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Abstract

In this paper we introduce proto-transfer
leaning, a new framework for transfer learn-
ing. We explore solutions to transfer learning
within reinforcement learning through the
use of spectral methods. Proto-value func-
tions (PVFs) are basis functions computed
from a spectral analysis of random walks
on the state space graph. They naturally
lead to the ability to transfer knowledge and
representation between related tasks or do-
mains. We investigate task transfer by us-
ing the same PVF's in markov decision pro-
cesses (MDPs) with different rewards func-
tions. Additionally, our experiments in do-
main transfer explore applying the Nystrom
method for interpolation of PVFs between
MDPs of different sizes.

1. Problem Statement

The aim of transfer learning is to reuse behavior by us-
ing the knowledge learned about one domain or task
to accelerate learning in a related domain or task. The
new framework of proto-transfer learning transfers rep-
resentation from one domain to another. This trans-
fer entails the reuse of eigenvectors learned from one
graph in another. We explore how to transfer knowl-
edge learned on the source graph to a similar graph
by modifying the eigenvectors of the Laplacian of the
source domain to be reused for the target domain.

In this paper we explore solutions to transfer learning
within reinforcement learning (Sutton & Barto, 1998)
through spectral methods. (Foster & Dayan, 2002)
study the task transfer problem by applying unsuper-
vised, mixture model, learning methods to a collection
of optimal value functions of different tasks in order
to decompose and extract the underlying structure.
Proto-value functions (PVFs) are a natural abstrac-
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tion since they condense a domain by automatically
learning an embedding of the state space based on its
topology (Mahadevan, 2005). PVFs lead to the abil-
ity to transfer knowledge about domains and tasks,
since they are constructed without taking reward into
account.

We define task transfer as the problem of transfer-
ring knowledge when the state space remains the same
and only the reward differs. For task transfer, task-
independent basis functions, such as PVFs, can be
reused from one task to the next without modifica-
tion. Domain transfer refers to the more challenging
problem of the state space changing. This change in
state space can be a change in topology (i.e. obsta-
cles moving to different locations) or a change in scale
(i.e. a smaller or larger domain of the same shape).
For domain transfer, the basis functions may need to
be modified to reflect the changes in the state space.

In this paper, we investigate task transfer in discrete
domains by reusing PVFs in MDPs with different re-
ward functions. For domain transfer, we apply the
Nystrom extension for interpolation of PVFs between
MDPs of different sizes (Mahadevan et al., 2006). Pre-
vious work has accelerated learning when transferring
behaviors between tasks and domains (Taylor et al.,
2005), but we transfer representation and reuse knowl-
edge to learn comparably on a new task or domain.

2. Framework

Markov Decision Process.

A Markov decision process (MDP) M =
(S, A, P, R%,,) is defined by a set of states S C R%, a
set of discrete actions A, a transition model P%, spec-
ifying the distribution over future states s’ when an
action a is performed in state s, and a corresponding
reward model RY,, specifying a scalar cost or reward.
The state-action value function Q™ (s, a) of any policy
7w can be found for all state-action pairs by solving
the linear system of the Bellman equations:

Z RSS—F’}/Z (a',s"Q™ (s, ad)].

s’eS a’€A
(1)
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Proto-value Functions.

Proto-value functions (PVFs) are an orthonormal ba-
sis spanning all value functions on a state space.
PVFs are constructed as follows: 1) from an initial
random walk, create an adjacency matrix which re-
flects the topology of the state space; 2) compute the
graph Laplacian of the adjacency matrix; 3) use the
smoothest k eigenvectors (ranked by eigenvalue) of this
graph Laplacian as PVFs. Thus, PVFs are a bases
which respect the topology of the state space (See Fig-
ure 3).

More formally, let G = (V, E, W) denote a weighted
undirected graph with vertices V, edge set E and
weights w;; on edge (i,7) € E. The degree of a vertex
v is denoted as d,. The adjacency matrix A can be
viewed as a binary weight matrix describing the con-
nectivity of the graph. Let D be the valency matrix—a
diagonal matrix whose entries are the row sums of A.
The nomalized Laplacian £ of the graph G is defined
as L =D~ 2(D — A)D~ 2. The states are the vertices,
and edges connect states that are adjacent in the state
space (i.e. a state that can be reached from that state);
specifically,

1—% ifu=wvandd, #0
L(u,v) = —\/di—d if w and v are adjacent (2)

6 otherwise

L is a symmetric self-adjoint operator, and its spec-
trum (eigenvalues) lie in the interval A € [0,2]. PVFs
are the eigenvectors ¢;(L), such that Lo; = A;¢;.

Case 1: Task Transfer.

For the task transfer problem, the graph Laplacian £
of source graph Gs and target graph G are the same,
since only the reward function has changed, and their
adjacency matrix A is the same. Thus the eigenvectors
@:(L) of Gg can be directly transferred to Gr (see
Section 3.1).

Case 2: Domain Transfer (topology).

For the domain transfer problem, where the shape of
the state space changes, the connectivity of the graph
Gy is different from that of Gpr and the adjacency
matrix of the target Ar is the adjacency matrix of the
source Ag perturbed by some matrix E, i.e. Ap =
Ag + E. Thus, we can view the differences in the
corresponding Laplacians of the source and target, Lg
and L as:

Ls=Dg?(Ds — Ag)Dg
Ly = Dp*(Dr — [As + E))Dy,

[N

Nl=

We are currently exploring matrix perturbation the-
ory to quantify how the eigenvalues and eigenvectors

¢i(Lr) change (Figure 2) based on the perturbation £
(i.e. changes in the connectivity of the graph) (Stew-
art & Sun, 1990). An example of topological domain
transfer is shown in Figure 1, where Figure 1(a) is the
source domain and Figure 1(b) is the target domain.

R R R
(a) 8x8 domain (b) 8x8 topologi- (c) 10x10 scaling do-
transfer source. cal domain trans- main transfer target.
fer target.

Figure 1. Two-room gridworld examples of topological and
scaling domain transfer.

—
(a) Spectrum of (b) Spectrum of (¢) Spectrum of
8x8 domain trans- 8x8 domain trans- 10x10 domain
fer source. fer target. transfer target.

Figure 2. Spectrums (eigenvalues) of the two-room grid-
world examples of topological and scaling domain transfer.

(c) 37 PVF

(a) 1°* PVF

Figure 3. Example PVF's of the 10x10 two-room gridworld
(Figure 1(c)). Notice how the PVFs capture the structure
inherent to the state space.

Case 3: Domain Transfer (scale).

The domain transfer problem where the size of the
state space changes, focuses on the expansion of the
connectivity of the graph G g, where the pattern of the
adjacency graph Ag is retained in Ap while the sizes
of the matrices differ. We use the Nystréom method
to extend the eigenfunctions ¢(Lg) computed on Ag
to the new states of Ar to create ¢(Lr) (see Section
3.2). An example of scaling domain transfer is shown
in Figure 1, where Figure 1(a) is the source domain
and Figure 1(c) is the target.

Nystrém Method.
The Nystrom method interpolates the value of eigen-
vectors computed on known sample states to novel
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states, and is an application of a classical method used
in the numerical solution of integral equations (Baker,
1977). We use a nearest neighbor distance metric to
determine which states are close to another, while re-
specting the topology of the state space. The Nystrom
method is applied to the approximation of the eigen-
functions of the graph Laplacian where x is a new ver-
tex in the graph and ¢;(y) are the eigenvectors of a
known state (vertex) which is close to x:

() = (r,y)
¢i(@) = 70 ; d(x)d(y)@(y), (3)

where d(z) = >
close z is to y.

g~z W(2,y), and w(z, y) measures how

3. Algorithmic Details and
Experimental Results

We use source and target to describe the domain we
transfer knowledge from and to, respectively. We in-
clude the term pure when the PVFs are created from
and used for learning on the same (source) graph, while
transfer will refer to the case in which the PVFs are
created on a (source) graph and transferred to be used
for learning on another (target) graph. Least-squares
Policy Iteration (LSPI) (Lagoudakis & Parr, 2003) is
used to learn the control policy, where the underly-
ing subspace for approximating the value function is
spanned by the learned PVF's. The algorithmic details
are provided in Figure 4.

3.1. Task Transfer

These experiments investigate transfer learning using
PVFs, where the state space and basis functions are
constant, but the reward function is varied. Since this
method creates basis functions based on the actual
topology of the state space, it is a natural solution
to this task transfer problem. These 12x12 one-room
gridworlds have zero reward for non-goal states; the
goal has reward of 100. We use the ’Isqfast’ algorithm
in LSPI, a discount of 0.9, 130 eigenvectors, and allow
20 iterations. We collect samples using a random walk
of a maximum of 200 episodes, each with a maximum
of 150 steps and random start state. The learned pol-
icy is evaluated allowing a maximum of 50 steps, and
averaged over 20 runs. Transferring the PVF's learned
from a grid with reward in the upper right-hand cor-
ner to grids with different rewards (reward in the lower
left-hand corner and with reward in the middle) retains
100% probability of success. (Results not shown.)

Proto-transfer (doms,domr,Ss 1y, J, N, €k, P):

1. Representation Learning Phase: Perform a
random walk of J trials, each of maximum N steps
on the source domain domg, and store the states
visited in the dataset Dg.

(a) Create PVFs for the source domain: Build an
undirected weighted graph G from D where
edges can be inserted between a pair of points
x; and «; if , z; is among the k nearest neigh-
bors of x; and all edges have weight 1. Con-
struct the normalized Laplacian £ on graph
G as in Equation 2.

(b) Compute the k smoothest eigenvectors of £
on the graph G, and collect them as columns
of the basis function matrix ¢, a Sg X k ma-
trix, where Ss is the number of states in the
source. The embedding of a state action pair
¢(s,a) where s € D is given as e, ® ¢(s),
where e, is the unit vector corresponding to
action a, ¢(s) is the s row of ®, and ® is
the tensor product.

2. Control Learning Phase: Perform a random
walk of J trials, each of maximum N steps on the
target domain domr, and store the states visited
in the dataset D;. Initialize w® € R* to a random
vector.

Repeat the following steps:

(a) Transfer PVFs from source to target do-
main: Set i «— i + 1. For each transition
(s¢, at, st, ay, ¢) € Dr, compute low rank ap-
proximations of matrix A and b as follows:

AT = A"t @50, a0) (d(se, ae) — v(sh, at))”
it =pt + O(st,ae)re
where ¢(st,a:) is approximated using the

Nystrom extension (Equation 3) when s; ¢
Ds (necessary for domain transfer only).

(b) Solve the system Aw® = b
3. until [|w’ —w'? <e

4. Return Q” =>. w'® as the approximation to the
optimal value function.

Figure 4. Pseudo-code of the proto-transfer learning algo-
rithm for both task and domain transfer learning.

3.2. Domain Transfer (scale)

These experiments investigate transfer learning using
PVFs, where the reward function is constant and the
basis functions are interpolated to span a larger state
space. This is an important type of transfer learning
since the dynamics of a gridworld with no obstacles
are the same regardless of scale; the basic topology is
a square. An agent should be able to transfer the rep-
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Table 1. Scaling domain transfer results for experiments in which the PVFs for the 10x10 grid (pure) are learned and
used in grids with different sized state spaces (transfer). 4 nearest neighbors, 100 PVF, and reward in state 1 (lower left)

| | 10x10 (pure) ]| 11x11 (transfer) | 12x12 (transfer) || 15x15 (transfer) | 20x20 (transfer) |

[ Prob. of success || 100% [ 91.6%

[ 94.2%

[ 96% [ 100% |

resentation it has learned in one gridworld to another.
The Nystrom extension is performed during this do-
main transfer (see Figure 4).

The PVFs are learned on a 10x10 one-room gridworld
and interpolated using the Nystrom extension to be
transfered to larger domains, up to a 20x20 gridworld.
Other parameters are identical to the task transfer ex-
periment. Table 1 shows that extending the basis func-
tions to larger state spaces using the Nystrém method
works well (100% for larger magnifications). The re-
sults are consistent as long as the reward is not in or
adjacent to the area being extended.

4. Conclusions

We have introduced a new framework for transfer
learning called proto-transfer learning. Using spectral
methods allows reward-independent learning which
naturally leads to task transfer. This method works
well because PVF's reflect the topology of the state
which is barely modified (if at all) by a change in the
reward function. However, when the state space is
scaled up in domain transfer, the PVFs must be ex-
tended using the Nystrom method which estimates the
PVFs of new states based on that of near-by known
states. The contribution of this paper is in using spec-
tral methods to successfully transfer representation be-
tween domains with different reward functions and dif-
ferent state spaces.

5. Future Work

Future work includes further experiments with domain
transfer, including using matrix perturbation theory
to explore the casein which the shape of the domain
changes. We are examining homomorphisms between
graphs to further formalize proto-transfer learning.
We are also working on task and domain transfer in
continuous domains, where the dynamics of the do-
main may change (i.e. the mass or length of the in-
verted pendulum).

We have shown that using PVFs, an agent can trans-
fer knowledge learned in a smaller gridworld to larger
gridworlds. One exciting application for this transfer
is representation learning. Can an agent learn which
type of domain it is in? If we have different domains as

sources for transfer (i.e. a one or two room gridworld,
a torroid, a chain, etc. or more abstract domains) the
agent can attempt proto-transfer from each of these
domains, and the matching domain should have a high
probability of success. Therefore, which ever source
domain’s interpolated PVFs yield the best results on
our new domain, we can conclude this new domain is
of that the same type. This can give us a reusable
representation of different domains, which can save an
agent time from relearning representations and knowl-
edge about domains it has already visited. For exam-
ple, imagine a robot exploring a school. Once it has
learned the representations of an office, a classroom,
and a closet, it can recognize a new room and reuse
the knowledge it already has about that sub-domain.
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