1

2αmlθ̇2 sin(2θ) − α cos(θ)u
4
3 l − αml cos2(θ)

Constructing Basis Functions from Directed Graphs for Value Function Approximation

where u is the noisy action, g = 9.8 m/s2 is gravity,
m = 2 kg is the mass of the pendulum, M = 8 kg is
the mass of the cart, l = 0.5 m is the length of the pen-
dulum, and α = 1/(m+M). The simulation time step
was set to 0.1 seconds. The episode ends and the agent
receives a reward of −1 when |θ| ≥ π/2. All other ac-
tions result in a reward of 0. The discount factor was
set to γ = 0.95. There are many non-reversible actions
that occur when θ exceeds a tipping point from which
none of the actions can keep the pendulum upright.

In contrast to the discrete MDP experiments, the in-
verted pendulum experiments were run with a fixed
number of basis functions (8) and a varying number
of training episodes (5 to 150). We did this because
policies tended to be more binary in nature, either
learned perfectly or not at all. Only eight basis func-
tions were used because of the value function’s sim-
plicity. Each training episode began with the agent
in state [θ, θ̇] = [0, 0]. The agent followed a random
policy that typically lasted ≈10 steps before the pen-
dulum fell.

Digraph construction in continuous domains is more
challenging than in discrete domains. After gener-
ating the samples, we subsampled the data using a
simple greedy procedure: starting with the null set,
add samples to the subset that are not within a spec-
ified distance (0.2 in our experiments) to any sam-
ple currently in the subset. A maximal subset is re-
turned when no more samples can be added. We used
a weighted Euclidean distance metric to compute the
distance between two states. The weight was 3 for θ
and 1 for θ̇. This produced a more equal range for the
two dimensions. A graph was then constructed over
the subsampled points by connecting each vertex to
its k = 25 nearest neighbors. Each edge was assigned
a weight using the Gaussian kernel with σ = 1.5 and
the weighted Euclidean distance between the vertices.
This is nearly identical to the procedure outlined in
(Mahadevan et al., 2006) (technique E(2) for the edges
and W (2) for the weights) except we used the weighted
Euclidean distance. We then added one more step to
the graph construction. Edges that do not respect the
directionality of the three actions were pruned. We
used cosine similarity with edges corresponding to vec-
tors to determine if an edge was similar in direction to
at least one of the actions. If the edge was outside of a
specified limit (θ∗=50◦), then it was removed from the
graph. This results in a directed graph that captures
the structure of the dynamics. The exact algorithm for
this construction is shown in Figure 3. Note the vec-
tors v and va in the algorithm correspond to changes
in the state values. This simple approach works well in
this two dimensional domain, but more robust meth-

ods should be used for high dimensional state spaces.
Lastly, the embeddings for novel states not contained
in the subsampled set were created using the Nyström
extension (Williams & Seeger, 2001). This method in-
terpolates based on the embeddings of “nearby” states
in the subsampled set.

Directed Graph Construction (S, S ′

a, k, D, σ, θ∗):
// S: States in subsample set (each state Si ∈ "d)
// S′

a: Next state upon taking action a in state S,
// one for each discrete action
// k: Number of nearest neighbors
// D: Distance metric for comparing two states
// σ: Distance parameter for assigning weights
// θ∗: Threshold for pruning edges

1. For each state Si ∈ S, create an edge from
Si to its k nearest neighbors

2. Assign weight e−
D(Si,Sj)

σ to each edge

3. Prune edges based on directionality
For each edge Si → Sj :

v = (Sj − Si)
For each action a:

va = (S′

i,a − Si)

θ = min
a

acos

(

v · va

‖v‖ ‖va‖

)

If (θ > θ∗)
Remove edge Si → Sj

Figure 3. Pseudo-code for directed graph construction in
continuous domains with discrete actions.

5. Results

The experimental results are discussed in the next two
sections.

5.1. Discrete Grid

Learned policies were evaluated to determine the dis-
counted reward given a uniform initial state distribu-
tion. Thus, a policy was tested by starting an agent
once in each of the 200 states and letting it run un-
til reaching the goal or exceeding 100 steps. The re-
ward was averaged over the 200 different starting po-
sitions. These experiments were repeated 100 times.
The median over the 100 runs is shown in Figure 4
with error bars corresponding to the first and third
quartiles. Performance for both symmetrizations was
poor when using less than 20 basis functions. The
1
2 (ΨP + P TΨ) symmetrization consistently outper-
formed the 1

2 (W + WT) symmetrization when using
more than 20 basis functions. The first and third quar-
tiles indicate the policies ranged widely when using less
than 30 basis functions, but became more consistent
when using more than 30.

Constructing Basis Functions from Directed Graphs for Value Function Approximation

By placing the goal state next to state SA, there was
a significant difference in the value function from SA

to SB . This seems like an ideal case for the directed
Laplacian to perform well. The value function would
not have this discontinuity if the goal state were in the
opposite room adjacent to SB . We ran experiments
with this setup and achieved similar results to those
shown in Figure 4 although the gap between the curves
was not quite as large. Thus, policies learned using the
1
2 (ΨP + P TΨ) symmetrization are better even if the
value function is smooth across the doorways.

0 10 20 30 40 500

5

10

15

20

25

30

35

40

45

50

55

Number of Basis Functions

Di
sc

ou
nt

ed
 R

ew
ar

d

(W+WT)/2

(Ψ P + PT Ψ)/2

Optimal

Figure 4. Median performance over 100 runs for the dis-
counted reward in the grid domain. Error bars correspond
to the first and third quartiles.

5.2. Inverted Pendulum

The experiments were repeated 50 times with a vary-
ing number of training episodes. The learned policies
were tested 10 times for a maximum of 3000 steps, with
the final result being the average (over 10 tests) num-
ber of balancing steps. The median over the 50 runs
is shown in Figure 5 with the error bars corresponding
to the first and third quartiles. The 1

2 (ΨP + P TΨ)
symmetrization required much less experience in or-
der to learn an effective policy. With only 50 train-
ing episodes, the policy rarely dropped the pendulum
(the first quartile is at the maximum 3000 steps). On
the other hand, the 1

2 (W + WT) symmetrization per-
formed well with 150 training episodes, but with a
much greater variance in performance (the first quar-
tile is only at 200 steps).

6. Analysis

In this section, we address why the 1
2 (ΨP + P TΨ)

symmetrization outperformed the 1
2 (W + WT) sym-

metrization in these two domains. The performance
gain is best explained by analyzing the basis function

0 20 40 60 80 100 120 140 1600

500

1000

1500

2000

2500

3000

3500

Number of Training Episodes

Nu
m

be
r o

f B
al

an
cin

g
St

ep
s

(Ψ P + PT Ψ)/2

(W + WT)/2

Figure 5. Median performance over 50 runs in the inverted
pendulum domain. Error bars correspond to the first and
third quartiles.

properties. Basis functions should be smooth with re-
spect to the geometry of the state space because value
functions are typically smooth over the state space.
The smoothness of value functions is due to the Bell-
man equation, where the action value at a state is a
linear function of the values at neighboring states.

The smoothness of a function f on a graph can be
measured by the Sobolev norm

‖f‖2
H 2 = ‖f‖2

2 + ‖∇f‖2
2

=
∑

v

|f(v)|2d(v) +
∑

u∼v

Wuv (f(u) − f(v))2 .

The second term in the Sobolev norm is the Dirich-
let sum of the function, which for the Laplacian of a
symmetric weight matrix is equal to ‖∇f‖2

2 = 〈f, Lf〉.
Functions that are smooth over adjacent vertices pro-
duce a small Dirichlet sum.

The Dirichlet sum for the 1
2 (W + WT) symmetriza-

tion of a directed graph with a nonsymmetric weight
matrix W is given in Equation 3. Equation 4 shows
the Dirichlet sum for the 1

2 (ΨP + P TΨ) symmetriza-
tion. The major difference between the equations is
that the directed Laplacian weights the squared dif-
ferences by the invariant distribution ψ. This means
a vertex with a large value of ψ contributes more to
the Dirichlet sum than one with a small value of ψ.
Thus, if the Dirichlet sum of f is to be small (i.e. f is
smooth), then f(u) ≈ f(v) when ψu is large relative
to other vertices and there is an edge from u to v.

〈f, Ldf〉 =
∑

u→v∈E

Wuv(f(u) − f(v))2 (3)

〈f, Ldf〉 =
∑

u→v∈E

ψu

Duu
Wuv(f(u) − f(v))2 (4)

Constructing Basis Functions from Directed Graphs for Value Function Approximation

We examine the grid domain in more detail to demon-
strate how the Perron vector plays a significant role
in defining the smoothness of the basis functions. We
chose to present the results for the discrete domain
instead of the continuous domain because it is easier
to visualize the basis functions, but the same concepts
hold in both domains. Figure 6 shows the Perron vec-
tor for the grid. There is a relatively large difference
in the value at state SA (ψSA

= 0.0021) versus SB

(ψSB
= 0.0079).

2

3

4

5

6

7

8
x 10−3

Figure 6. Perron vector, ψSA = 0.0021 and ψSB = 0.0079.

To visualize the effect of the Perron vector on function
smoothness, we present the second eigenvector of the
combinatorial Laplacian using the two different types
of symmetrization in Figure 7. The second eigenvector
of the Laplacian is the smoothest function orthogonal
to the first eigenvector (which is simply a constant
vector for the combinatorial Laplacian). Notice how
state SB in Figure 7(b) has a value very similar to
both states it can reach in one step. On the other
hand, state SA in Figure 7(b) has a very different value
from SB but a similar value to the other two states
it can reach in one step. This effect is not seen in
Figure 7(a), where states SA and SB are constrained
to be similar to each other. The constraint between SA

and SB has affected the value of neighboring states.
The eigenvector is clearly more curved. Although this
distinction may appear small, the difference in policies
derived from these basis functions can be significant.

The low order basis functions of the Laplacian formed
by the 1

2 (W +WT) symmetrization constrain functions
to be smooth across states SA and SB. The low order
basis functions are particularly important for a Fourier
style analysis because their coefficients will be larger
than the coefficients associated with the higher order
basis functions. Thus, constraints introduced in the
low order basis functions are likely to be manifested
in the approximated function. In the grid domain, the

−0.1

−0.05

0

0.05

0.1

(a) 1

2
(W + W T)

−0.1

−0.05

0

0.05

0.1

(b) 1

2
(ΨP + P TΨ)

Figure 7. Second eigenvector of the combinatorial Lapla-
cian with different symmetrization methods.

optimal value function has a large discontinuity from
SA to SB . As expected, the basis functions for the
1
2 (W + WT) symmetrization have a harder time rep-
resenting this gap. Figure 8 shows the optimal value
function projected onto the 10 smoothest basis func-
tions of the combinatorial Laplacian. The approxi-
mate value function in Figure 8(a) is heavily influenced
by the smoothness constraint on SA and SB . An agent
acting according to this value function makes mistakes
in the states surrounding SB (e.g. the agent follows
the value function to state SB where it becomes stuck
since it cannot pass through the door).

20

40

60

80

100

(a) 1

2
(W + W T)

20

40

60

80

100

(b) 1

2
(ΨP + P TΨ)

Figure 8. Projection of the optimal value function onto the
first 10 eigenvectors of the combinatorial Laplacian with
different symmetrization methods.

The smoothness assumption can be tied back to the
Bellman equation. State SB will never be a direct
function of SA in the Bellman equation since there is
no action taking SB to SA (although there may be a
longer temporal dependence). Conversely, SA may be
a function of SB depending on the reward structure
of the domain. This situation only occurs when there
are non-reversible actions. When there are reversible
actions between pairs of states, the value function is
likely to be smooth across them assuming a relatively
large discount factor. Thus, assumptions of smooth-
ness should be less restrictive when dealing with non-
reversible actions.

Constructing Basis Functions from Directed Graphs for Value Function Approximation

7. Conclusions and Future Work

This paper explored the use of the recently introduced
directed graph Laplacian to construct basis functions
for value function approximation. The definition of the
directed Laplacian corresponds to one type of weight
matrix symmetrization, 1

2 (ΨP + P TΨ). We compared
this form with the simpler 1

2 (W + WT). Results in
both discrete and continuous domains indicate the di-
rected Laplacian outperforms the simple symmetriza-
tion. This finding was explored analytically using the
Dirichlet sum of the Laplacian matrices. Each vertex
Vu in the Dirichlet sum is weighted by the value of
the invariant distribution ψVu

. The Laplacian basis
functions are smoother across pairs of states for which
there is a directed edge from Vu to Vv and ψVu

is large.
The effect on the smoothness of the basis functions was
demonstrated in the discrete grid domain.

Value functions are smooth with respect to the dy-
namics of the environment as dictated by the Bellman
equation. Thus, it is more natural to use a directed
graph to model the topology of the state space for
non-reversible MDPs. Value functions can have dis-
continuities across pairs of states with non-reversible
actions. The smoothness assumption should be less
restrictive for these pairs.

We plan to explore properties of the basis functions
with respect to the Bellman equation. The invariant
distribution of the random walk helped to define a bet-
ter basis space in these experiments, but a theoretical
analysis would make this relationship more clear.

One of the main challenges for the Laplacian frame-
work is scalability to large MDPs. Recent work (Johns
et al., 2007) has proposed to address this issue by fac-
torizing the transition matrix P into smaller matrices
using the Kronecker product. The basis functions can
then be represented more compactly on the smaller
matrices. This approach can work with the directed
graph Laplacian. We are also exploring matrix sparsi-
fication as another route to scaling.

8. Acknowledgements

We thank Sarah Osentoski and the anonymous review-
ers for valuable comments that improved the paper.
This research was funded in part by the National Sci-
ence Foundation under grant NSF IIS-0534999.

References

Agaev, R., & Chebotarev, P. (2005). On the spectra of
nonsymmetric Laplacian matrices. Linear Algebra and
Its Applications, 399, 157–168.

Chung, F. (1997). Spectral Graph Theory. Number 92
in CBMS Regional Conference Series in Mathematics.
Providence, RI: American Mathematical Society.

Chung, F. (2005). Laplacians and the Cheeger inequailty
for directed graphs. Annals of Combinatorics, 9, 1–19.

Golub, G., & Van Loan, C. (1996). Matrix Computations.
Baltimore, MD: Johns Hopkins Univ. Press. 3rd edition.

Johns, J., Mahadevan, S., & Wang, C. (2007). Compact
spectral bases for value function approximation using
Kronecker factorization. Proceedings of the 22nd Na-
tional Conference on Artificial Intelligence.

Keller, P., Mannor, S., & Precup, D. (2006). Automatic ba-
sis function construction for approximate dynamic pro-
gramming and reinforcement learning. Proceedings of
the 23rd International Conf. on Machine Learning (pp.
449–456).

Lagoudakis, M., & Parr, R. (2003). Least-squares pol-
icy iteration. Journal of Machine Learning Research, 4,
1107–1149.

Mahadevan, S. (2005). Representation policy iteration.
Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence (pp. 372–379).

Mahadevan, S., Maggioni, M., Ferguson, K., & Osentoski,
S. (2006). Learning representation and control in con-
tinuous Markov decision processes. Proceedings of the
21st National Conference on Artificial Intelligence.

Menache, I., Mannor, S., & Shimkin, N. (2005). Basis
function adaptation in temporal difference reinforcement
learning. Annals of Operation Research, 134, 215–238.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1998).
The PageRank citation ranking: Bringing order to the
web (Technical Report). Stanford Digital Library Tech-
nologies Project.

Petrik, M. (2007). An analysis of Laplacian methods for
value function approximation in MDPs. Proceedings of
the 20th International Joint Conference on Artificial In-
telligence (pp. 2574–2579).

Smart, W. (2004). Explicit manifold representations for
value-function approximation in reinforcement learning.
Proceedings of the 8th International Symposium on AI
and Mathematics.

Sutton, R., & Barto, A. (1998). Reinforcement learning.
Cambridge, MA: MIT Press.

Williams, C., & Seeger, M. (2001). Using the Nyström
method to speed up kernel machines. Advances in Neural
Information Processing Systems 13 (pp. 682–688).

Zhou, D., Huang, J., & Schölkopf, B. (2005). Learning from
labeled and unlabeled data on a directed graph. Proceed-
ings of the 22nd International Conference on Machine
Learning (pp. 1036–1043).

