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Abstract

We present a fast algorithm for learning the parameters of the
abstract hidden Markov model, a type of hierarchical activ-
ity recognition model. Learning using exact inference scales
poorly as the number of levels in the hierarchy increases;
therefore, an approximation is required for large models. We
demonstrate that variational inference is well suited to solve
this problem. Not only does this technique scale, but it also
offers a natural way to leverage the context specific indepen-
dence properties inherent in the model via the fixed point
equations. Experiments confirm that the variational approx-
imation significantly reduces the time necessary for learning
while estimating parameter values that can be used to make
reliable predictions.

Introduction
Interest in activity modeling has increased dramatically in
recent years. Current applications in this area include visual
scene annotation (Torralbaet al. 2003), motion prediction
for assisting the cognitively impaired (Liao, Fox, & Kautz
2004), and behavior classification for robots (Drumwright,
Jenkins, & Mataric 2004). The underlying theme in this line
of research is learning how to aggregate sequential data in a
manner that can be used for making accurate predictions.

Several models have been proposed to perform activ-
ity recognition. Coupled hidden Markov models (CHMM)
(Brand, Oliver, & Pentland 1996) factorize the state and ob-
servation space beyond that of a traditional hidden Markov
model (HMM). CHMMs consist of sets of HMMs where
each state is dependent on all other states at the previous
timestep. Recently, Xiang, Gong, and Parkinson (2003)
proposed dynamically multi-linked hidden Markov models
(DML-HMM) as an extension to the CHMM. The state
space in these models is factorized by using causal relation-
ships to learn the state dependencies. A third activity recog-
nition model is the abstract hidden Markov model (AHMM)
(Bui, Venkatesh, & West 2002), which consists of an HMM
where the state variables depend on a hierarchy of action
variables. Actions become more abstract at higher levels of
the hierarchy.
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In this paper, we investigate the parameter estimation
problem for the AHMM. As with any hierarchical model,
exact inference in the AHMM quickly becomes intractable
when the hierarchy grows; therefore, an approximate solu-
tion is desirable. Pattersonet al. (2003) addressed this prob-
lem by using a Monte Carlo expectation maximization al-
gorithm. There are several issues to address with sampling
methods: how to determine convergence, the sample size re-
quired to adequately learn the distribution, and how sample
size scales with the number of levels in the hierarchy. As
an alternative, we present a deterministic, approximate in-
ference algorithm based on variational principles (Jordanet
al. 1999). Approximate, deterministic methods are often
preferable to sampling techniques for large models (Murphy
2002). We show that variational inference can readily ex-
ploit the AHMM’s context specific independence properties.
The variational algorithm is compared with exact inference
in terms of time spent per EM iteration and likelihood values
achieved upon completion of learning.

The remainder of this paper is organized as follows. The
next two sections discuss the general AHMM architecture
and why the learning problem becomes more difficult as the
hierarchy depth increases. Then, we explain the variational
approximation to the AHMM. We finish with a presentation
of the experimental results and conclusions.

AHMM Architecture
The AHMM is a probabilistic model used to explain the in-
teraction between behaviors, or policies, at different levels
of abstraction. A policy represents either a mapping from
states to a probability distribution over actions or from states
to a probability distribution over lower level policies. Poli-
cies become more abstract at higher levels of the model hi-
erarchy. From a modeling standpoint, this type of high-level
abstraction helps an observer infer intent from low-level ob-
servations. Likewise, from a learning standpoint, useful ab-
stractions can significantly reduce the complexity of plan-
ning.

We illustrate the AHMM using a dynamic Bayesian net-
work as shown in Figure 1. The bottom portion of the model
consists of observationsot and statesst in the typical HMM
format. Abstract policy variablesπmt along with a corre-
sponding flag variableemt are placed in a hierarchy above
the state. The flag indicates whether the current policy is to



Figure 1: A 2-level AHMM.

continue or terminate in the next timestep. The joint prob-
ability of the AHMM with M policy levels is described in
Equation 1†.

P ({πmt , st, emt , ot}) =

P (s1|π1
1)P (o1|s1)
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Two context specific independence (CSI) properties
(Boutilier et al. 1996) exist in the AHMM. First, a policy
variable either depends deterministically on the policy at the
previous timestep (flag = continue) or it depends on a higher
level policy and the previous state (flag = terminate). This
relationship is described in Equation 2 wherePπ

m

cont is sim-
ply an identity matrix of size|πm| × |πm|. Second, a flag
variable is constrained to continue if the flag at the level be-
neath it has not yet terminated (Equation 3). The CSI prop-
erties reduce the number of model parameters, a fact that we
exploit to accelerate the variational approximation.

P (πmt |πmt−1, π
m+1
t , emt−1, st−1) ={

P (πmt |πmt−1) ≡ Pπ
m

cont if emt−1 = continue

P (πmt |πm+1
t , st−1) ≡ Pπ

m

term if emt−1 = terminate

(2)

P (emt |πmt , st, em−1
t ) ={

P (emt = continue) = 1 if em−1
t = continue

P (emt |πmt , st) ≡ P e
m

term if em−1
t = terminate

(3)

†Ignoreπm+1
t whenm = M and ignoreem−1

t whenm = 1.

Figure 2: Size of the largest clique during exact inference
versus depth of the AHMM hierarchy.

Difficulty of Learning

Learning the parameters of a Bayesian network with hid-
den variables is typically carried out using the iterative ex-
pectation maximization (EM) algorithm (Dempster, Laird,
& Rubin 1977). The expected value of the log likelihood
is calculated in the E-Step. To do so, one needs to calcu-
late the posterior distribution of the hidden variables given
the observations. It is well known that the computational
complexity of an exact E-Step using the junction tree algo-
rithm is proportional to the size of the largest clique formed
during triangulation of the corresponding Bayesian network.
Unfortunately, the AHMM has a treewidth that increases lin-
early with the number of policy levels in the hierarchy. This
results in large cliques which cause the E-Step to become
computationally intractable.

To illustrate this problem, consider a generic AHMM
where the depth of the hierarchy is varied from 1 level to 15
levels. We assume the number of values a policy node can
take on decreases exponentially as you move up the policy
hierarchy (i.e. 100 potential policy values at level 1, 10 pol-
icy values at level 2, etc. . . ). We then employ the heuristic-
based triangulation methodology described in Huang and
Darwiche (1994) to determine the maximum clique size for
each AHMM. Figure 2 shows empirically that the maximum
clique size increases linearly with the number of levels in the
hierarchy. If the maximum clique size is 10 and the average
number of policy values is 4, there would be greater than
one million entries for the potentials in the maximal clique.
Thus, exact inference using the junction tree algorithm is not
computationally feasible for any nontrivial hierarchies.

To speed up learning, an approximate inference algorithm
must be used in the E-Step. The next section discusses the
mean field approximation. The concept behind the approach
is very simple. Removing edges from the full AHMM avoids
the problem of forming large cliques.



Figure 3: Mean field variational approximation of the 2-level
AHMM.

Variational Approximation
Model
We consider a completely factorized variational approxima-
tion to the AHMM (Figure 3). The joint distribution for this
model is shown in Equation 4. This mean field approxima-
tion is inspired by Ghahramani and Jordan’s (1997) approx-
imation of the factorial HMM.

Q({πmt , st, emt }|{hπ
m

t , he
m

t , hst}) =

T∏
t=1

Q(st|hst )
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m=1

Q(πmt |hπ
m

t ) Q(emt |he
m

t )
(4)

By assuming all variables are independent, the only pa-
rameters for this distribution are the variational parameters.
The variational parameters{hπmt }, {he

m

t }, and{hst} are the
means of the policy, flag, and state variables respectively.
As such, each parameter determines the probability of the
variable taking on each of its possible values.

Inference
The variational approximation is used to form a lower bound
on the log likelihood of the data under the full AHMM. This
is proven using Jensen’s inequality.

logP ({ot}) = log
∑

{πmt ,e
m
t ,st}

P ({πmt , emt , st, ot})

≥
∑

{πmt ,e
m
t ,st}

Q({πmt , emt , st}) log
P ({πmt , emt , st}|{ot})
Q({πmt , emt , st})

The Kullback-Liebler divergence (Cover & Thomas
1991) is the difference between the two sides of the above
equation.

KL(Q||P ) =∑
{πmt ,e

m
t ,st}

Q({πmt , emt , st}) log
Q({πmt , emt , st})

P ({πmt , emt , st}|{ot})

By updating the variational parameters, we can minimize
the KL divergence between the full posterior distribution

and the variational distribution in order to attain the tightest
lower bound on the log likelihood of the data. The updates
are done by taking the derivative of the KL divergence with
respect to the variational parameters, setting the result to
zero, and solving for the variational parameters. This yields
the fixed point equations.

As an example, we show the fixed point equation forhπ
m

t
for 1 < t < T and1 < m < M in Equation 5. We abuse
the notation in this equation for the sake of readability. The
variational parameters are vectors and the transition models
are multi-dimensional matrices. Rather than using summa-
tions to index into each vector, we leave the equations in
a vectorized format with the understanding that the vectors
need to be handled appropriately. Also, the symbolϕ rep-
resents the softmax operator which ensures the variational
parameter vector sums to one.
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Inspection of the fixed point equations provides intuition
as to the role of the variational parameters. The terms in-
volved in each equation are contained in the Markov blanket
of the variable being updated. Thus, each equation provides
approximate sufficient statistics that are used to determine
the mean of the variable.

The fixed point equations are simplified by exploiting the
AHMM’s CSI properties. For example, had the CSI prop-
erties not been taken into account, there would be roughly
double the number of terms in Equation 5. These simplifi-
cations exploit the nice properties of the AHMM and result
in even faster approximate inference. Our work shows that
CSI properties can be exploited in a very natural and general
way by variational methods.

The fixed point equations are updated in an iterative fash-
ion during the E-Step of the EM algorithm. The E-Step is
completed when the KL divergence converges to a mini-
mum, which is theoretically guaranteed. Each iteration takes
timeO(TMNP ) where T is the number of timesteps, M is
the number of policy levels, N is the number of hidden states,
and P is the maximum number of policy values. We found
that the number of iterations until the KL divergence con-
verged depends on the length of the sequences but typically
took less than 15 iterations. Therefore, in contrast to ex-
act methods, learning using variational inference techniques
scales well with the number of levels in the hierarchy.

We summarize these equations in pseudocode (Algorithm
1) for a variational E-Step. The expectations from the E-
Step are then used to maximize the complete data likelihood
in the M-Step. An exact M-Step for the AHMM is tractable.



Algorithm 1 Variational E-Step
repeat

// Update Variational Parameters
for t = 1 to T do

for m = 1 toM do
hπ

m

t ⇐ result of Equation 5
Update he

m

t via fixed point equation
end for
Update hst via fixed point equation

end for
// Calculate KL Divergence

until KL Divergence converges

Figure 4: Airline domain with 15 different routes. The ovals
correspond to Gaussian covariance matrices for the state
variables.

Experiments
Experiments were run on three domains to compare learn-
ing using the variational approximation with learning using
exact inference under the junction tree algorithm. Two activ-
ity recognition datasets were used (Osentoski, Manfredi, &
Mahadevan 2004). In these experiments, a robot converted
its raw laser readings into x-y positions of a person walking.
The experiments were conducted in two separate domains:
a small laboratory/cubicle environment and an entryway in-
side the University of Massachusetts Computer Science De-
partment. There were six different trajectories in the labo-
ratory environment and eight in the entryway. The length
of a typical sequence in these domains was approximately
20 timesteps. To test the variational technique in a larger
domain, a third experiment was conducted using synthetic
data. The dataset contained sequences of latitude-longitude
readings intended to represent airline routes. There were
fifteen different routes in this domain where the longest se-
quence was approximately 250 timesteps. A picture of the
state space with datapoints for all fifteen routes is shown
in Figure 4. As the figure indicates, the routes were con-
strained to follow corridors through the United States. This
constraint ensured different trajectories would have overlap-
ping regions of state space. For all experiments, observa-
tions are Gaussian with a tied covariance matrix while states,
policies, and flags are multinomial variables.

Each experiment was run using a 1-level and a 2-level
AHMM. An experiment was further divided into the case
where the policy variable at the top of the hierarchy was ei-
ther observed or unobserved. Note that all other variables
besides the observations are hidden.

The two metrics used to compare the variational approxi-
mation with exact inference are the log likelihood (both for
training and test sets) and the time per EM iteration. Further-
more, in the experiments where the top level policy variable
is observed during learning, we present prediction accura-
cies for the test data. Note that the log likelihood was calcu-
lated using exact techniques to ensure a consistent basis for
comparing results.

Unobserved Case for Top Level Policy Variables
When all variables other than the observation are hidden, the
learning algorithm clusters sequences using the policy vari-
ables. The effectiveness of the clustering can be measured
by the likelihood of the data under the learned model and by
a visual inspection of the clusters. We will discuss both of
these measures in this section.

The log likelihood values for the three domains are pre-
sented in Table 1. All values reported in the table are av-
erages for 20 experiments. As expected, the log likeli-
hoods achieved using exact inference are better than those
attained using the variational approximation. This improve-
ment is statistically significant. However, the usefulness of
the model trained using approximate methods is not solely
a function of the log likelihood. The AHMM’s function is
to model activity and distinguish different sequences. There-
fore, we examined the marginal probabilities on the top-level
policy variables to inspect what the model learns.

There are three interesting points to make about the
marginals. First, the marginal probabilities on the top-level
policy variable tend to remain constant through time un-
til the sequence overlaps in state space with a different se-
quence. Second, when sequences overlap, they tend to use
the same policy. This ability for different sequences to reuse
the same policy in similar states is an important quality of
the AHMM. In effect, a reused policy is a macro that any
sequence can invoke when in the appropriate state. Third,
when approximate inference was used during learning, the
marginals typically assign more weight to one policy value.
In constrast, when using exact inference during learning, the
marginals tend to be more uniformally distributed over all
possible policy values.

Figure 5 highlights the first two of these points regarding
the marginals. This figure from the airline domain shows
the last half of two different sequences:Chicago-Portland
andHouston-Seattle. The maximum policy value forπ1

t is
shown for a 1-level AHMM model when trained using the
variational algorithm. The two sequences follow separate
policies,π1

t = 1 andπ1
t = 2 respectively, until they con-

verge. Then, both sequences use the same policy,π1
t = 3,

until reaching the final destinations. In this example, almost
all marginals had a belief greater than0.9 on the maximum
policy value.

The running time for the variational learning algorithm is
significantly better than the exact algorithm’s running time.



Figure 5: Two different trajectories for the airline domain
for a 1-level AHMM trained using the variational algorithm.
The most likely policy value is shown. Policy 3 is used by
both sequences when the two routes converge.

The last column in Table 1 shows the time between EM iter-
ations. Averaging across the three domains, the variational
algorithm proved to be 17% faster than the exact algorithm
for 1-level AHMMs. For 2-level AHMMs, the improvement
jumped to 64%. The exponential growth in complexity us-
ing exact inference quickly becomes apparent when going
from a 1-level to a 2-level AHMM. We note that the percent
improvement in running time is based on a relatively naı̈ve
implementation of the variational EM algorithm. A more
optimized version would achieve larger gains.

Observed Case for Top Level Policy Variables
The same set of experiments was conducted but with the
top-level policy variable (π1

t for 1-level AHMMs andπ2
t for

2-level AHMMs) observed while learning the model param-
eters. The purpose of these experiments was to test the varia-
tional learning algorithm on a classification task as opposed
to an unsupervised clustering problem. After training the
model, the test dataset was used to make predictions about
the top-level policy variable. This prediction was compared
to the known label to generate a classification accuracy. The
test accuracy and log likelihoods are shown in Table 2.

The classification accuracy was nearly 100% in all cases.
One sequence in the entryway dataset was misclassified for
the 2-level AHMM trained using the variational algorithm.
This error is somewhat mitigated in that the mistaken la-
bel corresponded to a similar sequence. In the airline do-
main, the classification accuracy was 95% for all sets of ex-
periments. The classification error in this domain occurred
for two trajectories (Houston-SeattleandHouston-Portland)
that consisted of identical state sequences. Notice that the
Gaussian state in the upper-left portion of Figure 4 is un-
able to capture the difference in the final two destinations;
therefore, the two sequences are indistinguishable from one
another. These two trajectories were purposefully chosen
to verify this effect given our choice of 50 hidden states to
model the data. Overall, the classification accuracies indi-
cate the variational algorithm can effectively learn the model
parameters in a classification task.

(a) Lab Dataset

Inference Policy Training Testing Time
Method Levels Log Lik. Log Lik. (s)
Exact 1 -58 -103 8.7

Approx. 1 -103 -145 6.8
Exact 2 -43 -84 18

Approx. 2 -75 -113 8.2

(b) Entryway Dataset

Inference Policy Training Testing Time
Method Levels Log Lik. Log Lik. (s)
Exact 1 -2090 -2038 65

Approx. 1 -2377 -2342 52
Exact 2 -1650 -1616 284

Approx. 2 -2014 -1935 71

(c) Airline Dataset

Inference Policy Training Testing Time
Method Levels Log Lik. Log Lik. (s)
Exact 1 -21598 -21685 745

Approx. 1 -22392 -22487 680
Exact 2 -18392 -18546 2443

Approx. 2 -19344 -19634 934

Table 1: Log likelihood on the training and testing datasets
and time in seconds per EM iteration for exact inference and
variational inference. All variables other than observations
are hidden. Results are averaged over 20 trials.

The analysis of the log likelihood values is similar to the
completely unobserved case. Training using exact inference
produces statistically better likelihoods compared to training
using the variational approximation. However, it is interest-
ing that the 2-level AHMMs trained using approximate in-
ference yield better likelihoods for the unobserved case than
for the observed case. One possible reason for this anomaly
is that more useful intermediate levels of abstraction are
formed based on bottom-up learning (i.e. from the states in
the AHMM to sequentially higher policy levels) than from
a mixture of bottom-up and top-down (when the top-level
policy is observed) learning. Evidence for this phenomena
exists for the hidden Markov decision tree (HMDT) (Jordan,
Ghahramani, & Saul 1997). The learning curves for training
the HMDT exhibit separate ramps in the log likelihood value
corresponding to learning different levels of abstraction in
the decision tree.

Conclusions
We presented a deterministic, approximate inference algo-
rithm used to learn the parameters of an abstract hidden
Markov model. A completely factorized distribution was
used to form a lower bound on the likelihood of the full
AHMM. The Kullback-Liebler divergence was minimized
in an iterative E-Step to achieve the tightest possible lower
bound given our choice of approximating distribution. In
this paper, we showed that the algorithm significantly speeds
up parameter estimation as the number of levels in the



(a) Lab Dataset

Inference Policy Training Testing Testing
Method Levels Log Lik. Log Lik. Accuracy
Exact 1 -50 -100 100%

Approx. 1 -56 -101 100%
Exact 2 -30 -78 100%

Approx. 2 -93 -148 100%

(b) Entryway Dataset

Inference Policy Training Testing Testing
Method Levels Log Lik. Log Lik. Accuracy
Exact 1 -2047 -2008 100%

Approx. 1 -2252 -2200 100%
Exact 2 -1760 -1692 100%

Approx. 2 -2170 -1956 97%

(c) Airline Dataset

Inference Policy Training Testing Testing
Method Levels Log Lik. Log Lik. Accuracy
Exact 1 -21766 -21812 95%

Approx. 1 -21750 -21783 95%
Exact 2 -19134 -19023 95%

Approx. 2 -21455 -21655 95%

Table 2: Log likelihood on the training and testing datasets
and accuracy on predicting the top-level policy value on the
testing dataset. The top-level policy is observed during train-
ing. Results are averaged over 20 trials.

AHMM’s hierarchy increases. More specifically, the run-
ning time scales linearly with the number of levels as op-
posed to exponentially using exact inference. Furthermore,
we showed that the variational algorithm easily exploits the
context specific independence properties of the AHMM. The
CSI properties simplify the model and result in computation-
ally efficient fixed point equations.

Learning using the variational algorithm produced mod-
els that were effective for performing activity recognition.
The algorithm was shown to work for both unsupervised
and supervised problems. In the unsupervised task, the al-
gorithm clustered sequences using the policy variables. In-
terestingly, different sequences learned to use the same pol-
icy when in the same state. This type of clustering allows
the model to make accurate predictions on new, unseen se-
quences. The prediction accuracy on test datasets was nearly
identical whether using exact inference or approximate in-
ference during parameter estimation.

Exact inference methods produced better likelihoods than
the variational approximation. This improvement is a result
of the mean field assumption. Completely factorizing the
model makes it more challenging to capture all the depen-
dencies among the variables. In the future, we plan to inves-
tigate how much a structured approximation improves the
extent of learning. A tighter bound on the likelihood of the
data under the full AHMM can be formed by keeping some
of the temporal links in the model while leaving inference
tractable. An interesting question is what type of policies

can be learned using different approximations. We also plan
to test the variational algorithm on larger, multidimensional
datasets and compare the algorithm with a sampling method.
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