Representation Discovery in Planning using Harmonic Analysis *

Jeff Johns and Sarah Osentoski and Sridhar Mahadevan
Computer Science Department
University of Massachusetts Amherst
Ambherst, Massachusetts 01003
{j ohns, sosent os, mahadeva}@s. umass. edu

Abstract

This paper summarizes ongoing research on a frame-
work for representation learning using harmonic analy-
sis, a subfield of mathematics. Harmonic analysis in-
cludes Fourier analysis, where new eigenvector rep-
resentations are constructed by diagonalization of op-
erators, and wavelet analysis, where new representa-
tions are constructed by dilation. The approach is pre-
sented specifically in the context of Markov decision
processes (MDPs), a widely studied model of plan-
ning under uncertainty, although the approach is appli-
cable more broadly to other areas of Al as well. This
paper describes a novel harmonic analysis framework
for planning based on estimating a diffusion model that
models flow of information on a graph (discrete state
space) or a manifold (continuous state space) using a
discrete form of the Laplace heat equation. Two meth-
ods for constructing novel plan representations from
diffusion models are described: Fourier methods diago-
nalize a symmetric diffusion operator called the Lapla-
cian; wavelet methods dilate unit basis functions pro-
gressively using powers of the diffusion operator. A
new planning framework called Representation Policy
Iteration (RPI) is described consisting of an outer loop
that estimates new basis functions by diagonalization or
dilation, and an inner loop that learns the best policy
representable within the linear span of the current ba-
sis functions. We demonstrate the flexibility of the ap-
proach, which allows basis functions to be adapted to a
particular task or reward function, and the hierarchical
temporally extended nature of actions.

M otivation

The ability to learn and modify representations has long
been considered a cornerstone of intelligence. The challenge
of representation learning has been studied by researchers
across a wide variety of subfields in Al and cognitive sci-
ence, from computer vision (Marr 1982) to problem solv-
ing (Amarel 1968). In this paper, we present our ongoing
research on a general framework for representation discov-
ery that builds on recent work in harmonic analysis, a sub-
field of mathematics that includes traditional Fourier and

*This research was supported in part by the National Science
Foundation under grant NSF 1IS-0534999.
Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

wavelet methods (Mallat 1998). Recent work in harmonic
analysis has extended the scope of these traditional analytic
tools studied in Euclidean spaces to more general discrete
spaces such as graphs and continuous spaces such as man-
ifolds. For example, spectral graph theory (Chung 1997)
studies the properties of the Laplacian, whose eigenvectors
can be viewed as a Fourier basis on graphs. Even more re-
cently, research in computational harmonic analysis has ex-
tended multiresolution wavelet methods to graphs (Coifman
& Maggioni 2006).

We build on these advances in harmonic analysis by
showing how agents embedded in stochastic environments
can learn novel representations for planning, and then sub-
sequently modify or augment these representations to take
into account rewards or the nature of actions. Our approach
is actually much more broadly applicable to a wide vari-
ety of other areas in Al, including perception, information
extraction, and robotics, but we confine our presentation to
planning under uncertainty.

More generally, we believe this approach has fundamen-
tal and far-reaching implications for many areas of artifi-
cial intelligence. Rather than searching in a fixed repre-
sentation space, it yields techniques that dynamically con-
struct new representation spaces that greatly simplify the
optimization problem of finding satisficing or optimal so-
Iutions. The framework provides general ways of construct-
ing multiscale representations of stochastic processes such
as Markov chains and Markov decision processes, cluster-
ing data on graphs and manifolds hierarchically, forming
categories in high-dimensional spaces with sparsely labeled
training instances, and exploiting the availability of unla-
beled examples. Our approach also builds on recent work
in machine learning that focuses on modeling the nonlinear
geometry of the space underlying many real-world datasets.
Nonlinear dimensionality reduction methods have recently
emerged that empirically model and recover the underly-
ing manifold, for example multidimensional scaling (Borg
& Groenen 1996), LLE (Roweis & Saul 2000), ISOMAP
(Tenenbaum, de Silva, & Langford 2000), Laplacian eigen-
maps (Belkin & Niyogi 2003), and diffusion maps (Coifman
et al. 2005). These techniques can be significantly more
powerful than well-studied linear Euclidean subspace meth-
ods, such as principal components analysis (Jolliffe 1986).

Representation Learning in Markov Decision
Processes

Recent work on Representation Policy Iteration (RPI) (Ma-
hadevan 2005) has examined a novel framework for solv-
ing Markov decision processes (MDPs) by simultaneously
learning both the underlying representation for representa-
tion and the (approximate) optimal policies. In this paper
we specifically examine how this technique can accommo-
date change in the agents policy or environment. We briefly
review MDPs, and then discuss basis function construction
and how the bases can be adapted to (1) accommodate new
information, and (2) plan at different levels of abstraction.
Lastly, we wrap up with some conclusions and plans for fu-
ture work.

A MDP is defined as M = (S, A, P%,, R%,,) where S is
the set of states, A is the set of actions, and P, is the one-
step transition probability and R, is the expected reward
for transitioning from state s to s’ under action a. A policy
7 is a mapping from states to actions. The optimal action
value function Q* (s, a) satisfies the Bellman equation:

Q*(s,a) = Z P2, (R, + 7 max Q*(s',a")).

An exact representation stores one value for each state-
action pair. This table lookup approach scales exponen-
tially with the dimensionality of the state space. If the state
space is continuous, then an exact representation is impossi-
ble and some form of approximation is necessary. In either
of these situations (large discrete state space or continuous
state space), the challenge is to find a useful representation
that scales to large problems and allows for generalization.
The most typical approach is to approximate the value func-
tion using a set of k basisfunctions (k < |S| x |A]) ¢(s,a)
with a linear architecture
k

Q™ (s,a;w) = Z ®;(s, a)w,

j=1

where the weights w are tuned to minimize an error met-
ric (often the Lo error). The set of basis functions & =
[p1, P2, ... ,¢] are defined over all possible state-action
pairs that could be generated in the MDP.

Given the basis functions, there are several algorithms for
learning the value function from samples of experience. Ex-
amples include temporal difference (TD) learning (Sutton
1988), least squares TD (LSTD) (Boyan & Moore 1995),
and the LSTDQ algorithm in least squares policy iteration
(Parr et al. 2007). In this paper, we do not focus on the
learning algorithm. Instead, we emphasize how to automat-
ically learn and adjust the basis functions.

Basis Functions from Diffusion Models

Many techniques for value function approximation have
been studied. The most common technique is linear function
approximation where the value functions are represented
as a linear combination of basis functions. CMACs, ra-
dial basis functions (RBFs), and polynomial encodings (Sut-
ton & Barto 1998) are basis functions that are frequently

used. These basis functions can be effective but require do-
main specific hand engineering. Recently several techniques
have been proposed to automatically construct basis func-
tions. These methods can be categorized as either policy
dependent (Keller, Mannor, & Precup 2006; Petrik 2007;
Parr et al. 2007) or policy independent (Smart 2004;
Mahadevan 2005).

The policy dependent approaches all incorporate reward
into the building of the basis functions. Keller et al. (Keller,
Mannor, & Precup 2006) use the Bellman error to guide the
mapping from a high dimensional state space to a lower di-
mensional space. The basis functions were created by aggre-
gating states in the low dimensional space. The technique
adaptively adjusts the basis subspace to represent more of
the approximate value function by adding new basis func-
tions that are tuned to the current Bellman error. Petrik
(Petrik 2007) uses the probability transition function and
the reward model to create basis functions from the Krylov
space vectors. Parr et al. (2007) use the Bellman error to
create basis functions. After each iteration of policy eval-
uation, a new basis function is added corresponding to the
current estimate of the Bellman error.

In contrast, policy independent basis functions aim to cap-
ture intrinsic domain structure that should be useful for rep-
resenting smooth value functions. Both Smart and Mahade-
van propose techniques to model the manifold of the state
space topology. Smart (2004) proposes using charts of a
predefined size were allocated to cover the state space. Each
chart’s embedding function provided the bases for represent-
ing a value function. Mahadevan (2005) proposes model-
ing the state space topology as a graph where the connec-
tivity is represented as a weight matrix W. W is used to
form either the combinatorial or normalized graph Laplacian
(Chung 1997). The low order eigenvectors (i.e. the eigen-
vectors associated with the smallest eigenvalue) are used as
basis functions. These eigenvectors are well suited to rep-
resent smooth functions because the Laplacian eigenvectors
are the smoothest functions defined over the graph and also
capture nonlinearities in the domain.

In this paper we will specifically examine the Laplacian
framework. While this framework traditionally has been
policy independent, we will show that the approach is flexi-
ble enough to adapt the representation as the agent’s policy
changes.

Representation Policy Iteration

First we will briefly review the Representation Policy Itera-
tion (RPI) framework (Mahadevan 2005). Figure 1 sketches
the overall algorithm. This framework consists of three
steps: sample collection, basis learning, and policy learn-
ing. During the sample collection the agent generates a set
of samples D by exploring the state space, typically using a
random walk.

During basis learning the agent first creates a graph G =
(V, E, W) over the state or state-action manifold where V'
is the set of vertices, E is the set of edges where (u,v) € E
denotes an edge from vertex u to vertex v, and W is the
weighted adjacency matrix. It is important to note that the
weights in W do not correspond to the transition probabil-

ities as this would require a significant number of samples.
The basis functions are the & smoothest eigenvectors of the
undirected or directed graph Laplacian. For an undirected
graph the combinatorial graph Laplacian is defined as the
operator

L=D-W (1

where D is a diagonal matrix called the valency matrix
whose entries are row sums of the weight matrix W. The
normalized graph Laplacian is defined as

L=DY2LD~ Y2)

The previous description deals primarily with discrete
MDPs. A few modifications are required to extend this to
the case of continuous MDPs. The first issue that must be
dealt with is how to build the graph on the set of points
that are an element of R continuous space. A graph can
be built by subsampling D and then connecting subsamples
by using a nearest neighbor algorithm. The second issue is
how to extend the basis functions to states that are not in
the graph. This can be done using Nystrom interpolation or
nearest neighbor interpolation. A more detailed description
can be found in Mahadevan et al. (2006).

Work has also been done to investigate different meth-
ods of representing the underlying manifold. Johns and
Mahadevan (2007) demonstrate the effectiveness of creat-
ing basis functions from the directed graph Laplacian. Os-
entoski and Mahadevan (2007) also use the directed graph
Laplacian to create basis functions in state-action space in-
stead of state space. When building the basis functions over
states, the state-action embeddings were created by copying
the functions for every action. This copying is unnecessary
when creating graphs directly over state-action space. Both
techniques demonstrate performance improvements in some
control tasks.

Basis functions of the graph Laplacian have global sup-
port. However, an alternative method of constructing ba-
sis functions over a graph is diffusion wavelets (Coifman
& Maggioni 2006) which provide a general way to con-
struct multiscale basis functions. Diffusion wavelets are
constructed by a dilation process. Basis functions are pro-
duced by taking the powers of the random walk operator,
P, = D~1W. At the most fine resolution, the basis is sim-
ply the unit vector basis set. At the coarsest level, the basis
has global support and corresponds to the lowest frequency
Laplacian eigenfunctions.

The third step is the control learning step. In this step the
agent uses a learning algorithm such as least squares policy
iteration (LSPI) (Lagoudakis & Parr 2003) or Q-learning to
learn the best policy representable within the space of the
chosen basis functions.

To demonstrate the representations, we present the first
four non-constant Laplacian eigenvectors in four domains:
a simple 50-state open chain (Figure 2), a 20x20 grid do-
main (Figure 3), and the mountain car domain (Figure 4).
The mountain car domain is a classic benchmark MDP with
a two dimensional continuous state space (position and ve-
locity). The goal of the mountain car task is to get a simu-
lated car to the top of a hill as quickly as possible (Sutton

RPI Al gorithm (D,v,¢k,m):

1. Sample Collection:

(a) Generate a set of samples D which consists of a state,
action, reward, and nextstate, (s, a,r, s’). The samples
are created using a series of random walks in the envi-
ronment. The random walks terminate when an absorb-
ing state is reached or some preset maximum number of
steps is reached.

(b) Subsample D in order to gain a smaller set of transi-
tions D by some method, random or greedy are typical
examples.

2. Representation Learning:

(a) Build an undirected weighted graph G from D; where
V' is the set of vertices, F edge set, and W is the
weight matrix. The vertices are the set of states, S.
Several methods can be used to connect the states. The
simplest technique is placing an edge with weight 1
between state 7 a state j if they are temporally linked
in D I-

Another method connects state ¢ to state j if it

is one of it’s k£ “nearest” neighbors. The weight
d(s;,s;

w(i,j) = w(j,i) = l/(i)6¥ where ¢ > 0 is

a parameter and v is a weight function that must be

specified. d(s;,s;) is a distance metric such as the

Euclidean or Manhattan distance.

(b) Calculate the k lowest order eigenfunctions of the
(combinatorial or normalized) graph Laplacian opera-
tor on GG. These k eigenvectors make up the basis func-
tions ¢.

i. Form the directed Laplacian per Equation 1 or 2.

ii. Calculate ¢ by computing the eigenvectors of the di-
rected Laplacian.
Create the basis functions for state action pairs by
concatenating the state encoding | A| times.

3. Control Learning Phase:
Use a parameter estimation method such as LSPI
(Lagoudakis & Parr 2003) or Q-learning (Watkins 1989)
to find the best policy 7. Previous papers have primarily
focused on the use of LSPI:

Initialize w® € R* to a random vector. 7' = g, w = wo
Repeat the following steps until ||w* — w'*||? < e

(a) mp =7’
(b) 7T/ - LSTDQ(D7 kv ¢’7 s 7T)
) t=t+1

Figure 1: RPI Framework for learning representation and
control.

& Barto 1998). The car does not have enough power to get
there immediately so it must oscillate on the hill to build
up the necessary momentum. We also present two diffu-
sion wavelets for each of these domains in Figures 5, 6, and
7. One of the wavelets is a more localized function and the
other is more global in nature. The global diffusion wavelets
demonstrate that this technique does in fact learn the lowest

frequency Laplacian eigenfunctions at the most coarse level
of the wavelet tree.

I
IS

0.4
03 0.3
[(]
S S
T 0.2 T 02
> >
5 01 5 01
° °
g o g o
5 5
©-0.1 ©-0.1
w w
-0.2 -0.2
0. -0.
0 10 20 30 40 50 K 10 20 30 50
States States
(a) Eigenvector #2 (b) Eigenvector #3
0.4 0.4
03 0.3
[} (]
=] =]
T 02 T 02
> >
5 0.1 5 0.1
© ©
g o g o
5 5
©-0.1 ©-0.1
w w
-0.2) -0.2
0% 10 0 40 50 0% 10 50

20 30
States

(d) Eigenvector #5

20 3
States

(c) Eigenvector #4

Figure 2: Smoothest eigenvectors of 50-state open chain.

=3
e
=3
o

Eigenvector Value
o
|
S
Y

Eigenvector Value
)

I
NI
o
!
o

o
i
Eigenvector Value

Eigenvector Value
o

|
o
Ok

(c) Eigenvector #4 (d) Eigenvector #5

Figure 3: Smoothest eigenvectors of 20x20 grid.

Adapting Basis Functionsto Exploration

In continuous state MDPs, it is often the case that an agent
experiences new states which it has never seen (exactly) be-
fore. Clearly it would be very inefficient if the agent had
to add every new state to the graph and recompute the ba-
sis functions. This degree of resolution is unnecessary. If
the new state is sufficiently close to states contained in the
graph, then the representation for that state can be computed
using the Nystrom interpolation method or other schemes.
The Nystrom method interpolates the value of eigenvec-
tors computed on sample states to novel states and is an ap-
plication of a classical method used in the numerical solution

(c) Eigenvector #4 (d) Eigenvector #5

Figure 4: Smoothest eigenvectors in mountain car.

0.6 0.2
0.4 0.1

0.2

Wavelet Function
Wavelet Function
o

o

03 10 40 5¢ 0% 10 40 5¢

20 30
States

(b) Global Function

20 30
States

(a) Localized Function

Figure 5: Examples of diffusion wavelet bases in 50-state
open chain.

o o
o >

o
Wavelet Function

Wavelet Function

N
S]

20
10
0on

(a) Localized Function

(b) Global Function

Figure 6: Examples of diffusion wavelet bases in 20x20 grid.

(b) Global Function

(a) Localized Function

Figure 7: Examples of diffusion wavelet bases in mountain
car.

of integral equations (Baker 1977). It can be viewed as a

technique for approximating a semi-positive definite matrix
from a low-rank approximation. The basic idea is to approx-
imate each eigenvector at the new point based on a weighted
sum of the eigenvectors associated with nearby states in the
graph. Further details on the Nystrom method can be found
in (Mahadevan et al. 2006) and (Drineas & Mahoney 2005).

If new states are not well represented by states contained
in the graph, then it becomes necessary to explicitly grow
the graph. This can be done quickly. Assuming the Nystrém
method has been run, the approximate extended eigenvec-
tors (e.g. the original eigenvectors with approximate values
for the new states in the graph) can be used to initialize an
iterative eigensolver. This ensures previous results are not
completely lost. Within a small number of iterations, the
eigensolver will refine these initial approximate eigenvec-
tors into more precise eigenvectors on the larger graph. The
extra cost of this computation is O(IN) if I iterations are
necessary and if the adjacency matrix of the extended graph
is sparse (e.g. only O(N) non-zero entries).

Adapting Basis Functionsto Reward I nformation

So far, the learned basis functions have been derived purely
from the topology of the graph and irrespective of the MDP’s
reward structure. In the case of the graph Laplacian, this
property ensures the eigenfunctions associated with small
eigenvalues are smooth. However, it may well be the case
that the value function, for certain domains, contains discon-
tinuities. For example, it is well known that in the mountain
car domain there is a steep ridge in the value function (cor-
responding to states that can just barely reach the top of the
hill versus states that must go back down the hill to build
up more momentum). One of the many advantages that the
graph data structure offers is the ability to seamlessly in-
clude this type of information once it becomes known (i.e.
to change the representation based on the function being
learned). The graph’s edge weights, which were originally
set based on topological distance, can include another term
to account for smoothness in the value function. This is for-
malized by adjusting the edge weights as follows

=yl 1f @) —fw)?

Wy =e a1 n

The first term in the equation controls for the distance be-
tween data points while the second term controls for the dis-
tance between functions evaluated at the data points. In the
case of MDPs, the function f could be the estimated value
function. The parameters o7 and o2 can be set according to
the scale of the data and function space. In fact, these pa-
rameters can be adjusted over time as the value function be-
comes more well known. This idea was recently introduced
as a way to produce “data and function dependent kernels”
(Szlam, Maggioni, & Coifman 2006). It is a way to focus
the representational power of the function approximator in
the locations that need it most.

The most obvious way to implement this idea within a re-
inforcement learning algorithm is to initially set oo = oo.
Then, once the algorithm computes an estimated value func-
tion, recompute the edge weights with an appropriate oo <
0. The basis functions will have to be recomputed at this

point which can be expensive, although there may be ways
to reuse previous intermediate computation. The learning
algorithm can then be rerun with the new basis functions.
It is important to point out that although this extension to
include reward information in the graph is fairly straightfor-
ward, our previous work was always done independent of
the reward which allows the bases to be reused for various
learning tasks. The flexibility to be either policy dependent
or independent is a strength of the graph based framework.

To demonstrate the effectiveness of this change of repre-
sentation, we present results using the 50-state open chain
MDP. This is a domain with 50 states with a positive reward
only in states 10 and 41, and zero reward otherwise. The
discount factor was set to v = 0.8. Figure 8(a) shows the
exact value function and its approximation using the first 5
basis functions derived from the graph Laplacian. The edge
weights were set to o1 = 1.0 and o3 = co. Five basis func-
tions were again used for the approximation in Figure 8(b),
but this time the edge weights were set to 07 = 1.0 and
o2 = 0.15. In this example, the basis subspace is clearly
improved by incorporating both the data and the function in
the edge weights.

Exact (black)

/Approximate (red)

03 10 20 30 40 50
States
(a) Approximation with data dependent basis
functions
3 .
Exact (black)
2.5

Approximate (red)

10 20 30 0 50
States

(b) Approximation with data and function de-

pendent basis functions

Figure 8: Exact (black) versus approximate (red) value func-
tion using 5 basis functions.

To understand these results, it is instructive to contrast
the data dependent basis functions with the data and func-
tion dependent bases. Eigenvectors 2-5 are shown in Figure

9. Again, the first eigenvector is omitted because it is sim-
ply a constant. When accounting for both the data and the
value function, the basis functions change more quickly near
the two goal states. This occurs because the value function
is changing more quickly in magnitude near the two goal
states.

0.4

o
=

0.3 0.3|
(] [}
202 = 02
o <
> >
5 0.1] 5 0.1
k] ©
< o < o
2 Z
S S
a0y in 01|
-0.2 -0.2]
-0.: -0.!
0 10 20 30 40 50 0 10 20 30 40 5C
States States
(a) Eigenvector #2 (b) Eigenvector #3
0.4 0.4
0.3] 0.3|
[} [
=02 = 02
o]
> >
5 0.1 5 0.1
S S
L o 2 o
2 Z
S S
-‘Ilfo,l u—JfO.l
-0.2| -0.2]
-0. -0.

o 10 40 50 o 10 40 5C

20 30
States

(d) Eigenvector #5

20 30
States

(c) Eigenvector #4

Figure 9: Smoothest eigenvectors of 50-state open chain.
The two curves are when the graph’s edge weights are set
based on the data (black) versus being set based on the data
and the function (red).

Basis Function Adaptation to Hierarchical
Abstractions

The previous two sections discussed adjustments to the ba-
sis functions that worked for both the Laplacian eigenvectors
and the diffusion wavelets. This section discusses ideas that
are unique to diffusion wavelets. As we mentioned in the in-
troduction, diffusion wavelets are a multilevel representation
that capture both spatial and temporal abstractions. This lo-
calization of basis functions can result in improved function
approximation performance compared to the global Lapla-
cian eigenfunctions because discontinuities can be isolated
instead of having a global effect on the approximation.
Aside from the function approximation benefits of local-
ized bases, diffusion wavelets can also be thought of purely
as a hierarchical representation of a Markov process. There
are many possible ways this data structure can be used. For
example, Maggioni and Mahadevan (2006) demonstrated
that diffusion wavelets, which efficiently represent powers
of the transition matrix, can be used to quickly invert the
transition matrix. This is an important step in evaluating a
policy. There is also an interesting connection between dif-
fusion wavelets and the options framework (Sutton, Precup,
& Singh 1999). Options are temporally extended actions
that significantly speed up learning and planning by search-
ing at a higher level of abstraction. Diffusion wavelets could

be used in conjunction with the transition matrix to automat-
ically generate options.

Conclusions and Future Wor k

In this paper, we reviewed the RPI algorithm. This algo-
rithm allows not only a flexible framework for automatic ba-
sis constructon, but can also adapt the representation based
upon the agent’s changing experience. The key to this ap-
proach, whether using Laplacian eigenfunctions or diffusion
wavelets, is mainly in the construction of the weighted graph
which captures state space regularities. We have demon-
strated how the graph can be altered to encode alternate
information such as the reward. It is also natural to ad-
just the graph for new samples that are not easily explained
by the current representation. We have focused in this pa-
per on automatic representation construction and adapta-
tion for value function approximation. Experimental results
for applying these basis functions within a reinforcement
learning algorithm can be found in several of our other pa-
pers (Mahadevan et al. 2006; Johns & Mahadevan 2007,
Osentoski & Mahadevan 2007).

There are many interesting avenues for future work.
While it is evident that the graph can adapt to the agent’s
changing experience, this effect is not well understood.
More experimental and theoretical analysis similar to that
of Parr et al. (2007) would provide more insight to basis
construction. Currently we have characterized the policy
dependent and policy independent techniques as opposing
methodologies. However, this is not necessary and an agent
that could utilize both and adapt to new reward functions
without needing to relearn its entire representation is an in-
teresting area for future research.

References

Amarel, S. 1968. On representations of problems of reasoning
about actions. In Michie, D., ed., Machine Intelligence 3, vol-
ume 3, 131-171. Elsevier/North-Holland.

Baker, C. 1977. The Numerical Treatment of Integral Equations.
Oxford: Clarendon Press.

Belkin, M., and Niyogi, P. 2003. Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Computation
6(15):1373-1396.

Borg, L., and Groenen, P. 1996. Modern Multidimensional Scaling
: Theory and Applications. Springer.

Boyan, J., and Moore, A. 1995. Generalization in reinforcement
learning: Safely approximating the value function. In Advances in
Neural Information Processing Systems 7. Cambridge, MA: MIT
Press. 369-376.

Chung, E. 1997. Spectral Graph Theory. Number 92 in
CBMS Regional Conference Series in Mathematics. Providence,
RI: American Mathematical Society.

Coifman, R. R., and Maggioni, M. 2006. Diffusion wavelets.
Applied and Computational Harmonic Analysis 21(1):53-94.
Coifman, R. R.; Lafon, S.; Lee, A.; Maggioni, M.; Nadler, B.;
Warner, F.; and Zucker, S. 2005. Geometric diffusions as a tool

for harmonic analysis and structure definition of data. part i: Dif-
fusion maps. Proc. of Nat. Acad. Sci. (102):7426-7431.

Drineas, P., and Mahoney, M. 2005. On the Nystrom method for
approximating a Gram matrix for improved kernel-based learn-
ing. Journal of Machine Learning Research 6:2153-2175.

Johns, J., and Mahadevan, S. 2007. Constructing basis functions
from directed graphs for value function approximation. In Pro-
ceedings of the 24th International Conference on Machine Learn-
ing (to appear). New York, NY: ACM Press.

Jolliffe, T. 1986. Principal Components Analysis. Springer-
Verlag.

Keller, P.; Mannor, S.; and Precup, D. 2006. Automatic ba-
sis function construction for approximate dynamic programming
and reinforcement learning. In Proceedings of the 23rd Interna-
tional Conference on Machine Learning, 449-456. New York,
NY: ACM Press.

Lagoudakis, M., and Parr, R. 2003. Least-Squares Policy Itera-
tion. Journal of Machine Learning Research 4:1107-1149.

Maggioni, M., and Mahadevan, S. 2006. Fast direct policy eval-
uation using multiscale analysis of Markov diffusion processes.
In Proceedings of the 23rd International Conference on Machine
Learning, 601-608. New York, NY: ACM Press.

Mahadevan, S.; Maggioni, M.; Ferguson, K.; and Osentoski, S.
2006. Learning representation and control in continuous Markov
decision processes. In Proc. of the 21st National Conference on
Artificial Intelligence. Menlo Park, CA: AAAI Press.

Mahadevan, S. 2005. Representation Policy Iteration. In Pro-
ceedings of the 21st Conference on Uncertainty in Artificial Intel-
ligence, 372-379. Arlington, VA: AUAI Press.

Mallat, S. 1998. A wavelet tour in signal processing. Academic
Press.

Marr, D. 1982. Vision: A Computational Investigation into the
Human Representation and processing of Visual Information. San
Francisco, CA: Freemann.

Osentoski, S., and Mahadevan, S. 2007. Learning state-action
basis functions for hierarchical MDPs. In Proceedings of the 24th
International Conference on Machine Learning (to appear). New
York, NY: ACM Press.

Parr, R.; Painter-Wakefield, C.; Li, L.; and Littman, M. 2007.
Analyzing feature generation for value-function approximation.
In Proceedings of the 24th International Conference on Machine
Learning (to appear). New York, NY: ACM Press.

Petrik, M. 2007. An analysis of Laplacian methods for value
function approximation in MDPs. In Proc. of the 20th Interna-
tional Joint Conference on Artificial Intelligence, 2574-2579.

Roweis, S., and Saul, L. 2000. Nonlinear dimensionality reduc-
tion by local linear embedding. Science 290:2323-2326.

Smart, W. 2004. Explicit manifold representations for value-
function approximation in reinforcement learning. In Proceed-
ings of the 8th International Symposium on Al and Mathematics.

Sutton, R., and Barto, A. 1998. Reinforcement Learning. Cam-
bridge, MA: MIT Press.

Sutton, R.; Precup, D.; and Singh, S. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence 112:181-211.

Sutton, R. 1988. Learning to predict by the methods of temporal
differences. Machine Learning 3:9-44.

Szlam, A.; Maggioni, M.; and Coifman, R. 2006. A general
framework for adaptive regularization based on diffusion pro-
cesses on graphs.

Tenenbaum, J.; de Silva, V.; and Langford, J. 2000. A global ge-
ometric framework for nonlinear dimensionality reduction. Sci-
ence 290:2319-2323.

Watkins, C. 1989. Learning from Delayed Rewards. Ph.D. Dis-
sertation, University of Cambridge.

