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ABSTRACT

Humans are universal decision makers: we reason causally to understand the world; we act com-
petitively to gain advantage in commerce, games, and war; and we are able to learn to make better
decisions through trial and error. Whilst these individual modalities of decision making have been
studied for decades in various subfields of AI and ML, there has been commensurately less effort in
developing formalisms that unify these various modalities into common framework. In this paper,
we propose Universal Decision Model (UDM), a mathematical formalism based on category theory,
to address this challenge. Decision objects in a UDM correspond to instances of decision tasks,
ranging from causal models and dynamical systems such as Markov decision processes and predictive
state representations, to network multiplayer games and Witsenhausen’s intrinsic models, which
generalizes all these previous formalisms. A UDM is a category of objects, which include decision
objects, observation objects, and solution objects. Bisimulation morphisms map between decision
objects that capture structure-preserving abstractions. We formulate universal properties of UDMs,
including information integration, decision solvability, and hierarchical abstraction. Information
integration consolidates data from heterogeneous sources by forming products or limits in the UDM
category. Abstraction simulates complex decision processes by simpler processes through bisimu-
lation morphisms by forming quotients, co-products and co-limits in the UDM category. Finally,
solvability of a UDM decision object is defined by a fixed point equation, and it corresponds to an
isotonic order-preserving morphism across the topology induced by UDM objects. We describe
universal functorial representations of UDMs, and propose an algorithm for computing the minimal
object in a UDM using algebraic topology. We sketch out an application of UDMs to causal inference
in network economics, using a complex multiplayer producer-consumer two-sided marketplace.

Keywords Causal inference · Reinforcement Learning · Game Theory · Category Theory · Decision Making

1 Introduction

One of the singular aspects of human cognition is our universal decision capacity: we reason causally to interact with
and understand the world from a young age (Sobel et al., 2004), and continue to do so into adulthood (Pearl, 2009;
Imbens and Rubin, 2015). We act competitively when it benefits us in arms control negotiations, commerce, and games
(Maschler et al., 2013; Shoham and Leyton-Brown, 2008). Since we almost always make sub-optimal decisions, due
to incomplete information and computational limitations (Russell and Subramanian, 1995), we learn to make better
decisions through trial and error (Sutton and Barto, 1998). Whilst these individual decision making modalities have
been studied for decades in AI (Russell and Norvig, 2020), we nonetheless possess an inadequate understanding of how
to integrate these disparate abilities. It appears we understand the parts of universal decision making far better than the
whole! The main contribution of this paper is a novel theory of universal decision making, codified in a mathematical
framework we call Universal Decision Model (UDM). The bulk of the paper is focused on understanding the information
structures that guide decision making. In particular, our paper does not specifically address the algorithmic aspects
of universal decision making, although we touch upon this topic towards the end. Furthermore, optimization plays a
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central role in much of the literature in sequential decision making. As the scope of UDM is far broader than sequential
decision making, which is a very specialized information structure, optimization as traditionally conceived plays only a
minor role in the UDM framework.

Our paper is also motivated by the growing need to understand how to scale existing formalisms to extremely large
and complex decision systems, both to understand complex behavior in biology, and to control large decentralized
computing systems. Our work is related to category-theoretic models of complex interconnected systems (Fong, 2016).
Consider a group of computing elements that form a cloud AI implementation, which are tasked to make decisions on
gathering and processing data from a heterogeneous set of sources (Lin et al., 2020). Similarly, consider the challenge
faced by a group of honeybees that are scouting their environment for a new location for their hive (Seeley, 2011). Our
framework provides a fresh perspective on these challenges, bringing a powerful formalism of categorial thinking to
shed light on universal properties underlying decision making in these different realms. Our approach does not assume
any a priori ordering on the agent structure, which must be discovered or designed to make the problem feasible. Each
agent may be unaware if it should act first or last, or indeed, if it should act at all. The organization of agents into a
linearly or partially ordered structure may vary, depending on the state of nature, randomness in observations, or the
task at hand. To ensure unique solvability of complex decision making tasks by such large organizations of agents, the
fundamental information structures that underlie decision making must be carefully designed.

2 Universal Decision Model: Informal Overview

Figure 1 illustrates the broad Universal Decision Model (UDM) framework studied in this paper, which seeks to elucidate
the common information structures that underly a variety of decision making modalities that have been extensively
studied in a broad swath of literature, including AI (Russell and Norvig, 2020), control theory (Witsenhausen, 1975),
game theory (Maschler et al., 2013; Nisan et al., 2007) statistics (Imbens and Rubin, 2015), psychology Sobel et al.
(2004), and network economics Nagurney (1999). Broadly, a UDM involves a collection of elements A (representing
agents, causal variables, points in time, economic entities etc.), a decision space Uα ∈ A for each “actor" α ∈ A
that has an associated measurable space (Uα,Fα) (over which a suitable probability space can be defined), and most
importantly, an information field (Witsenhausen, 1973) that represents each agent’s state of knowledge regarding its
decision. Each agent α makes a decision using a policy πα :

∏
β Uβ → Uα that defines a measurable function over

(Iα,Fα). The measurability condition imposes an abstract constraint on what an agent knows in making a decision. At
the one extreme, if the agent’s information field Iα ⊂ F(∅), that implies it can act without depending on any of the
other decision makers. More generally, the information field Iα ⊂ F(B) for some subset B ⊂ A of decision makers,
which imposes a (pre or partial) ordering on the decision makers.

Agent 1 Agent 3

Agent 2

Reinforcement Learning

Causal Inference

Game Theory

1 2 T3 Platelets

Admit
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Age

Player 1
Player NPlayer 2

Producer 
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Figure 1: Universal decision model (UDM) is a unifying framework that integrates decision making across multiple
modalities, from reinforcement learning (left) and causal inference (middle) to complex network games (right).
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Figure 2: Left: a swarm of honeybees scouting for a new location are required to make a complex life-altering decision
based on collecting information from surveillance flights (Seeley, 2011). Right: A generic cloud computing network
can be decomposed into subsystems, comprised of computing nodes with varying degrees of information access.

2.1 Two Real-World Applications

To motivate the following theoretical development, we turn to two practical applications, one involving the design of
cloud computing systems, and the second involving the computation of equilibria in network economics. Together, these
real-world problems will illustrate the need to develop more sophisticated notions of agency that the usual formalisms
in causal inference, game theory and RL currently enable.

Figure 2 illustrates challenges of decision making by complex groups of agents in biology and in technology. A
swarm of thousands of honeybees are required to make a life-altering decision on where to relocate their hive based
on reconnaissance flights, and lack of any a priori fixed coordination mechanism among the bees (Seeley, 2011). A
generic cloud computing network, which is organized into subsystems with varying levels of information storage,
compute power, and responsiveness. In our paper, we abstract from the specifics of such systems, and in fact, even
potential applications of such networks. Our focus is primarily on understanding how to theoretically characterize the
information structures underlying such systems. For example, computing elements at the lowest level of the cloud
network may be individual IOT devices or smartphones. These have visibility into data collected at an individual level.
In contrast, the subsystems at the fog or edge layer have greater visibility at the aggregate population level, but due to
privacy concerns, may have access to only aggregate statistics of individual data.

2.2 Information Fields

Our work draws extensively on the idea of information fields, a key component of Witsenhausen’s intrinsic model
(Witsenhausen, 1971a,b, 1973, 1988). Information fields provide a foundation to analyze decision making in a wide
range of settings, from game playing, to decentralized decision making and multiagent stochastic control. A book
length treatment of the intrinsic model is given in (Carpentier et al., 2015). The intrinsic model continues to be studied
(Grover, 2015; Nayyar et al., 2011, 2013; Nayyar and Teneketzis, 2019; Nayyar and Basar, 2012), and was recently
shown to generalize Pearl’s causal do-calculus (Heymann et al., 2021).

At its core, the intrinsic model is based on a measure-theoretic approach for representing information fields – the data
available to make a decision at some point. Witsenhausen introduced the notion of a subsystem that defines a topology
on the finite space of entities in the model, based on a (reflexive, transitive) pre-ordering relationships based on each
element’s information fields. A key insight of his is the discovery that the subsystem relationship is intimately related to
the nature of the overall decision-making problem. For example, a team decision making problem involves entities
that can act without knowledge of each other’s information fields, which defines a topology where the subsystems
correspond to singletons. In contrast, a T0 (Kolmogorov) topology is defined by a sequential intrinsic model where
there exists a fixed ordering (α1, . . . , αn) of the (decision makers, variables) entities such that the information field for
entity αk is purely a function of the fields defined by entities that preceded it in this fixed ordering.

Our main contribution in this paper is to study the categorial foundations of the intrinsic model, namely elucidate the
universal properties of information fields that underlie complex decision making. We focus on three universal properties:
information integration, decision solvability and hierarchical abstraction. An agent is constantly required to make
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decisions given partial information about its environment. The ability to act thus requires integration of information
from multiple sources into a sufficient statistic for action. A decision problem must be solvable in a well-defined
manner, which almost always can be shown to reduce to solving a fixed point equation. Finally, complex decision
problems must be decomposable for decision making to scale: hierarchical abstraction that ignores details is an essential
component for scalability.

Our paper uses two fundamental guiding principles. The first principle regards the definition of what is considered a
universal property, which is based on category theory (Riehl, 2016). In category theory, objects are characterized not in
terms of their internal structure, but rather the interactions they make with other objects. A universal property of an
object, consequently, is a functorial representation of its interaction with other objects, which serves to define the object
up to isomorphism. We are thus interested in answering the fundamental question: given a decision-making object,
whether a structural causal model or a game or an MDP, how can we functorially characterize its universal properties up
to isomorphism?

Rather than describe an object by enumerating its elements, such as commonly done in set theory, category theory builds
on the principle of describing objects by their interaction with other objects in the category. This principle is embodied
in the Yoneda lemma, one of the deepest and most influential results in category theory. This lemma formalizes precisely
the notion that an object c in a category C can be completely described (to within an isomorphism) by the set of all
morphisms from the other objects in C from c, or from other objects to c. Morphisms in a category are closed under
composition, and satisfy an associative property. Functors are structure-preserving mappings from one category C to
another category D, which map objects in C to corresponding objects in D, but also map morphisms f : c→ d in C to
corresponding morphisms in D.

We characterize the universal properties of information fields that play a foundational role in decision making using the
tools of category theory. Information integration corresponds to the ability to form products of elements. The product
object in a category is universal with respect to the property of having unique morphisms to its factors, such that every
mapping to one of the factors must be uniquely decomposable through the product. This universal property is shown
to underlie a range of decision making formalisms, from decision making to causal inference. Another key notion is
that of a bisimulation between objects representing decision making processes (Arbib and Manes, 1974; Joyal et al.,
1993), which underpins the widespread use of homomorphisms in MDPs and predictive state representations (PSRs)
(Ravindran and Barto, 2003; Dean and Givan, 1997; Soni and Singh, 2007). We characterize bisimulation as a universal
property through quotient spaces, defined by an equivalence relation ∼, where the quotient space X/ ∼ is uniquely
characterized by the ability to map objects such that isomorphic objects have the same image. We will see that the
notion of subsystems in intrinsic models is based on the universal property of quotient spaces, wherein agents form
equivalence classes of subsystems based on shared information fields.

Decision solvability in causal inference, games and reinforcement learning all involve finding fixed points of a system
of equations. For example, in recursive structural causal models M = (U, V, F, P ), where U is a set of exogenous
variables, V is a set of endogenous variables where each xi ∈ V is a function fi ∈ F of some subset of variables
U ∪ V − {xi}, and P is a probability over the exogenous variables U , recursive solvability implies there is a fixed
ordering of the variables U ∪ V such that each exogenous variable takes on a unique value Xi = f(Pai) (where Pai
refers to the “parents" of xi) defined for some particular probability P (u) of the exogenous variables. This constraint
imposes a fixed point requirement on solvability. Similarly, in game theory, each agent must be able to compute a best
response behavior based on knowledge of the other agents’ actions. Finally, in reinforcement learning, the Bellman
optimality condition imposes a fixed point solvability constraint. All of these constraints can be shown to follow the
general causality principle elucidated by Witsenhausen (Witsenhausen, 1971a). We characterize the universal properties
of information fields that induce solvable decision problems in all these specialized settings.

2.3 Information Fields

The concept of information fields had its origins in work on game theory (Aumann, 1976, 1961; Maschler et al., 2013),
and we introduce it first in that setting where it can be described in a simpler way. In general, a group of decision
makers only have partial knowledge of the true state of nature, referred to below by a (continuous or discrete) set Ω. At
any point where an agent α is contemplating a decision, the true state of the world may be indicated by ω0 ∈ Ω, but the
agent may only be able to glimpse the true state of ω0 with some uncertainty, e.g. knowing it belongs to some partition
field of Ω.

Definition 1. A partial information game G = 〈A, (Ω,B, P ), (Uα,Fα)α∈A〉, where A is a finite group of players, Ω
defines the states of nature, B is the usual Borel topology of sets closed under complementation and countable unions
on Ω, so that (Ω,B, P ) forms a probability space. Each player can make decisions from a continuous or discrete set
Uα, and their knowledge of the true state of the world is defined by Fα, a partition of Ω.
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For example, consider the ensemble of computing elements in a cloud computing network, or in an network economics
problem, such as those shown in Figure 2, by the set A. Each computing element a ∈ A can be thought of as an
“actor" that makes decisions over the measurable space (Uα,Fα). Intuitively, this means that Uα could be a discrete
or continuous set of choices, and Fα is a partition of Ω. Consider a two unit network with units α and β, where the
parameters of the game are defined as follows:

• Ω = {1, 2, . . . , 9}, B = 2Ω, P{i : i ∈ Ω} = 1
9 .

• Fα = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.
• Fβ = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9}}.

We would like to be able to update the partitions based on events. For example, if the computing elements observed the
event {3, 4}, what would their posteriors look like?

2.3.1 Operations on Information Fields: Join and Meet

To update the priors based on evidence, we introduce the join and meet operations on partition fields, and more generally,
on σ-algebras. Carpentier et al. (2015) contains an extensive discussion of partition fields, and its relation to σ-algebras.
We now give a simple example of working with partition fields, which will later be generalized to σ-algebras. For agent
α, its partition field Fα contains a partition of the states of nature Ω. We want to introduce two operations on states
of knowledge that will useful in the remainder of the paper, namely join and meet. The set of partition fields, or their
generalization, σ-algebras, form a partially ordered set, or even a lattice. This structure naturally allows computing
the least upper bound and the greatest lower bound of a set of elements. We will use the join and meet operations to
indicate these as follows.

Definition 2. The meet of two partition fields Fα ∧ Fβ is defined as finest partition refined by both Fα and Fβ . In
contrast, the join of two partitions Fα ∨ Fβ is the coarsest common refinement of Fα and Fβ . More formally, we say a
partition Fα is finer than another partition Fγ , denoted as Fγ ≤ Fα, if every element of Fγ is included as an element
of Fα.

In other words, to compute the join of two partition fields, we compute the intersection of every component of Fα with
that of Fβ . To compute the meet of two partition fields, we find the smallest set of subsets that can be composed as the
union of partition elements from Fα and Fβ . Using the above simple example of a game, we get:

• Fα ∨ Fβ = {{1, 2, 3}, {4}, {5, 6}, {7, 8}, {9}}.
• Fα ∧ Fβ = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}. Note here that there does not exist a smaller subset that can be

constructed out of the subsets in both partition fields.

Consider α and β observing the event A = {3, 4}. In this case, the posteriors for each of them is given as:

• FAα = {{1, 2, 3}, {4, 5, 6} }, leading to its assessment of the probability of the state of nature being
Fα(ω) = P (A∩Pα(ω))

Fα(ω) = 1
3 .

• FBα = {{1, 2, 3, 4}}, leading to its assessment of the probability of the state of nature being Pβ(ω) =
P (A∩Pα(ω))

Pα(ω) = 1
2 .

Aumann (1976) studied an interesting class of problems where the players cannot agree to disagree if they share
common knowledge about an event. A classic example of this problem is the “muddy children problem", where a group
of children are told they can go home if their foreheads are muddy. Each child cannot see his or her own forehead, but
they can see the other foreheads, and no communication is allowed otherwise. For a group of N children, it turns out
the teacher has to repeat the statement “At least one child has a muddy forehead" before all the children get up to leave
the class. This is a simple but insightful example of the problem of reasoning with common knowledge. We return to
this topic later in the paper, and pose it again in the context of information fields.

2.3.2 Sigma algebras and Cylindrical Extensions

We will work more generally with σ-algebras, but the underlying concepts are similar to partition fields (a detailed
comparison of their properties is given in (Carpentier et al., 2015)). σ-algebras are defined on the states of nature Ω as
a collection of subsets F that are closed under complementation and countable union, which implies closure under
intersection as well, and with the restriction that Ω ∈ F .
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Definition 3. A measurable space (U,F) is defined as a set U along with a σ-algebra F of subsets of U , closed under
complementation and (countable) union, along with the constraint that the complete set U ∈ F .

Much of our discussion in this paper will be in the context of measurable functions on measurable spaces.
Definition 4. A measurable function f : U → V is defined to be any function defined over measurable spaces in
its domain and range, namely if (U,FU ) is the measurable space over its domain, and (V,FV ) is the measurable
space over the range, then every pre-image of a measurable set in the range is measurable in the domain, that is
f−1(Y ) ∈ FU , Y ∈ FV .

An important special case is when the σ-algebras are finite, in which we can use the following theorem.
Theorem 1. For any finite measurable space (U,F), its σ-algebra F can be generated purely from a partition of
U = {P1, . . . , Pk}, by forming the union of all possible subsets in the partition. That is, for any X ∈ F , it follows that
X = ∪i∈IPi, where I ⊂ {1, . . . , k}.

An important application of this theory is defining observations over information fields. We can state the general
definition as follows:
Definition 5. The smallest σ-algebra σ(C) generated by a family of sets C = {C1, . . . , Ck} is defined as the
intersection of all σ-algebras containing C.

In particular, given a topological space the smallest σ-algebra generated by the topology is called the Borel σ-algebra.
Definition 6. The Borel σ-algebra is defined as the smallest σ-algebra defined by the topological space (X,O).

This leads naturally to the definition of a probability space (Ω,B, P ). A detailed definition of probability measures is
given in any textbook on measure theory (Halmos, 1974).
Definition 7. The probability space (Ω,B, P ) is defined as a measurable space (Ω,B) with a measurable function
P : Ω→ (0, 1), defined over it, such that P (Ω) = 1, P (A ∪B) = P (A) + P (B) for all disjoint events A,B, where
P is a measurable function.

Consider for simplicity the case when a computing element represents an IOT sensor that can only measure two values,
so in this case, Uα = {0, 1}. We can choose Fα in several ways, ranging from the power set or discrete topology
F)α = P (Uα) = {∅, {0}, {1}, {0, 1}} to the indiscrete topology Fα = {∅, {0, 1}}. Each computing unit also has
some awareness of the “state of nature", which could be represented as a set of noisy measurements of local and/or
global information. The state of nature is modeled as a probability space (Ω,B, P ), where Ω is the sample space of
events, B is a measurable space of subsets of the sample space, which is also endowed with a Borel topology, and P is
the probability measure such that P (Ω) = 1.

We can also use some simple properties of σ-algebras.

• If D ⊂ C ⊂ B ⊂ A, then FB(D) ⊂ FB(C),FB(C) ∪ FB(D) = FB(C ∪ D),FB(C) ∨ FB(D) =
FB(C ∪D), which will be useful below in defining a topology over computing elements that share a common
information field.

• Note H∅ = Ω, and FB(∅) is defined as the cylindrical extension of the σ-algebra B over states of nature to
HB . In general, the cylindrical extension of a σ-algebra

∏
α∈B Fα for a subset B ⊂ A to all of A is defined

as
∏
α∈B Fα×

∏
α/∈B{∅,Fα} ⊂ FA(A) ≡ F . In other words, the σ-algebra for elements α ∈ B remains the

same, whereas for elements α /∈ B, we use the maximally uninformative σ-algebra of the indiscrete topology
{∅,Fα}.

3 Universal Decision Model

We now proceed to give a more formal introduction to the Universal Decision Model (UDM), which draws extensively on
the concepts in category theory (Riehl, 2016), as well as Witsenhausen’s information field representation (Witsenhausen,
1971b), suitably generalized to the setting of category theory. Accordingly, we first give a brief review of category
theory, and then proceeed to describe UDM. Subsequent chapters will explore particular instantations of UDM models in
more concrete settings, such as causal inference, stochastic control and reinforcement learning, and network economics.

3.1 Category Theory

Over the past 70 odd years, a concerted effort by a large group of mathematicians has resulted in the development of a
sweeping unification of large areas of mathematics using category theory (Riehl, 2016). Table 1 compares the basic
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Set theory Category theory
set object

subset subobject
truth values {0, 1} subobject classifier Ω

power set P (A) = 2A power object P (A) = ΩA

bijection isomorphims
injection monic arrow
surjection epic arrow

singleton set {∗} terminal object 1
empty set ∅ initial object 0

elements of a set X morphism f : 1→ X
- non-global element Y → X
- functors, natural transformations
- limits, colimits, adjunctions

Table 1: Comparison of notions from set theory and category theory.

notions in set theory vs. category theory. Briefly, a category is a collection of objects, and a collection of morphisms
between pairs of objects, which are closed under composition, satisfy associativity, and include an identity morphism
for every object. For example, sets form a category under the standard morphism of functions. Groups, modules,
topological spaces and vector spaces all form categories in their own right, with suitable morphisms (e.g, for groups, we
use group homomorphisms, and for vector spaces, we use linear transformations). We will illustrate the application
of category theory to reinforcement learning by showing that it is relatively straightforward to define categories over
MDPs and PSR models, based on the previously defined homomorphisms over these models. We then summarize
previous work on open maps over machines, which generalizes these ideas.

A broad class of models used in optimal control, reinforcement learning, operations research and system identification
can be characterized in terms of categories and the morphisms between them, including Markov decision processes
(MDPs) and semi-MDPs (Puterman, 1994), predictive state representations (PSRs) (Soni and Singh, 2007) and subspace
identification models in system identification (Overschee and Moor, 1993), as well as Witsenhausen’s intrinisc model
of decentralized stochastic control based on information fields (Witsenhausen, 1973). Our work can also be viewed
as a generalization of previous abstraction methods, such as homomorphisms used in model minimization in MDPs
and SMDPs (Dean and Givan, 1997; Ravindran and Barto, 2003) and PSR’s (Soni and Singh, 2007), as well as related
abstraction models used in algebraic automata theory (Hartmanis and Stearns, 1962).

Our presentation will follow the excellent treatments given in (Bradley et al., 2020; Goldblatt, 2006; Riehl, 2016).
Intuitively, a category is simply a collection of objects X,Y, . . ., and a collection of morphisms f, g, . . ., where
f : X → Y is the morphism whose domain is X and co-domain is Y . A basic principle of category theory is that
objects have no discernable internal structure, and their identity up to isomorphism is revealed by their interaction with
other objects in the category. To take a simple, but illustrative example, consider a set X with n elements. Rather than
list the elements of the set, we define it simply as a collection of mappings from the category 1 to X , where 1 is the
category with exactly one object, and one morphism (identity). Each mapping from 1 to X must by definition pick out
one of its elements, and consequently the entire ensemble of elements in X is revealed by the ensemble of mappings
from 1 to X . The Yoneda lemma described later generalizes this principle to mappings from an arbitrary category to the
category of sets. Mappings between categories are known as functors, and will be defined below.

For each pair of morphisms f, g, such that the co-domain of f is the same as the domain of g, there is a composite
morphism gf , simply defined as the composition of g and f (where f is applied first, followed by g), defined as
gf : X → Z. There are two additional requirements: each object X has associated with it an identity morphism
1X : X → X , whose composition with any other morphism f : X → Y is defined as 1Y f = f = f1X = f . The
second requirement is associativity, whereby given morphisms f : X → Y, g : Y → Z, h : Z → W , the composite
morphism hgf : X →W is associative.

Some examples of categories are illustrated below, which we will refer to in the remainder of the paper.

• Set: The canonical example of a category is Set, which has as its objects, sets, and morphisms are functions
from one set to another. The Set category will play a central role in our framework, as it is fundamental to the
universal representation constructed by Yoneda embeddings.
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• Top: The category Top has topological spaces as its objects, and continuous functions as its morphisms.
Recall that a topological space (X,Ξ) consists of a set X , and a collection of subsets Ξ of X closed under
finite intersection and arbitrary unions.

• Group: The category Group has groups as its objects, and group homomorphisms as its morphisms.

• Graph: The category Graph has graphs (undirected) as its objects, and graph morphisms (mapping vertices
to vertices, preserving adjacency properties) as its morphisms. The category DirGraph has directed graphs as
its objects, and the morphisms must now preserve adjacency as defined by a directed edge.

• Poset: The category Poset has partially ordered sets as its objects and order-preserving functions as its
morphisms.

• Meas: The category Meas has measurable spaces as its objects and measurable functions as its morphisms.
Recall that a measurable space (Ω,B) is defined by a set Ω and an associated σ-field of subsets B that is closed
under complementation, and arbitrary unions and intersections, where the empty set ∅ ∈ B.

3.2 Universal Properties

A core goal in category theory is to elucidate the universal properties of objects and morphisms. The motivation is
understand the essence of what makes a particular concept unique. For example, in set theory, the cartesian product of
two sets A×B = {(a, b)|a ∈ A, b ∈ B} is simply defined by listing the elements of the set representing the cartesian
product. In category theory, a different approach is taken, one that involves articulating the universal property of objects
that represent cartesian products, as we will see below. One of our primary contributions is the categorial formulation
of Witsenhausen’s intrinsic model. The key principle underlying category theory is universality: this seemingly simple
concept is somewhat difficult to grasp at first glance since some of its definitions involve a deeper definition of terms that
we provide in later sections. Intuitively, let us for now consider the universal property of an object to be something that
characterizes all morphisms into or out of the object. This philosophy of describing objects in terms of the interactions
they make with other objects is a key characteristic of category theory.

3.2.1 Quotients:

Quotient spaces induced by an equivalence relation∼ play a fundamental role in the UDM framework. Given a category
CUDM of decision objects objects, the quotient CUDM/ ∼ is the set of equivalence classes in CUDM, whereby an
object c ∈ CUDM is mapped to its equivalence class [c]f under the function f such that f(c) = f(d) implies [c] = [d].
Reflexivity, symmetry, and transitivity easily follow from the definition. The canonical projection π : C → C/ ∼ is the
unique map sending c to its equivalence class [c]f . Quotients will play a key role in the UDM framework as we will see
below.

X

X/ ∼ Y

The universal property of quotients is indicated in the above diagram whereby any map from object X to object Y that
equates equivalent objects is uniquely factorizable through its quotient map, so that f = gπ, and the diagram commutes.
Quotients have played a central role in MDP homomorphisms (Dean and Givan, 1997; Ravindran and Barto, 2003) and
PSR’s (Soni and Singh, 2007), as well as related abstraction models used in algebraic automata theory (Hartmanis and
Stearns, 1962).

3.2.2 Product:

A central motif in much of the literature in decision making is the need to integrate information from multiple sources.
In the RL literature, dynamical system models like MDPs, POMDPs and PSRs typically assume the notion of a
state, which summarizes all the information from the past (or future) that is important for making optimal decisions.
In structural causal models, an endogenous variable in the model is a function of exogenous and other endogenous
variables, which requires integrating information from all these “parent" variables. In games, an agent needs to consider
the potential responses of all other other actions. All of these involve the fundamental operation of a product. In
category theory, products are defined as the following universal property:

8
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T

X × Y X

Y Z

x

y

r

p

q f

g

The above figure shows a diagram, a standard construct in category theory, where objects are depicted by vertices with
labels, and morphisms are indicated by labeled edges. This diagram asserts that there is an object labeled X × Y with
morphisms p : X × Y → X and q : X × Y → Y , which we recognize immediately as the canonical projection from a
cartesian product to its components. Furthermore, the diagram asserts that given any morphism from an object T to
X , there is in fact a unique way to factor that morphism through the product object, so that the diagram “commutes",
meaning the morphism x = p r. Similarly, any morphism from T to Y is also uniquely factored through r, so that
y = q r. We have thus characterized the product object purely in terms of the morphisms into and out of the object.
Our first claim is that for decision making, the ability to form products is a universal property, which is an essential
ingredient in any framework. In the UDM framework, products play a key role in defining information fields, which are
a subfield of the product space (

∏
α Uα,

∏
α Fα). As we will see later, the ability to form products is essential in using

information fields to specify structural causal models, as well as define states in sequential models.

3.2.3 Co-Product:

A related universal property to product is the coproduct property, which loosely translates to forming “disjoint" unions
of sets. Coproducts refer to the universal property of abstracting a group of elements into a larger one. For example,
information fields of multiple decision objects can be combined into one larger information field through co-products.

Z X

Y X t Y

R

p

q f
h

g

i

r

In the commutative diagram above, the coproduct object X t Y uniquely factorizes any mapping h : X → R and any
mapping i : Y → R, so that h = r f , and furthermore i = r g.

3.2.4 Pullback and Pushforward Mappings

T

U X

Y Z

x

y

k

g′

f ′ f

g

Figure 3: Universal Property of pullbacks and pushforward mappings.

Figure 3 illustrates the fundamental property of a pullback, which along with pushforward, is one of the core ideas in
category theory. The pullback square with the objects U,X, Y and Z implies that the composite mappings g f ′ must
equal g′ f . In this example, the morphisms f and g represent a pullback pair, as they share a common co-domain Z.
The pair of morphisms f ′, g′ emanating from U define a cone, because the pullback square “commutes" appropriately.
Thus, the pullback of the pair of morphisms f, g with the common co-domain Z is the pair of morphisms f ′, g′ with
common domain U . Furthermore, to satisfy the universal property, given another pair of morphisms x, y with common
domain T , there must exist another morphism k : T → U that “factorizes" x, y appropriately, so that the composite
morphisms f ′ k = y and g′ k = x. Here, T and U are referred to as cones, where U is the limit of the set of all cones
“above" Z. If we reverse arrow directions appropriately, we get the corresponding notion of pushforward. So, in this
example, the pair of morphisms f ′, g′ that share a common domain represent a pushforward pair.

9
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S S’ T
A

S S’ T
A

S T
A’

Bisimulation morphism

Figure 4: A simple example of a bisimulation morphism between labeled transition systems (Joyal et al., 1993). Our
work generalizes this construction to UDM models, replacing states by information fields.

3.3 Universal Decision Model

Now, we introduce the Universal Decision Model (UDM) more formally. In the UDM category CUDM, as in any
category, we are given a collection of decision objects D, and a set of morphismsMUDM between UDM objects,
where f : c→ d is a morphism that maps from UDM object c to d. A morphism need not exist between every pair of
UDM objects. In this paper, we restrict ourselves to locally small UDM categories, meaning that exists only a set’s
worth of morphisms between any pair of UDM objects. More general categories of UDMs are beyond the scope of this
introductory paper.

Definition 8. A Universal Decision Model (UDM) is defined as a category CUDM, where each decision object is
represented as a tuple 〈(A, (Ω,B, P ), Uα,Fα, Iα)α∈A〉, where A describes a finite universe of elements (e.g., random
variable in a structural causal model, dynamical systems, such as linear dynamical systems, MDPs, PSRs etc., intrinsic
models, or multiplayer network games), (Ω,B, P ) is a probability space representing the inherent stochastic state of
nature due to randomness, Uα is a measurable space from which a decision u ∈ Uα is chosen by decision object α.
Each element’s policy in a decision object is any function πα :

∏
β Uβ → Uα that is measurable from its information

field Iα, a subfield of the overall product space (
∏
α Uα,

∏
α Fα), to the σ-algebra Fα. The policy of decision object α

can be any function πα :
∏
β Uβ → Uα.

A UDM may also contain observation objects and solution objects, which we discuss later in the paper. Briefly,
observation objects correspond to a “run-time" trace behavior of a decision object, whereas a solution object represents
a “solution" of the decision problem. As mentioned at the outset, the traditional role of optimization in much of
(sequential) decision making plays only a minor role in the UDM framework, as it is tailored to a particular information
structure. We will discuss solution methodologies for particular information structures later in the paper.

Definition 9. The information field of an element α ∈ A in a decision object c in UDM category CUDM is denoted
as Iα ⊂ FA(A) characterizes the information available to decision object α for choosing a decision u ∈ Uα.

As we will see below, the information field structure yields a surprisingly rich topological space that has many important
consequences for how to organize the decision makers in a complex organization into subsystems. An element α in a
decision object requires information from other elements or subsystems in the network. To formalize this notion, we
use product decision fields and product σ-algebras, with their canonical projections.

Definition 10. Given a subset of nodes B ⊂ A, let HB = Ω×
∏
α∈B Uα be the product space of decisions of nodes

in the subset B, where the product σ-algebra is B ×
∏
α∈B Fα = FB(B). It is common to also denote the product

σ-algebra by the notation ⊗α∈AFα. If C ⊂ B, then the induced σ-algebra FB(C) is a subfield of FB(B), which can
also be viewed as the inverse image of FC(C) under the canonical projection of HB onto HC . 2

3.4 Bisimulation Morphims as Open Maps

In a UDM category, the morphisms between decision objects are represented using the concept of open maps, as
proposed in (Joyal et al., 1993). This framework is based on defining a model of computation as a category. Figure 4

2Note that for any cartesian product of sets
∏

iXi, we are always able to uniquely define a projection map into any component
set Xi, which is a special case of the product universal property in a category.

10
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illustrates a simple example of the concept of bisimulation in the category of labeled transition systems, which can be
seen as a deterministic MDP (Joyal et al., 1993). A related notion has been proposed for probabilistic bisimulation
(Larsen and Skou, 1991). The use of category theory to provide an algebraic characterization of machine models
has a long and distinguished history (Arbib and Manes, 1974), which been studied at length in a number of different
subfields of computer science. One fundamental notion is bisimulation between machines or processes using open
maps in categories (Joyal et al., 1993, 1996). This definition can be seen as a generalization of the simpler bisimulation
relationship that exists for the category of labeled transition systems (Joyal et al., 1993), which are specified as a
relation of tuples (s, a, s′), which indicates a transition from state s to state s′, where s, s′ ∈ S, and a ∈ A. Given a
collection of labeled transition systems, each of which is represented as an object, morphisms are defined from one
object to another that preserve the dynamics under the labeling function. For example, a surjective function f : S → S′

maps states in object X to corresponding states in Y , where the labels are mapped as well, with the proviso that some
transitions in X may be hidden in Y (i.e., cause no transition). If a morphism exists between objects X and Y , then Y
is said to be a bisimulation of X .

LetM denote a model of computation, where a morphism m : X → Y is to intuitively viewed as a simulation of X
in Y . WithinM, we choose a subcategory of “observation objects" and “observation extension" morphisms between
them. We can denote this cateogry of observations by P . Given an observation object P ∈ P , and a model X ∈M, P
is said to be an observable behavior of X if there is a morphism o : P → X inM. We define morphisms m : X → Y
that have the property that whenever an observable behavior of X can be extended via f in Y , that extension can be
matched by an extension of the observable behavior in X .
Definition 11. (Joyal et al., 1993) A morphism m : X → Y in a model of computationM is said to be P-open if
whenever f : O1 → O2 in P , p : O2 → Y inM, and q : O2 → Y inM, the below diagram commutes, that is,
m p = q f .

O1 X

O2 Y

f

p

m

q

This definition means that whenever such a “square" inM commutes, the path f p in Y can be extended via m to a
path q in Y , there is a “zig-zag" mediating morphism p′ such that the two triangles in the diagram below

O1 X

O2 Y

f

p

m
p′

q

commute, namely p = p′ f and q = m p′. We now define the abstract definition of bisimulation as follows:
Definition 12. Two models X and Y inM are said to be P-bisimilar (inM) if there exists a span of open maps from
a common object Z:

Z

X Y

m
m′

Note that if the categoryM has pullbacks (see Figure 3 right), then the ∼P is an equivalence relation, which induces a
quotient mapping. Furthermore, pullbacks of open map bisimulation mappings are themselves bisimulation mappings.
Many of the bisimulation mappings studied for MDPs and PSRs are special cases of the more general formalism above.

3.5 Bisimulation in UDMs

We introduce the concept of bisimulation morphisms between UDM objects, which builds on a longstanding theme in
computer science on using category theory to understand machine behavior (Arbib and Manes, 1974). One fundamental
notion is bisimulation between machines or processes using open maps in categories (Joyal et al., 1993, 1996).
Definition 13. The bisimulation relationship between two UDM objects M = 〈A, (Ω,B, (Uα,Fα, Iα)α∈A〉 and
M ′ = 〈A′, (Ω′,B′, (U ′α,F ′α, I ′α)α∈A′〉, denoted as M � M ′, is defined as is defined by a tuple of surjections as
follows:

11
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• A surjection f : A � A′ that maps elements in A to corresponding elements in A′. As f is surjective, it
induces an equivalence class in A such that x ∼ y, x, y ∈ A if and only if f(x) = f(y).

• A surjection g : H � H ′, where H = Ω ×
∏
α∈A Uα, with the product σ-algebra B ×

∏
α∈A Fα, and

H ′ = Ω′ ×
∏
α∈A′ U ′α, with the corresponding σ-algebra B′ ×

∏
α∈A′ F ′α.

This definition can be seen as a generalization of the simpler bisimulation relationship that exists for the category of
labeled transition systems (Joyal et al., 1993), which are specified as a relation of tuples (s, a, s′), which indicates a
transition from state s to state s′, where s, s′ ∈ S, and a ∈ A. Given a collection of labeled transition systems, each of
which is represented as an object, morphisms are defined from one object to another that preserve the dynamics under
the labeling function. For example, a surjective function f : S → S′ maps states in object X to corresponding states in
Y , where the labels are mapped as well, with the proviso that some transitions in X may be hidden in Y (i.e., cause no
transition). If a morphism exists between objects X and Y , then Y is said to be a bisimulation of X . Definition 4 can
be seen as the generalization of the bisimulation relationship in labeled transition systems, MDPs, and related models
like PSRs, to intrinsic models. The state-dependent action recoding in the MDP homomorphism definition is captured
by the equivalent surjection g that maps the product space H with its associated σ-algebra to H ′ with its corresponding
σ-algebra.

We can specialize the definition in a number of ways, depending on the exact form chosen for the surjection g between
product spaces H and H ′. Since the surjection f maps decision makers into equivalence classes, each decision maker
in model M ′ corresponds to an equivalence class of decision makers in model M . Thus, we need to collapse their
corresponding information fields. We can define the information field of an equivalence class of agents [α]f , meaning
all β such that f(β) = f(α), by recalling that an information field is a subfield of the product field, and as it is a lattice,
we can use the join operation, as defined below:
Definition 14. The quotient information field of a collection of agents [α]f is defined as the join of the information
fields of each agent:

I[α] =
∨

β∈[α]f

Iα (1)

3.6 Observation Objects in UDM

We now briefly discuss observation objects in a UDM. Observation objects, as mentioned above, represent observable
trace behavior of a decision object. We first define observation functions that underlie information fields.
Definition 15. For a UDM object M = 〈A, (Ω,B, (Uα,Fα, Iα)α∈A〉 over a finite σ-algebra, the observations
Z1, . . . , Zk taking values in a measurable space (Zi,Zi), where Zi = ηi(ω,U1, . . . , U|A|) is an observation gener-
ation map function such that σ(Z1:k) is the smallest σ-algebra contained in B ⊗

∏
α Fα with respect to which the

observation maps ηi are measurable functions. We say the observations Z1, . . . , Zk generate the information field Iα if

σ(Z1, . . . , Zk) = Iα (2)

We can then define an observation object associated with a UDM decision object as one equipped with an observation
generation map that can generate the various information fields in the decision object.
Definition 16. A UDM observation object O = 〈A, (Ω,B, (Uα,Fα, ηα)α〉 is such that each information field Iα can
be generated from the associated observation generation map ηα.

We can define an observation morphism between an observation object O and a decision object M to be one such that
O represents an observable behavior of M , and extend the notion of P-open morphisms from Definition 11 above.

3.7 Example: Network Economics

To illustrate the general UDM framework, we now give an example of a multiplayer producer consumer game from
network economics. Consider the network economic model in Figure 5. The set of elements in this decision object can
be represented as (A, (Ω,B, P ), Uα,Fα, Iα)α∈A, where A is defined by the set of vertices in this graph representing
the decision makers. For example, service provider i chooses its actions from the set Ui, which can be defined as
∪j,kQijk. Fi is the associated measurable space associated with Ui. Ii represents the information field of service
provider i, namely its visibility into the decisions made by other entities in the network at the current or past time steps.

Network economics (Nagurney, 1999)is the study of a rich class of equilibrium problems that occur in the real
world, from traffic management to supply chains and two-sided online marketplaces. Consider a cloud based network
economics model comprises of three tiers of agents: producer agents, who want to sell their goods, transport agents who
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Figure 5: A multiplayer game network economic model (Nagurney and Wolf, 2014) as an example of a UDM. Each
decision object in this UDM is a network economics model, where the top tier of producer agents is interested in selling
merchandise (digital content, manufactured goods) to a set of demand market agents, but needs the cooperation of
transport agents to deliver the merchandise. All the players in this network compete for the best price and quality.

ship merchandise from producers, and demand market agents interested in purchasing the products or services. The
model applies both to electronic goods, such as video streaming, as well as physical goods, such as face masks and other
PPEs. he model assumes m service providers, n network providers, and o demand markets. Each firm’s utility function
is defined in terms of the nonnegative service quantity (Q), quality (q), and price (π) delivered from service provider i by
network provider j to consumer k. Production costs, demand functions, delivery costs, and delivery opportunity costs
are designated by f , ρ, c, and oc respectively. Service provider i attempts to maximize its utility function U1

i (Q, q∗, π∗)
by adjusting Qijk. Likewise, network provider j attempts to maximize its utility function U2

j (Q∗, q, π) by adjusting
qijk and πijk.

U1
i (Q, q∗, π∗) =

n∑
j=1

o∑
k=1

ρ̂ijk(Q, q∗)Qijk − f̂i(Q)−
n∑
j=1

o∑
k=1

π∗ijkQijk, Qijk ≥ 0

U2
j (Q∗, q, π) =

m∑
i=1

o∑
k=1

πijkQ
∗
ijk −

m∑
i=1

o∑
k=1

(cijk(Q∗, q) + ocijk(πijk)), qijk, πijk ≥ 0

As a second example, consider a take a toy cloud computing network that is comprised of three elementsA = {e1, e2, h},
where ei is an edge node, and h is a hub node. Let us assume the decision space for the edge nodes U1 = U2 = {s, r},
representing “send" and “receive" modes, and for the hub Uh = {c, t} representing “collect" and “transmit" modes. Let
us also define the states of nature Ω = {+,−}, indicating whether the environment is a “safe" or “unsafe" mode for
information transmission or collection. Let us assume that the σ-algebras for both edge and hub devices is defined by the
discrete topology given as Fei = {∅, {s}, {r}, {s, r}},Fh = {∅, {c}, {r}, {c, r}}. The σ-algebra for states of nature
is given as B = {∅, {+}, {−}, {+,−}}. The product decision space is given as H = Ω×

∏
α Uα, α ∈ {e1, e2, h}, the

product σ-algebra is defined as FA = B × Fe1 ×Fe2 ×Fh.

3.8 Causality and Solvability of UDM objects

Each decision maker α in a UDM object has associated with it a control law or policy πα : H → Uα, which is
measurable from its information field Iα to Fα, the measurable space associated with its decision space Uα. Essentially,
this means that any pre-image of π−1

α (E), for any measurable subsetE ⊂ Fα, is also measurable on its information field,
that is π−1

α (E) ⊂ Iα. For any subsystem in the cloud computing network, the overall policy space πB =
∏
α∈B πalpha

is given by the product space of all individual control laws.
Definition 17. A UDM object 〈A, (Ω,B, P ), (Uα,Fα, Iα)α∈A〉 is said to be solvable if for every state of nature ω ∈ Ω,
and every control law π ∈ ΠA, the set of simultaneous equations given below has one and only one solution u ∈ U .

uα = πα(h) ≡ πα(ω, u) (4)

Here, πα can be viewed as a projection from the joint decision h taken by the entire ensemble of decision makers in the
intrinsic model. A UDM category CUDM is solvable if every object in it is solvable.

Intuitively, the solvability criterion states that a UDM object represents a solvable decision problem if each agent in the
object can successfully compute its response, given access to its information field, and that its response is uniquely
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determined for every state of nature. It is easy to construct unsolvable decision objects. Consider a simple network with
two elements α and β, each of whose information fields includes the measurable space of the other. In this case, neither
element can compute its function without knowing the other’s response, hence both are waiting for the other to compute
their response, and a deadlock ensures.

Given the notion of solvability above, we can now define solution objects in a UDM.
Definition 18. A UDM solution object 〈A, (Ω,B, P ), (Uα, πα,Fα, Iα)α∈A〉 is defined as one for which for every
state of nature ω ∈ Ω, the control law πα uniquely defines a fixed point solution uα = πα(h) ≡ πα(ω, u) to the
associated decision object.

We can straightforwardly define morphisms between solution objects and decision objects. To understand the causality
condition, it is crucial to organize the decision makers into a partial order, such that for every total ordering that can be
constructed from the partial ordering, the agents can successfully compute their functions based on the computations of
agents that preceded them in the ordering.
Definition 19. A UDM object 〈A, (Ω,B, P ), (Uα,Fα, Iα)〉 is said to be causal if there exists at least one function
φ : H → S, where S is the set of total orderings of computing elements in A, satisfying the property that for any partial
stage of the computation 1 ≤ k ≤ n, and any ordered set (α1, . . . , αk) of distinct elements from A, the set E ⊂ H on
which φ(h) begins with the same ordering (α1, . . . , αk) satisfies the following causality condition:

∀F ∈ Fαk , E ∩ F ∈ F({α1, . . . , αk−1}) (5)

In other words, if at every step of the process, the kth decision making element αk can successfully compute its response
based on the information fields of the past k − 1 elements, the system is then considered causal. Interestingly, it has
been shown (see (Heymann et al., 2021)) that the causality condition as stated above generalizes the notion of causality
in Pearl’s structural causal models (Pearl, 2009).

4 UDMs for Causal Inference and Stochastic Control

We now show the general framework of UDMs transcends multiple decision making regimes, by illustrating how they
can form the basis for "universal" decision making in two special cases: linear total ordering, which gives rise to
stochastic control, and partial ordering, which gives rise to causal inference.

4.1 UDMs in RL and Stochastic Control

Witsenhausen (1973) himself showed the importance of information fields in stochastic control, in particular developing
a canonical model of stochastic control (Witsenhausen, 1973). We summarize a more recent extension from (Nayyar
and Teneketzis, 2019) that shows how to define common knowledge using information fields, an interesting contrast to
the notion of common knowledge defined above in game theory using Aumann’s framework. We define the abbreviation
U1:T = (U1, . . . , UT ) for the product decision space, and similarly F1:T = F1 × . . .×FT for the product σ-algebra.
Definition 20. (Nayyar and Teneketzis, 2019) Given the probability model (Ω,B, P ) for the random states of nature
ω ∈ Ω, the measurable decision spaces (Ut,Ft), t = 1, . . . , T , the information field σ-algebras It ⊂ B × F1 . . .FT ,
and the cost function c : (Ω× U1:T×,B × F1:T → (R,B), find a (generally non-stationary) policy π = (π1, . . . , πT ),
with each policy at time t defined as the mapping gt : (Ω × U1:T , It → (Ut,Ft), that minimizes the cost function
infπ E[c(ω,U1, . . . , UT )] exactly, or to within ε.

Note that the above definition of stochastic decision making is just a special case of the UDM model in Definition 8.
In particular, the agents in stochastic control are labeled 1, . . . , T , their temporal ordering is fixed a priori, and each
agent’s information field is generally defined over the entire horizon (1, . . . , T ). To define the special case of finite
horizon sequential stochastic control, we must impose further conditions on the information fields available at each
instant of time t ∈ (1, . . . , T ).
Definition 21. An information structure in the stochastic control model in Definition 20 is sequential if there exists
a permutation p : {1, . . . , T} → {1, . . . , T} such that for t = 1, . . . T , the information field It ⊂ B × Fp(1) ×
Fp(2), . . . ,Fp(t−1) × {∅,Fp(t)} × . . .× {∅,Fp(T )}.

In terms of the terminology we have introduced earlier, note that the information field It at time t is a cylindrical
extension from the field over 1, . . . , t− 1 to all of 1, . . . , T . Note that for the sequential case, the permutation ordering
p is fixed a priori, and does not vary over the different states of nature ω ∈ Ω.

We now define the notion of common knowledge in information fields based on the definition in (Nayyar and Teneketzis,
2019). Recall that the information field It ⊂ F × F1 × . . .Ft−1 × {∅, Ut} × . . . {∅, UT }.
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Definition 22. (Nayyar and Teneketzis, 2019) The common knowledge for the tth decision maker in a sequential
intrinsic model is defined as

Ct =

T⋂
s=t

Is (6)

That is, the common knowledge Ct is defined as the intersection of all information fields from time t till the end of the
decision process.

Some simple properties of common knowledge can be readily shown:

• Coarsening property: Ct ⊂ It: immediate from definition.

• Nestedness property: Ct ⊂ Ct+1: immediate from definition.

• Common observations: There exist observations Z1, . . . , ZT with Zt taking values in a finite measurable
space (Zt, 2

Zt), and Zt = ηt(ω,U1, . . . , Ut−1) such that σ(Z1:t) = Ct: for a detailed proof, see (Nayyar and
Teneketzis, 2019)). The basic idea exploits the fact that finite σ-algebras can be generated from partitions.

4.2 The Category of Causal UDMs

In the above, we assume that temporal ordering is given a priori as a total ordering (1, . . . , T ), and in the sequential
case, each decision maker’s information field is a subset of the product decision and information fields of all agents that
have acted prior to it. We now generalize from the requirement of imposing a strict linear ordering, and consider more
general partially ordered temporal structures. This relaxation from linear to partial ordering allows us to formalize a
particular case of the intrinsic model that in fact exactly corresponds to causal inference, as shown recently in Heymann
et al. (2021). We briefly review how information fields can formalize causal inference, referring the interested reader
to (Heymann et al., 2021) for additional details. Consider a simple causal model shown below, where variable A is
a “common" cause of variables B and C. In a structural causal model (Pearl, 2009), we consider the universe of
variables {A,B,C} to be subdivided into “exogenous" variables U with no parents in the model, below U = {A}, and
“endogenous" variables V = {B,C} whose parents include exogenous and endogenous variables.

A

B C

Let us illustrate how information fields can be used to represent such structural causal models. Let the three variables
above all be binary, so each variable can be viewed as a decision maker whose decision space UA = UB = UC = {0, 1}.
Let the associated σ-algebras be defined as by the discrete topology FA = FB = FC = {∅, {0}, {1}, {0, 1}}. Let
the states of nature be defined as Ω = {0, 1}3, with the associated Borel topology B = 2Ω. We can think of
Ω = ΩA × ΩB × ΩC , and B = BA × BA × BC . To specify the causal DAG model fully, we need to specify the
conditional probability distributions, which we can do using information fields for each variable.

Consider the exogenous variable A. Since it has no parent in the model, its value depends only on the measure
of uncertainty from the external environment, hence we can write its information field IA ⊂ BA × {∅,ΩB} ×
{∅,ΩC} × {∅, UA}. Note that a variable in a structural causal model cannot be “self-aware", that is, its value
cannot depend on its own value! Hence, the condition {∅, UA} is imposed. On the other hand, the information
field for variable C depends on the values of the other two variables, so its information field can be written as
IC ⊂ {∅,ΩA} × {∅,ΩB} × FA ×BC ×FB × {∅, UC}. That is, the value taken by C depends on the values taken by
A and B and its own uncertainty.
Definition 23. A causal UDM is defined as one where each objectM = (Uα,Fα, Iα, (Ω,B, P )), where α ∈ X , a
finite space of variables. Uα is a non-empty set that defines the range of values that variable α can take. Fα is a
σ-algebra of measurable sets for variable α. The triple (Ω,B, P ) is a probability space, where B is a σ-algebra of
measurable subsets of sample space Ω. The information field Iα ⊂ F represents the “receptive field" of an element
α ∈ X , namely the set of other elements β ∈ X whose values α must consult in determining its own value. We impose
the restriction that the information field Iα respect the Alexandroff topology on X , so that Iα ⊂ F(Uα), where Uα is
the minimal basic open set associated with element α ∈ X .

Following structural causal models (Pearl, 2009), we can decompose the elements of a causal UDM object into disjoint
subsets X = U t V , where U represents “exogenous" variables that have no parents, namely α is exogenous precisely
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when Iα ⊂ F(∅), and V are “endogenous" variables whose values are defined by measurable functions over exogenous
and endogenous variables. Note that the probability space can be defined over the “exogenous" variables α ∈ U , in
which case it is convenient to attach a local probability space (Ωα,Bα, P ) to each exogenous variable, where Bα ⊂ B.
We define conditional independence with respect to the induced information fields over the open sets of the Alexandroff
space.

Definition 24. Given the induced probability space over information fields in a causal UDM object, a stochastic basis
is a sequence of information fields G = I1, . . . , In such that for 1 ≤ i ≤ n−1, Ii ⊂ Ii+1, and ∪n1=1Ii = F . Two such
sequences G1 and G2 are conditionally independent given the base σ-algebra F , if for all subsets A ∈ G1, B ∈ G2, it
follows that P (A B|F) = P (A|F)P (B|F).

Definition 25. The decision field U =
∏
α∈X Uα defines the space of all possible values of the variables in a causal

UDM object, where the cartesian product is interpreted as a map u : X → ∪α∈XUα such that u(α) ≡ uα ∈ Uα.

Definition 26. For any subset of elements B ∈ X , let PB denote the projection of the product
∏
α Uα upon the product∏

β∈B Uβ , that is PB(u) is simply the restriction of u to the domain B.

Definition 27. The product σ-algebra is defined as
∏
α∈B Fα over

∏
α∈B Uα, where F(B) is the smallest sigma-field

such that PB is measurable. Note that if B1 ⊂ B2, then FB1
⊂ FB2

. The finest sigma-field F(X) =
∏
α∈X Fα.

Definition 28. A causal UDM objectM is causally faithful with respect to the probability distribution P overM
if every conditional independence in the topology, as defined in Definition 24, is satisfied by the distribution P , and
vice-versa, every conditional independence property of the P is satisfied by the topology.

We can now formally define what it means to “solve" a causal UDM objectM. We impose the requirement that each
variable α ∈ X must compute its value using a function measurable on its own information field.

Definition 29. Let the policy function fα of each element α ∈ X be constrained so that fα : U × Ω → Uα is
measurable on the product σ-algebra Iα × Bα, namely f−1

α (Fα) ⊂ Iα × Bα.

Definition 30. The causal UDM objectM = (X,Uα,Fα, Iα) is measurably solvable if for every ω ∈ Ω, the closed
loop equations Pα(u) = fα(u, ω) have a unique solution for all α ∈ X , where for a fixed ω ∈ Ω, the induced map
Mγ : Ω→ U is a measurable function from the measurable space (Ω,B) into (U,F).

Definition 31. The causal UDM objectM = (X,Uα,Fα, Iα) is stable if for every ω ∈ Ω, the closed loop equations
Pα(u) = fα(u, ω) are solvable by a fixed constant ordering Ξ that does not depend on ω ∈ Ω.

Measurably solvable causal UDM objects generalize the corresponding property in a structural causal model
(U, V, F, P ), which states that for any fixed probability distribution P defined over the exogenous variables U , each
function fi computes the value of variable xi ∈ V , given the value of its parents Pa(xi) uniquely as a function of
u ∈ U . This allows defining the induced distribution Pu(V ) over exogenous variables in a unique functional manner
depending on some particular instantiation of the random exogenous variables U . Stable models are those where the
ordering of variables is fixed. We now extend the notion of recursive causal models in DAGs (Pearl, 2009) to finite
topological spaces.

Definition 32. The causal UDM objectM = (X,Uα,Fα, Iα) is a recursively causal model if there exists an ordering
function ψ : X → Ξn, where Ξn is the set of all injective (1-1) mappings of (1, . . . , n) to the set X , such that for any
1 ≤ k ≤ n, the information field of variable αk in the ordering Ξn is contained in the joint information fields of the
variables preceding it:

Iαk ⊂ F(α1, . . . , αk−1) (7)

In other words, the ordering ψ essentially proves a filtration of the σ-algebras over the previous variables to make the
causal UDM object solvable. Note this property generalizes the recursive property in DAG models. What recursively
causal means in the above definition is that element αk has the information needed to compute its value based on the
values of the variables that preceded it in the ordering given by ψ, and crucially, this ordering need not be the same
for every element ω ∈ Ω in the sample space. That is, for some setting of the exogenous variables, it may very well
turn out that the ordering changes. This variability is not the case in DAG models, where there is an assumption of a
fixed ordering on the DAG induced by the partial ordering, which is independent of any randomness in the exogenous
variables. Finally, we define causal interventions in finite topological spaces prior to describing algorithms for learning
causal finite space models.

Definition 33. A causal intervention do(β=uβ) in a causal UDM objectM = (X,Uα,Fα, Iα) is defined as the
subobjectMβ whose information fields Iα are exactly the same as in M for all elements α 6= β, and the information
field of the intervened element β is defined to be Iβ ⊂ F(∅)× Bβ . Note that since the only measurable function on
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F(∅) is the constant function, whose value depends on a random sample space element ω ∈ Ωβ , this generalizes the
notion of causal intervention in DAGs, where an intervened node has all its incoming edges deleted. 3

4.3 UDMs based on Markov Decision Processes

We now briefly describe the (sub) category of UDMs, where each object represents a (finite) Markov decision process
(MDP) (Puterman, 1994). Recall that an MDP is defined by a tuple 〈S,A,Ψ, P,R〉, where S is a discrete set of states, A
is the discrete set of actions, Ψ ⊂ S ×A is the set of admissible state-action pairs, P : Ψ× S → [0, 1] is the transition
probability function specifying the one-step dynamics of the model, where P (s, a, s′) is the transition probability of
moving from state s to state s′ in one step under action a, and R : Ψ → R is the expected reward function, where
R(s, a) is the expected reward for executing action a in state s. MDP homomorphisms can be viewed as a principled
way of abstracting the state (action) set of an MDP into a “simpler" MDP that nonetheless preserves some important
properties, usually referred to as the stochastic substitution property (SSP).

Definition 34. A UDM MDP homomorphism (Ravindran and Barto, 2003) from object M = 〈S,A,Ψ, P,R〉 to
M ′ = 〈S′, A′,Ψ′, P ′, R′〉, denoted h : M � M ′, is defined by a tuple of surjections 〈f, {gs|s ∈ S}〉, where
f : S � S′, gs : As � A′f(s), where h((s, a)) = 〈f(s), gs(a)〉, for s ∈ S, such that the stochastic substitution
property and reward respecting properties below are respected:

P ′(f(s), gs(a), f(s′)) =
∑

s”∈[s′]f

P (s, a, s”) (8)

R′(f(s), gs(a)) = R(s, a) (9)

Given this definition, the following result is straightforward to prove.

Theorem 2. The UDM category CMDP is defined as one where each object c is defined by an MDP, and morphisms
are given by MDP homomorphisms defined by Equation 8.

Proof: Note that the composition of two MDP homomorphisms h : M1 →M2 and h′ : M2 →M3 is once again an
MDP homomorphism h′ h : M1 → M3. The identity homomorphism is easy to define, and MDP homomorphisms,
being surjective mappings, obey associative properties.

4.4 UDM Category of Predictive State Representations

We now define the UDM (sub)category CPSR of predictive state representations (Thon and Jaeger, 2015), based on
the notion of homomorphism defined for PSRs proposed in (Soni and Singh, 2007). Recall that a PSR is (in the
simplest case) a discrete controlled dynamical system, characterized by a finite set of actions A, and observations
O. At each clock tick t, the agent takes an action at and receives an observation ot ∈ O. A history is defined as a
sequence of actions and observations h = a1o1 . . . akok. A test is a possible sequence of future actions and observations
t = a1o1 . . . anon. A test is successful if the observations o1 . . . on are observed in that order, upon execution of actions
a1 . . . an. The probability P (t|h) is a prediction of that a test t will succeed from history h.

A state ψ in a PSR is a vector of predictions of a suite of core tests {q1, . . . , qk}. The prediction vector ψh =
〈P (q1|h) . . . P (qk|h)〉 is a sufficient statistic, in that it can be used to make predictions for any test. More precisely, for
every test t, there is a 1× k projection vector mt such that P (t|h) = ψh.mt for all histories h. The entire predictive
state of a PSR can be denoted Ψ.

Definition 35. In the UDM category CPSR defined by PSR objects, the morphism from object Ψ to another Ψ′ is defined
by a tuple of surjections 〈f, vψ(a)〉, where f : Ψ→ Ψ′ and vψ : A→ A′ for all prediction vectors ψ ∈ Ψ such that

P (ψ′|f(ψ), vψ(a)) = P (f−1(ψ′)|ψ, a) (10)

for all ψ′ ∈ Ψ, ψ ∈ Ψ, a ∈ A.

Theorem 3. The UDM category CPSR is defined by making each object c represent a PSR, where the morphisms
between two PSRs h : c→ d is defined by the PSR homomorphism defined in (Soni and Singh, 2007).

Proof: Once again, given the homomorphism definition in Definition 35, the UDM category PPSR is easy to define,
given the surjectivity of the associated mappings f and vψ .
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Subsystem 1
Subsystem 2

Subsystem 3

Overall system

Figure 6: Organization of a UDM object into subsystems is based on a finite space topology induced by the information
field structure.

5 Topology associated with UDM objects

Figure 6 illustrates a simple way to decompose a UDM object into sub-objects. The information field structure induces
a finite space topology that enables decomposing a complex UDM object into subobjects. We define the closure of
an element α ∈ A as the set of elements on whom it depends for information. These closure sets will define a finite
topology on the space of decision makers, enabling the decomposition of complex objects into more manageable pieces.
The induced topology has a rich structure, and has many consequences for organizing computation.
Definition 36. A subset of decision makers B ⊂ A in a UDM object form a subsystem if the data requirements of
members of the set only depend on the actions of nature, and the actions of the members of the set, and is independent
of the actions of the non-members. More precisely, B ⊂ A is a subsystem if for all α ∈ B, Iα ⊂ F(B). If B is a
subsystem, the induced UDM object 〈B, (Ω,B, P ), (Uα,Fα, IαB)α∈B〉 is also a valid UDM object by itself, where the
induced information subfield IαB is the canonical projection of IB upon HB .
Definition 37. The closure of a decision maker α ∈ A in a UDM object 〈A, (Ω,B, P ), (Uα,Fα, Iα)α∈A〉 is the
smallest subsystem containing α, denoted by {α}.
Definition 38. The preorder relationship between decision makers, denoted α ← β is defined by the containment
between the closure sets, namely α← β if and only if {α} ⊂ {β}.

Note that the→ relation defined above is a preorder because it is clearly reflexive and transitive. To explore more
interesting special cases of this relationships, we need to introduce some additional notions from the topology of finite
spaces.
Theorem 4. The subsystems of a UDM object 〈A, (Ω,B, P ), (Uα,Fα, Iα)α∈A〉 induce a finite space topology on the
space A of decision makers.

Proof: (adapted from (Witsenhausen, 1975)): Recall that in a finite space topology (Barmak, 2011), the collection of
subsets of A termed “open" sets are closed under arbitrary unions and intersections (it’s worth pointing out that in the
general case, topological spaces require finite intersections). As the complement of a open set is a closed set, the set of
closed sets is also closed under intersection and union. Given two subsystems S1 and S2, if element α ∈ S1 ∪ S2, then

3Our definition of causal intervention differs from that proposed in causal information fields (Heymann et al., 2021), where
additional intervention nodes were added to the model.
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either Iα ⊂ F(S1) or Iα ⊂ F(S2). It follows that Iα ⊂ F(S1) ∪ F(S2) = F(S1 ∪ S2). The proof for closure under
intersection is similar.

Given this theorem, we can immediately bring to bear the powerful tools of algebraic topology (Barmak, 2011) of finite
topological spaces, also called Alexandroff spaces (Alexandroff, 1937), to analyze the topological properties of UDM
objects. Essentially, we are showing that UDMs form a subcategory in the category of all topological spaces (as each
UDM object is a topological space in its own right). We briefly review some of the key properties that we will use
below.

Definition 39. The neighborhood of an element x in a finite space X is a subset V ⊂ X such that x ∈ U for some
open set U ⊂ V .

• X is a Kolmogorov (or T0) finite space X if each pair of points x, y ∈ X is distinguishable in the space,
namely for each x, y ∈ X , there is an open set U ∈ U such that x ∈ U and y /∈ U . Alternatively, if x ∈ U if
and only if y ∈ U, ∀U ∈ U implies that x = y.

• X is a T1 finite space if element x ∈ X defines a closed set {x}.

• X is a T2 finite space or a Hausdorff space if any two points have distinct neighborhoods.

Lemma 1. If X is a T2 space, then it is a T1 space. If X is a T1 space, then it is a T0 space.

The key concept that gives finite (Alexandroff) spaces its power is the definition of the minimal open basis. First, we
introduce the concept of a basis in a topological space.

Definition 40. A basis for the topological space X is a collection B of subsets of X such that

• For each x ∈ X , there is at least one B ∈ B such that x ∈ B.

• If x ∈ B′ ∩B”, where B,B” ∈ B, then there is at least one B ∈ B such that x ∈ B ⊂ B′ ∩B”.

The topology U generated by the basis B is the set of subsets U such that for every x ∈ U , there is a B ∈ B such that
x ∈ B ⊂ U . In other words, U ∈ U if and only if U can be generated by taking unions of the sets in the basis B. Now,
we turn to giving the most important definition in Alexandroff spaces, namely the unique minimal basis.

Lemma 2. Let X be a finite Alexandroff space. For each x ∈ X , define the open set Ux to be the intersection of all
open sets that contain x. Define the relationship ≤ on X by x ≤ y if x ∈ Uy , or equivalently, Ux ⊂ Uy (where x < y if
the inclusion is strict). The open sets Ux constitute a unique minimal basis B for X in that if C is another basis for X ,
then B ⊂ C. Alternatively, define the closed sets Fx = {y | y ≥ x}, which provide an equivalent characterization of
finite Alexandroff spaces.4

Note that the relation ≤ defined above is a preorder because it is reflexive (clearly, x ∈ Ux) and transitive (if x ∈ Uy,
and y ∈ Uz , then x ∈ Uz). However, in the special case where the finite space X has a T0 topology, then the relation ≤
becomes a partial ordering.

5.1 Classes of UDMs

We now describe a way to decompose UDM objects based on information fields. Witsenhausen (1975) defines the
following 10 classes of information structures, each of which leads to a distinct type of UDM object. This decomposition
shows the importance of the topology induced on a UDM object based on information structures.

1. Monic: A monic UDM object has only decision maker A = {α}, and its information field Iα ⊂ F(∅). In
other words, the decision maker α only requires access to the state of nature, and does not obviously need
information from any other decision maker, including itself!

2. Team: A team UDM object can be viewed as an independent set of decision makers, all of whom only need
access to the state of nature, that is Iα ⊂ F(∅).

3. Sequential: A sequential UDM object is one where there exists a fixed ordering {α1, . . . , αn} of decision
makers from A such that for any 1 ≤ k ≤ n, it holds that Iαk ⊂ F({α1, . . . , αk−1}. Sequential systems
satisfy the causality condition with a constant ordering function φ.

4. Classical: A UDM object is called classical if it is sequential, and furthermore, I0 ∈ F(∅), Ik−1 ⊂ Ik, for
all k = 2 . . . , n.

4The minimal basic closed sets in a T0 finite Alexandroff space correspond to the ancestral sets in a DAG graphical model.
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5. Strictly classical: A UDM object is strictly classical if it is classical, and [Fαk ] ⊂ Ik+1, where [Fαk ] is the
cylindrical extension of Fαk to all of H .

6. Strictly quasiclassical: In a strictly quasiclassical UDM object, if α← β, α 6= β implies that Iα∪ [Fα] ⊂ Iβ .

7. Quasi-classical: A UDM object is quasi-classical if it is sequential, and if α← β, then Iα ⊂ Iβ .

8. Causal: See Definition 19.

9. Solvable: See Definition 17.

10. Without self-information: A UDM object has no self-information if for all its decision elements α ∈ A, it
holds that Iα ⊂ F(A− {α}).

A detailed study of the properties ensuing from this classification can be found in (Witsenhausen, 1975), for example,
systems with T0 topologies are precisely those that induce a partial ordering on computing elements, and also define a
sequential system. We will discuss some of these properties based on our generalization of the intrinsic model using
category theory below.

6 Functors, Natural Transformations, and the Yoneda Lemma

We now introduce some additional terminology from category theory, including the important idea of functors that
map from one category to another, preserving the underlying structure of morphisms, natural transformations that map
from one functor to another, and and finally one of most important results in category theory, the Yoneda lemma and
how it can be used to construct representations of functors and associated universal representations. Our goal in the
subsequent section is to use this machinery to construct universal representations of intrinsic models.

Definition 41. A covariant functor F : C → D from category C to category D is defined as the following:

• An object FX of the category D for each object X in category C.

• A morphism Ff : FX → FY in category D for every morphism f : X → Y in category C.

• The preservation of identity and composition: F idX = idFX and (Fg)(Fg) = F(fg) for any composable
morphisms f : X → Y, g : Y → Z.

Definition 42. A contravariant functor F : C → D from category C to categoryD is defined exactly like the covariant
functor, except all the mappings are reversed. In the contravariant functor F : Cop → D, every morphism f : X → Y
is assigned the reverse morphism Ff : FY ∈ FX in category D.

Our goal is to construct covariant and contravariant functorial representations of intrinsic models. To this end, we
introduce the following functors that will prove of value below:

• For every object X in a category C, there exists a covariant functor C(X,−) : C → Set that assigns to each
object Z in C the set of morphisms C(X,Z), and to each morphism f : Y → Z, the pushforward mapping
f∗ : C(X,Y )→ C(X,Z).

• For every object X in a category C, there exists a contravariant functor C(−, X) : Cop → Set that assigns to
each object Z in C the set of morphisms C(X,Z), and to each morphism f : Y → Z, the pullback mapping
f∗ : C(Z,X)→ C(Y,X).

From the above examples, it is now relatively straightforward to see how to define covariant and contravariant functors
from the category of intrinsic models to the category of sets, but we need to develop a bit more machinery to understand
the significance of these functorial representations.

Definition 43. Let F : C → D be a functor from category C to category D. If for all objects X and Y in C, the map
C(X,Y )→ D(FX,FY ), denoted as f 7→ Ff is

• injective, then the functor F is defined to be faithful.

• surjective, then the functor F is defined to be full.

• bijective, then the functor F is defined to be fully faithful.

Our goal is to construct fully faithful functorial embeddings of intrinsic models, which gives us an embedding of
intrinsic models into the category of sets.
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6.1 Natural Transformations and the Yoneda Lemma

Definition 44. Given two functors F ,G : C → D that map from category C to category D, a natural transformation
η : F → G consists of a morphism ηX : FX → GX for each object X in C. Moreover, these morphisms should satisfy
the following property, that is the diagram below should commute:

FX FY

GX GY

Ff

ηX ηY

Gf

Definition 45. For any two functors F ,G : C → D, let Nat(F ,G) denote the natural transformations from F to G. If
ηX : FX → GX is an isomorphism for each X in category C, then the natural transformation η is called a natural
isomorphism and F and G are naturally isomorphic, denoted as F ∼= G.

The machinery of natural transformations between functors enables making concrete the central philosophy underlying
category theory, which is construct representations of objects in terms of their interactions with other objects. Unlike set
theory, where an object like a set is defined by listing its elements, in category theory objects have no explicit internal
structure, but rather are defined through the morphisms that they define with respect to other objects. The celebrated
Yoneda lemma makes this philosophical statement more precise.

Theorem 5. Yoneda Lemma: For every object X in category C, and every contravariant functor F : COp → Set,
the set of natural transformations from C(−, X) to F is isomorphic to FX .

That is, the natural transformations from C(−, X) to F serve to fully characterize the object FX up to isomor-
phism. In the special circumstance when the set-valued functor F = C(−, Y ), the Yoneda lemma asserts that
Nat(C(−, X), C(−, Y ) ∼= C(X,Y ). In other words, a pair of objects are isomorphic X ∼= Y if and only if the
corresponding contravariant functors are isomorphic, namely C(−, X) ∼= C(−, Y ).

6.2 Presheaf Representations

A very important class of representations that follow from the Yoneda lemma are presheafs C(−, X). Given any two
categories C,D, we can always define the new category DC , whose objects are functors C → C, and whose morphisms

are natural transformations. If we take D = Set, and consider the contravariant version SetC
Op

, we obtain a category
whose objects are presheafs. Presheafs have some very nice properties, which makes them a topos (Goldblatt, 2006).

Given a category of intrinsic models CI , or in particular a category of MDPs CMDP with bisimulation homomorphism
or a category of PSRs CPSR with the defined PSR homomorphism, we can clearly apply the Yoneda lemma to construct
presheaf representations of these decision making objects. A detailed study of each individual case is outside the scope
of this introductory paper, and is a topic for future research.

7 Homotopical Representations of UDMs

We have seen that information fields induce a finite topological space over a UDM, enabling the decomposition of the
UDM object into subsystems. In this section, we explore the topological ramifications of this idea further. Homotopy is
a fundamental idea in algebraic topology, and we build on the use of homotopical constructions over finite topological
spaces (Barmak, 2011). A fundamental idea throughout mathematics is that of gleaning insight into the structure of one
space by probing it with objects from another space. Thus, a fundamental way to understand the category of groups
is to map it to the category of group representations. Similarly, in a topological space Top, two objects X and Y
are considered isomorphic if the corresponding sets Top(Z,X) and Top(Z,Y) are isomorphic. The Yoneda lemma
described above allows us to construct functors from any category C to the category Set. Our goal is to be able to
compute invariant representations of UDM objects, such as their homotopies, and understand how to compute the
fundamental group associated with a UDM object. We begin by reviewing some basic material on connectivity in finite
topological spaces, and then show how various UDM objects can be compared in terms of their subsystem topologies.

7.1 Connectivity in UDMs

Since UDMs define a finite topological space, we can build on the core ideas of connectivity in such spaces (Barmak,
2011). Every concept in a topological space must be defined in terms of the open (or closed) set topology, and that
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Table 2: Examples of UDM objects A = {a, b, c} with different subsystem topologies. A proper open set is any set
other than ∅ or A (which are in any topology). Pn is a topology on a set of size n with only one proper open set. Dn is
the discrete topology over n elements. Pm,n are topologies where the proper open sets are all non-empty subsets of a
subset of size m. The ∼= equivalence relation is homotopy equivalence. See text for explanation.

Proper Open Sets Name T0? Connected? Equivalent graphical model
All D3 yes no HEDG (hyper-edge over (a,b,c))
b, c yes yes DAG b→ a, c→ a (collider over a)

a, b, (a, b) P2,3
∼= CD2 yes yes Chain graph: a→ c, b→ c, a− b

a, b, (a, b), (b, c) D1

⊔
P2 yes no DAG with node a disconnected, b→ c

a P3 no yes Chain graph: a→ b, a→ c, and b− c

includes (path) connectivity. The crucial idea here is that connectivity is defined in terms of a continuous mapping from
the unit interval I = (0, 1) to a topological space X .

Lemma 3. A function f : X → Y between two finite spaces is continuous if and only if it is order-preserving, meaning
if x ≤ x′ for x, x′ ∈ X , this implies f(x) ≤ f(x′).

Definition 46. We call two points x, y ∈ X comparable if there is a sequence of elements x0, . . . , xn, where
x0 = x, xn = y and for each pair xi, xi+1 either xi ≤ xi+1 or xi ≥ xi+1. A fence in X is a sequence x0, x1, . . . , xn
of elements such that any two consecutive elements are comparable. X is order connected if for any two elements
x, y ∈ X , there exists a fence starting in x and ending in y.

Lemma 4. Let x, y be two comparable points in a finite space X . Then, there exists a path from x to y in X , that is, a
continuous map α : (0, 1)→ X such that α(0) = x and α(1) = y.

Lemma 5. Let X be a finite space. The following are equivalent: (i) X is a connected topological space. (ii) X is an
order-connected topological space (iii) X is a path-connected topological space.

A crucial strength of the topological perspective is the ability to combine two UDM objects X and Y into a new space,
which can generate a rich panoply of new objects. Here are a few of the myriad ways in which UDM objects can be
combined Munkres (1984). Table 2 illustrates some of these ways of combining spaces for a small UDM object whose
space of elements X is comprised of just three agents.

• Subspaces: The subspace topology on A ⊂ X is defined by the set of all intersections A ∩ U for open sets U
over X .

• Quotient topology: The quotient topology on U defined by a surjective mapping q : X → Y is the set of
subsets U such that q−1(U) is open on X .

• Union: The topology of the union of two spaces X and Y is given by their disjoint union X
⊔
Y , which has

as its open sets the unions of the open sets of X and that of Y .

• Product of two spaces: The product topology on the cartesian product X × Y is the topology with basis the
“rectangles" U × V of an open set U in X with an open set V in Y .

• Wedge sum of two spaces: The wedge sum is the “one point" union of two “pointed" spaces (X,xo) with
(Y, yo), defined by X

∨
Y/x0 ∼ y0, the quotient space of the disjoint union of X and Y , where x0 and y0 are

identified.

• Smash product: The smash product topology is defined as the quotient topology X
∧
Y = X × Y/X

∨
Y .

• Non-Hausdorff cone: The non-Hausdorff cone of topological space X with Y = {∗} yields the new space
C(X), whose open sets are now OC(X) = OX ∪ {X ∪ {∗}}.

• Non-Hausdorff suspension: The non-Hausdorff suspension of topological space X with Y = {+,−} yields
the new space S(X), whose open sets are now OC(X) = OX ∪ {X ∪ {+,−}}.

7.2 UDM Homotopies over Finite Topological Spaces

Definition 47. Let f, g : X → Y be two continuous maps between finite space topologies X and Y . We say f is
homotopic to g, denoted as f ∼= g if there exists a continuous map h : X × [0, 1]→ Y such that h(x, 0) = f(x) and
h(x, 1) = g(x). In other words, there is a smooth “deformation" between f and g, so we can visualize f being slowly
warped into g. Note that ∼= is an equivalence relation, since f ∼= f (reflexivity), and if f ∼= g, then g ∼= f (symmetry),
and finally f ∼= g, g ∼= h =⇒ f ∼= h (transitivity).
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Definition 48. A map f : X → Y is a homotopy equivalence if there exists another map g : Y → X such that
g ◦ f ∼= idX and f ◦ g ∼= idY , where idX and idY are the identity mappings on X and Y , respectively.
Definition 49. A topological space X is contractible if the identity map idX : X → X is homotopically equivalent to
the constant map f(x) = c for some c ∈ X .

For example, any convex subsetA ⊂ Rn is contractible. Let f(x) = c, c ∈ A be the constant map. Define the homotopy
H : A× I → X as equal to H(x, t) = tc+ (1− t)x. Note that at t = 0, we have H(x, 0) = x, and that at t = 1, we
have H(x, 1) = c, and since A is a convex subset, the convex combination tc+ (1− t)x ∈ A for any t ∈ [0, 1].
Theorem 6. If X is a finite topological space containing a point y such that the only open (or closed) subset of X
containing y is X itself, then X is contractible. In particular, the non-Hausdorff cone C(X) is contractible for any X .

Proof: Let Y = {∗} denote the space with a single element, ∗. Define the retraction mapping r : X → ∗ by r(x) = ∗
for all x ∈ X , and define the inclusion mapping i : Y → X by i(∗) = y. Clearly, r ◦ i = idY . Define the homotopy
h : X → I → X by h(x, t) = x if t < 1, and h(x, 1) = y. Then, h is continuous, because for any open set U in X , if
y ∈ U , then clearly U = X (as X is the only open set containing y), and hence h−1(U) = X × I , which is open. If on
the other hand, y /∈ U , then h−1(U) = U × [0, 1). It follows that h is a homotopy h ∼= idX = i ◦ r.

The following lemma is of crucial importance, showing how elements of a topological space that can be removed,
reducing model size.
Definition 50. A point x in a finite topological space X is maximal if there is no y > x, and minimal if there is no
y < x.
Lemma 6. If X is an finite space, then Ux is contractible. In particular, if X has a unique maximal point or unique
minimal point, then X is contractible.
Definition 51. Let f, g : X → Y be two continuous maps between finite space topologies X and Y . We say f is
homotopic to g, denoted as f ∼= g if there exists a continuous map h : X × [0, 1]→ Y such that h(x, 0) = f(x) and
h(x, 1) = g(x). In other words, there is a smooth “deformation" between f and g, so we can visualize f being slowly
warped into g. Note that ∼= is an equivalence relation, since f ∼= f (reflexivity), and if f ∼= g, then g ∼= f (symmetry),
and finally f ∼= g, g ∼= h =⇒ f ∼= h (transitivity).
Definition 52. A map f : X → Y is a homotopy equivalence if there exists another map g : Y → X such that
g ◦ f ∼= idX and f ◦ g ∼= idY , where idX and idY are the identity mappings on X and Y , respectively.

7.3 Efficient Enumeration of Homeomorphically Distinct UDMs

Next, we turn to the fundamental problem of how to construct homemorphically distinct UDMs. In the definitions below,
we focus purely on the topological structure of a UDM, namely the subsystem topology as defined in Definition 36.
Definition 53. For every objectM in a UDM with T0 subsystem topology that defines a partial ordering ≤, define its
associated Hasse diagram HM as a directed graph which captures all the relevant order information ofM. More
precisely, the vertices of HM are the elements ofM, and the edges of HM are such that there is a directed edge from x
to y whenever y ≤ x, but there is no other vertex z such that y ≤ z ≤ x.

General pre-ordered UDM objects can be reduced to partially ordered UDM objects with T0 topologies up to homomeo-
morphic equivalence.
Theorem 7. (Stong, 1966) Let (X, T ) be an arbitrary UDM object with a subsystem topology defining an associated
preordering ≤. Let X0 represent the quotient topological space X/ ∼, where x ∼ y if x ≤ y and y ≤ x. Then X0

is a homotopically equivalent intrinsic model with T0 separability, and the quotient map q : X → X0 is a homotopy
equivalence. Furthermore, X0 induces a partial ordering on the elements x ∈ X0.

A key idea in the enumeration is to assume that each element in the Hasse diagram of the poset does not have an
in-degree or out-degree of 1.
Definition 54. (Stong, 1966) An element x ∈ X in a UDM object with T0 subsystem topology X is a down beat
point if x covers one and only one element of of X . Alternatively, the set Ûx = Ux \ {x} has a (unique) maximum.
Similarly, x ∈ X is an up beat point if x is covered by a unique element, or equivalently if F̂x = Fx \ {x} has a
(unique) minimum. A beat point is either a down beat or up beat point.
Definition 55. A subspaceA ⊂ X is called a strong deformation retract ofX if there is a homotopy F : X×[0, 1]→ A
such that F (x, 0) = x, F (x, 1) ∈ A,F (a, t) = a for all x ∈ X, t ∈ [0, 1], a ∈ A.
Theorem 8. (Stong, 1966) Let X be a UDM object with T0 subsystem topological model, and let x ∈ X be a (down,
up) beat point. Then the reduced object X \ {x} is a strong deformation retract of X . An element x in a UDM object
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Figure 7: Left: Constructing minimal UDM objects by removing beat points (Barmak, 2011; Stong, 1966). Right:
Efficiently enumerating minimal UDM objects (based on the enumeration method in (Fix and Partias, 2008)).

Algorithm 1: Find Topologically Minimal UDM object with T0 Subsystem Topology.
Input: General UDM objectM with a reflexive transitive pre-ordered structure induced by the subsystem

topology.
Output: Minimal UDM object with T0 subsystem topology homotopically equivalent to original pre-ordered

object.
The algorithm uses homotopy theory to find the core T0 description of a pre-ordered UDM object.
begin

Define the topology (X,U) where X = V and the open sets in U are constructed from the induced pre-order ≤
fromM. Define the minimal object (X0,U ′), and set X0 = X .

repeat
for x, y ∈ X0 s.t. x ≤ y, y ≤ x do

Remove x, y from X0, and replace them with a new variable z = x ∼ y.
Set X0 ← X0 \ {x, y} ∪ {z}. z represents the equivalence class that includes x and y.

end
for x ∈ X0 do

Remove down beat points: If Ûx = Ux \ {x} has a maximum, then X0 ← X0 \ {x}.
Remove up beat points: If F̂x = F \ {x} has a minimum, then X0 ← X0 \ {x}.

end
until convergence;
Define the open sets Ux ∈ U ′ as Ux = {y | y ≤ x} for x ∈ X0.

end

M is an upbeat point if and only if it has in-degree one in the associated Hasse diagram HM, i.e., it has only one
incoming edge). Similarly, x is downbeat if and only if it has out-degree one (it has only one outgoing edge).

Definition 56. A UDM object with a T0 subsystem topological space is a minimal if it has no beat points. A core of
a UDM object X is a strong deformation retract, which is a minimal finite space. The minimal graph of a minimal
UDM object is its equivalent Hasse diagram.

Theorem 9. (Stong, 1966) Classification Theorem: A homotopy equivalence between minimal UDM objects is a
homeomorphism. In particular, the core of a UDM object is unique up to homeomorphism and two UDM objects are
homotopy equivalent if and only if they have homeomorphic cores.

Figure 7 illustrates the process of removing beat points to construct the minimal UDM object. b is an up beat point
of X , c is an upbeat point of X \ {b}, and e is an up beat point of X \ {b, c}. Similarly, points c and e are removed,
resulting in the minimal object. The figure also shows that homeomorphic equivalences greatly reduces the search
space of possible object structures. Note the plot is on log scale. For example, for 12 variables, the number of minimal
objects is < 0.1% of the number of possible objects, a savings of three orders of magnitude.

Algorithm 1 determines a reduced UDM object based on discovering a quotient T0 subsystem topology that is
homotopically equivalent to original non-reduced object with a non-T0 topology. Second, the algorithm further reduces
the object to its core by removing beat points (Barmak, 2011; Stong, 1966).
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8 Equilibration in UDMs

At the outset, we cautioned that the bulk of this paper is devoted to a study of information structures that underly
decision making broadly, which precludes introducing particular solution methodologies, such as dynamic programming
(Bertsekas, 2005), which is specific to sequential information structures. In this section, however, we discuss a broad
solution methodology called equilibration, which applies to multiplayer network games, reinforcement learning, and to
causal inference, based on a generalization of optimization called variational inequalities (VIs) (Nagurney, 1999). We
use a running example from earlier in the paper of a producer consumer multiplayer game, as shown in Figure 5, and
analyze its solution in depth in this section. VIs can be seen as a generalization of optimization, and frequently used to
solve complex network games. This section is a condensed version of a recent paper on causal VIs (Mahadevan, 2021),
which the reader is encouraged to read for further details.

8.1 Causal Variational Inequalities

Our variational formulation of causal inference is a synthesis of classical variational inequalities (Facchinei and Pang,
2003) and causal models (Imbens and Rubin, 2015; Pearl, 2009). More precisely, a causal variational inequality model
M = CVI(F,K), where F is a collection of modular vector-valued functions defined as Fi, where Fi : Ki ⊂ Rni →
Rni , with each Ki being a convex domain such that

∏
iKi = K. We assume that the domains of each Fi range over a

collection V of endogenous variables, and a set U of exogenous variables, where only the endogenous variables are
subject to causal manipulation. We model each intervention as a submodel Fw, and each component of Fw reflects the
effect of some manipulation of a subset Vw ⊆ V of endogenous variables.

Definition 57. The category CCVI of causal VIs is defined as one where each object is defined as a finite-dimensional
causal variational inequality problemM = CVI(F,K), where the vector-valued mapping F depend on both determin-
istic and stochastic elements, namely F (x) = E[F (x, η)]. where η is a random variable defined over the probability
space (Ω,F , P ), E[.] denotes expectation with respect to the probability distribution P over the random variable
η, and F : K → Rn is a given continuous function, K is a given closed convex set, and 〈., .〉 is the standard inner
product in Rn. A causal intervention is modeled as a submodelMw = CVI(Fw,K), where Fw(x) = Ew[F (x, η|ŵ)],
where ŵ denotes the intervention of setting of variable w to a specific non-random value, and where Ew[.] now denotes
expectation with respect to the intervention probability distribution Pw. Solving a causal VI is defined as finding a
vector x∗ = (x∗1, . . . , x

∗
n) ∈ K ⊂ Rn such that

〈Fw(x∗), (y − x∗)〉 ≥ 0, ∀y ∈ K

Normal Cone

-F(x*)

F(x*)

x*x x-x*

Feasible set K

Figure 8: This figure provides a geometric interpretation of a causal variational inequality CV I(Fw,K). The
mapping Fw defines a vector field over the feasible set K and a probability space, where Ew(F (x, η)|ŵ) is the
conditional mean vector field (denoted in the figure by F ), computed over the intervention distribution Pw. At
the solution point x∗, the vector field F (x∗) is directed inwards at the boundary, and −F (x∗) is an element of
the normal cone C(x∗) of K at x∗ where the normal cone C(x∗) at the vector x∗ of a convex set K is defined as
C(x∗) = {y ∈ Rn|〈y, x− x∗〉 ≤ 0,∀x ∈ K}.

8.2 Properties of Mappings

The solution to a (causal) VI depends on the properties satisfied by the mapping F and the feasible space K. If K is
compact and F is continuous, it is straightforward to prove using Brower’s fixed point theorem that there is always at
least one solution to any VI (see Theorem 11). However, to obtain a unique solution, a stricter condition is necessary.

Definition 58. F (x) is monotone if 〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ K.

Definition 59. F (x) is strongly monotone if 〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖22, µ > 0,∀x, y ∈ K.
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Definition 60. F (x) is Lipschitz if ‖F (x)− F (y)‖2 ≤ L‖x− y‖2,∀x, y ∈ K.

Crucially, VI problems can only be converted into equivalent optimization problems when a very restrictive condition is
met on the Jacobian of the mapping F , namely that it be symmetric. Most often, real-world applications of VIs, such as
the example in Section 5, do not induce symmetric Jacobians.

Theorem 10. Assume F (x) is continuously differentiable on K and that the Jacobian matrix ∇F (x) of partial
derivatives of Fi(x) with respect to (w.r.t) each xj is symmetric and positive semidefinite. Then there exists a real-valued
convex function f : K → R satisfying ∇f(x) = F (x) with x∗, the solution of VI(F,K), also being the mathematical
programming problem of minimizing f(x) subject to x ∈ K.

The algorithmic development of methods for solving VIs begins with noticing their connection to fixed point problems.

Theorem 11. The vector x∗ is the solution of VI(F,K) if and only if, for any α > 0, x∗ is also a fixed point of the map
x∗ = PK(x∗ − αF (x∗)), where PK is the projector onto convex set K.

In terms of the geometric picture of a VI illustrated in Figure 8, this property means that the solution of a VI occurs at
a vector x∗ where the vector field F (x∗) induced by F on K is normal to the boundary of K and directed inwards,
so that the projection of x∗ − αF (x∗) is the vector x∗ itself. This property forms the basis for the projection class of
methods that solve for the fixed point.

8.3 Causal Variational Inequalities and Games

VIs are a mathematically elegant approach to modeling and solving equilibrium problems in game theory (Maschler
et al., 2013). A Nash game consists of m players, where player i chooses a strategy xi belonging to a closed convex
set Xi ⊂ Rn. After executing the joint action, each player is penalized (or rewarded) by the amount fi(x1, . . . , xm),
where fi : Rn → R is a continuously differentiable function. A set of strategies x∗ = (x∗1, . . . , x

∗
m) ∈ ΠM

i=1Xi is
said to be in equilibrium if no player can reduce the incurred penalty (or increase the incurred reward) by unilaterally
deviating from the chosen strategy. If each fi is convex on the set Xi, then the set of strategies x∗ is in equilibrium
if and only if 〈∇ifi(x∗i ), (xi − x∗i )〉 ≥ 0. In other words, x∗ needs to be a solution of the VI 〈F (x∗), (x− x∗)〉 ≥ 0,
where F (x) = (∇f1(x), . . . ,∇fm(x)).

Complementarity problems provide the foundation for a number of Nash equilibrium algorithms. The class of
complementarity problems can also be reduced to solving a VI. When the feasible set K is a cone, meaning that if
x ∈ K, then αx ∈ K,α ≥ 0, then the VI becomes a CP.

Definition 61. Given a cone K ⊂ Rn and mapping F : K → Rn, the complementarity problem CP(F,K) is to find an
x ∈ K such that F (x) ∈ K∗, the dual cone to K, and 〈F (x), x〉 ≥ 0. 5

The nonlinear complementarity problem (NCP) is to find x∗ ∈ Rn+ (the non-negative orthant) such that F (x∗) ≥ 0 and
〈F (x∗), x∗〉 = 0. The solution to an NCP and the corresponding V I(F,Rn+) are the same, showing that NCPs reduce
to VIs. In an NCP, whenever the mapping function F is affine, that is F (x) = Mx+ b, where M is an n× n matrix,
the corresponding NCP is called a linear complementarity problem (LCP) (Murty, 1988).

8.4 Causal Network Economics

We now describe how to model causal inference in a network economics problem, which will be useful in illustrating
the abstract definitions from the previous section. The model in Figure 5 is drawn from (Nagurney, 1999; Nagurney
and Wolf, 2014). which were deterministic, and included no analysis of causal interventions. This network economics
model comprises of three tiers of agents: producer agents, who want to sell their goods, transport agents who ship
merchandise from producers, and demand market agents interested in purchasing the products or services. The model
applies both to electronic goods, such as video streaming, as well as physical goods, such as face masks and other
PPEs. Note that the design of such an economic network requires specifying the information fields for every producer,
transporter and consumer. For the sake of brevity, we assume that the definition of these information fields are implicit
in the equations defined below, but a fuller discussion of this topic will be studied in a subsequent paper.

The model assumes m service providers, n network providers, and o demand markets. Each firm’s utility function is
defined in terms of the nonnegative service quantity (Q), quality (q), and price (π) delivered from service provider i by
network provider j to consumer k. Production costs, demand functions, delivery costs, and delivery opportunity costs
are designated by f , ρ, c, and oc respectively. Service provider i attempts to maximize its utility function U1

i (Q, q∗, π∗)

5Given a cone K, the dual cone K∗ is defined as K∗ = {y ∈ Rn|〈y, x〉 ≥ 0,∀x ∈ K}.
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by adjusting Qijk (eqn. 11a). Likewise, network provider j attempts to maximize its utility function U2
j (Q∗, q, π) by

adjusting qijk and πijk (eqn. 11b).

U1
i (Q, q∗, π∗) =

n∑
j=1

o∑
k=1

ρ̂ijk(Q, q∗)Qijk − f̂i(Q) (11a)

−
n∑
j=1

o∑
k=1

π∗ijkQijk, Qijk ≥ 0

U2
j (Q∗, q, π) =

m∑
i=1

o∑
k=1

πijkQ
∗
ijk (11b)

−
m∑
i=1

o∑
k=1

(cijk(Q∗, q) + ocijk(πijk)),

qijk, πijk ≥ 0

We assume the governing equilibrium is Cournot-Bertrand-Nash and the utility functions are all concave and fully
differentiable. This establishes the equivalence between the equilibrium state we are searching for and the variational
inequality to be solved where the F mapping is a vector consisting of the negative gradients of the utility functions for
each firm. Since F is essentially a concatenation of gradients arising from multiple independent, conflicting objective
functions, it does not correspond to the gradient of any single objective function.

〈F (X∗), X −X∗〉 ≥ 0,∀X ∈ K, (12a)

where X = (Q, q, π) ∈ R3mno+

and F (X) = (F 1
ijk(X), F 2

ijk(X), F 3
ijk(X))

F 1
ijk(X) =

∂fi(Q)

∂Qijk
+ πijk − ρijk −

n∑
h=1

o∑
l=1

∂ρihl(Q, q)

∂Qijk
×Qihl (12b)

F 2
ijk(X) =

m∑
h=1

o∑
l=1

∂chjl(Q, q)

∂qijk
(12c)

F 3
ijk(X) = −Qijk +

∂ocijk(πijk)

∂πijk
(12d)

The variational inequality in Equations 12a represents the result of combining the utility functions of each firm into
standard form. F 1

ijk is derived by taking the negative gradient of U1
i with respect to Qijk. F 2

ijk is derived by taking the
negative gradient of U2

j with respect to qijk. And F 3
ijk is derived by taking the negative gradient of U2

j with respect to
πijk.

8.4.1 Numerical Example

We extend the simplified numerical example in (Nagurney and Wolf, 2014) by adding stochasticity to illustrate our
causal variational formalism. Let us assume that there are two service providers, one transport agent, and two demand
markets. Define the production cost functions:

f1(Q) = q2
111 +Q111 + ηf1 , f2(Q) = 2Q2

111 +Q211 + ηf2

where ηf1 , ηf2 are random variables indicating errors in the model. Similarly, define the demand price functions as:

ρ111(Q, q) = −Q111 − 0.5Q211 + 0.5q111 + 100 + ηρ111
ρ211(Q, q) = −Q211 − 0.5Q111 + 0.5q211 + 200 + ηρ211

Finally, define the transportation cost functions as:

c111(Q, q) = 0.5(q111 − 20)2 + ηc111

c211(Q, q) = 0.5(q211 − 10)2 + ηc211
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and the opportunity cost functions as:
oc111(π111) = π2

111 + ηoc111 , oc211(π211) = π2
211 + ηoc211

Using the above equations, we can easily compute the component mappings Fi as follows:
F 1

111(X) = 4Q111 + 0.5Q211 − 0.5q111 − 99

F 1
211(X) = 6Q211 + π211 − 0.5Q111 − 0.5q211 − 199

F 2
111(X) = q111 − 20, F 2

211(X) = q211 − 10

F 3
111(X) = −Q111 + 2π111, F

3
211(X) = −Q211 + 2π211

For simplicity, we have not indicated the noise terms above, but assume each component mapping Fi has an extra noise
term ηi. It is also clear that we can now give precise semantics to causal intervention in this system, following the
principles laid out in (Pearl, 2009). For example, if we set the network service cost q111 of network provider 1 serving
the content producer 1 to destination market 1 to 0, then the production cost function under the intervention distribution
is given by

Eq111=0(f1(Q)|q̂111) = Q111 + Eq111=0(ηf1 |q̂111)

Finally, the Jacobian matrix associated with F (X) is given by the partial derivatives of each Fi mapping with respect to
(Q111, Q211, q111, q211, π111, π211) is given as:

−∇U(Q, q, π) =


4 .5 −.5 0 1 0

0.5 6 0 −.5 0 1
0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 2 0
0 −1 0 0 0 2


Note this Jacobian is non-symmetric, but positive definite, as it is diagonally dominant. Hence the induced vector field
F can be shown to be strongly monotone, and the induced VI has exactly one solution.

8.5 Causal VI Algorithms

We now discuss algorithms for solving causal VI’s. There are a wealth of existing methods for deterministic VI’s
(Facchinei and Pang, 2003; Nagurney, 1999)), which can be adapted to solving causal VI’s. The simplest method for
solving a causal VI is the well-known projection algorithm (Facchinei and Pang, 2003):

xk+1 = ΠK [xk − αkFw(xk)]

where Fw is the vector field induced by some causal intervention, which can be viewed as a modification of the classical
projection method for deterministic VI’s. The algorithm follows the direction of the negative vector field at a point xk,
and if the iterate falls outside the feasible space K, it projects back into K. If Fw is strongly monotone, and Lipschitz,
and the learning rate αk is suitably designed, then the projection algorithm is guaranteed to find the solution to a causal
VI.

Understanding the convergence of the projection method will give us insight into how to analyze causal interventions in
VI’s. At the heart of convergence analysis of any VI method is bounding the iterates of the algorithm. In the below
derivation, x∗ represents the final solution to a causal VI, and xk+1, xk are successive iterates:

‖xk+1 − x∗‖2 = ‖PK [xk − αkFw(xk)]− PK [x∗ − αkFw(x
∗)]‖2

≤ ‖(xk − αkFw(xk))− (x∗ − αkFw(x
∗))‖2

= ‖(xk − x∗)− αk(Fw(xk)− Fw(x
∗))‖2

= ‖xk − x∗‖2 − 2αk〈(Fw(xk)− Fw(x
∗)), xk − x∗〉

+ α2
k‖Fw(xk)− Fw(x

∗)‖2

≤ (1− 2µαk + α2
kL

2)‖xk − x∗‖2

Here, the first inequality follows from the nonexpansive property of projections, and the last inequality follows from
strong monotonicity and Lipschitz property of the Fw mapping. Bounding the term 〈(Fw(xk)− Fw(x∗)), xk − x∗〉 is
central to the design of any VI method. As we show in the next section, in modeling causal interventions a similar term
will arise, except under different mappings, representing the “untreated" and "treated" cases.

Korpelevich (1977) extended the projection algorithm with the well-known “extragradient" method, which requires
two projections, but is able to solve VI’s for which the mapping F is only monotone. If projections are expensive,
particularly in large network economy models, these algorithms may be less attractive than incremental stochastic
projection methods, which we turn to next.

28



arXiv Template A PREPRINT

8.6 Incremental Projection Methods

We now describe an incremental two-step projection method for solving causal VI’s, based on work by Wang and
Bertsekas (2015). Their algorithm adapted to causal VI’s can be written as follows:

zk = xk − αkFw(xk, vk), xk+1 = zk − βk(zk − Pwkzk) (13)

where {vk} and {wk} are sequences of random variables, generated by sampling the causal VI model, and {αk} and
{βk} are sequences of positive scalar step sizes. Note that an interesting feature of this algorithm is that the sequence of
iterates xk is not guaranteed to remain within the feasible space K at each iterate. Indeed, Pwk represents the projection
onto a randomly sampled constraint wk.

The analysis of convergence of this algorithm is somewhat intricate, and we refer the reader to (Mahadevan, 2021) for
more details. It can be shown that two-step stochastic algorithm given in Equation 13 converges to the solution of a
causal VI, namely:
Theorem 12. Given the category of CCVI causal VIs, the solution associated with any decision object representing
a finite-dimensional causal variational inequality problemM = CVI(F,K), and a causal intervention, defined by
the sub-objectMw = CVI(Fw,K), where Fw(x) = Ew[F (x, η|ŵ)], where ŵ denotes the intervention of setting of
variable w to a specific non-random value, and where Ew[.] now denotes expectation with respect to the intervention
probability distribution Pw, the two-step algorithm given by Equation 13 produces a sequence of iterates xk that
converges almost surely to x∗, where

〈Fw(x∗), (y − x∗)〉 ≥ 0, ∀y ∈ K

Proof: The proof of this theorem is given in (Mahadevan, 2021), and largely follows the derivation given in (Wang and
Bertsekas, 2015), where the only difference is that in a causal VI problem, we are conditioning the stochastic VI on the
intervention distribution Pw.

8.7 Decomposition of Causal VI UDMs

Finally, we discuss the issue of how to exploit structure in solving complex UDMs, specifically for the type of network
economics problems described above. We also discuss “sensitivity analysis" of UDMs, in particular, how to measure
the effect of some intervention, by comparing potential outcomes across the “treated" units with the “untreated" units
(Imbens and Rubin, 2015). We characterize treatment effects in causal variational inequalities under interventions,
building on the existing results on sensitivity analysis of classical variational inequalities (Nagurney, 1999).

We can apply the more general machinery of finite space topologies introduced above, but for simplicity, we focus
on the case when a UDM object is defined by a cartesian product operation over the set of feasible solutions, and the
monotone operator F decomposes additively over these individual subsets.
Definition 62. A partitioned CVI is defined as the causal variational inequality problem of finding a vector x∗ =
(x∗1, . . . , x

∗
n) ∈ K ⊂ Rn such that

〈Ew[F (x, η|ŵ)], (x− y)〉 ≥ 0, ∀y ∈ K
where the function F is partitionable function of order m, meaning that

〈Ew[F (x, η|ŵ)], (x− y)〉 =

m∑
i=1

〈Ew[Fi(x, η|ŵ)], (xi − yi)〉

where each Fi : Ki ⊂ Rni → Rni , with each Ki being a convex domain such that
∏
iKi = K.

We can further simplify the solution of causal VIs by doing sensitivity analysis of a UDM subject to an intervention.
The use of interventions to probe a structure is very common in many engineering domains, as well as more abstractly
in many areas of math.
Theorem 13. If Y is probabilistically causally irrelevant to X , given Z, then CVI(Fŷ,ẑ(x),K) has the same solution
as CVI(Fŷ′,ẑ(x),K).

Proof: The proof is straightforward given the axioms of causal irrelevance (Pearl, 2009). If Y is causally irrelevant to
X given Z, then it follows that P (x|ŷ, ẑ) = P (x|ŷ′, ẑ) for all y, y′, x, z, namely if ẑ is fixed, then changing the value
of y has no influence on the distribution of x. In this case, the mapping F under the two intervention distributions
remains identical.

Now we examine the case when interventions do alter the solution to a causal VI, where our goal is to measure the
change in solution in terms of properties of the “untreated mapping F0 and the “treated" mapping F1.
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Theorem 14. Let the solution of the original “untreated" CVI(F0,K)be denoted by x0, where F0 is assumed to be
strongly monotone, and (stochastically) Lipschitz, with µ being the coefficient in the strong monotonicity property.
Given a causal intervention, the “treated" CVI(F1,K) results in the modified solution vector x1. Then it follows that

‖x1 − x0‖ ≤
1

µ
‖F1(x1)− F0(x1)‖ (14)

Proof: Since x0 and x1 solve the “untreated" and "treated" causal VI’s, respectively, it must follow that:
〈F0(x0), y − x0〉 ≥ 0, ∀y ∈ K
〈F1(x1), y − x1〉 ≥ 0, ∀y ∈ K

Substituting y = x1 in the first equation above, and y = x0 in the second equation, it follows that:
〈(F1(x1)− F0(x0)), x1 − x0〉 ≤ 0

Equivalently, we get
〈(F1(x1)− F0(x0) + F0(x1)− F0(x1)), x1 − x0〉 ≤ 0

Using the monotonicity property of F0, we get:
〈(F1(x1)− F0(x1)), x0 − x1〉 ≥ 〈(F0(x0)− F0(x1)), x0 − x1〉

≥ µ‖x0 − x1‖2

from which the theorem follows immediately

Interestingly, in the above analysis, we did not assume any property of the intervened causal VI F1, other than it has a
solution (meaning that F1 should be continuous). The following corollaries follow directly from Theorem 14.
Theorem 15. Given the original “untreated" causal VI CVI(F0,K), where F0 is strictly monotone, and the intervened

“treated" causal VI CVI(F1,K), where the intervened mapping F1 is continuous, but not necessarily monotone, if x0 and
x1 denote the solutions to the original “untreated" and causally intervened CVI, where x0 6= x1, then it follows that:

〈(F1(x1)− F0(x1), x1 − x0〉 < 0 (15)
〈(F1(x1)− F0(x0), x1 − x0〉 ≤ 0 (16)

Here, we are bounding the causal intervention effect of F1 − F0 of the “treated" vs. “untreated" operator, whereas
previously in the convergence analysis of Equation 13, we were trying to bound the same operator’s effect on two
different parameter values. The following theorem extends Theorem 15 in showing that for partitionable CVI’s, the
effects induced by local causal interventions can be isolated.
Theorem 16. If a partitioned causal VI CV I(F,K) is defined, where each component Fi is a strongly monotone
partitionable function, F 1

i denotes the causally intervened component function, and F 0
i is the “untreated" function,

x0 denotes the solution to the original “untreated" CVI(F0,K) and x1 denotes the solution to the “treated" causally
intervened CVI(F1,K) defined by the manipulated F 1

i component functions, then
m∑
i=1

〈(F 1
i (x1

i )− F 0
i (x1

i )), x
1
i − x0

i 〉 < 0 (17)

Proof: The proof follows readily from Theorem 14, Theorem 15, and Definition 62. In particular, if x1 is the solution
of the intervened CVI(F1,K) and x0 is the solution of the original CVI(F0,K), it follows that:

〈F1(x1)− F0(x1), x1 − x0〉 =

m∑
i=1

〈F 1
i (x1

i )− F 0
i (x1

i ), x
1
i − x0

i 〉

Since the component functions Fi are strongly monotone, the overall function F is as well, and by applying Theorem 14,
it follows that:

〈(F 1(x1)− F 0(x1)), x1 − x0〉 < 0

which immediately yields that
m∑
i=1

〈(F 1
i (x1

i )− F 0
i (x1

i )), x
1
i − x0

i 〉 < 0

If only a single component function Fi is treated, then:
〈(F 1

i (x1
i )− F 0

i (x1
i )), x

1
i − x0

i 〉 < 0

We can use these insights into designing an improved version of the two-step stochastic approximation algorithm given
by Equation 13. Instead of selecting random iterates to project on, we can instead prioritize those components F 1

i that
have been modified by the intervention.
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9 Summary and Future Work

In this paper we proposed the Universal Decision Model (UDM) framework, building on the core concept of information
fields, suitably generalized to the formalism of category theory. We showed how information fields defined by decision
objects in a UDM are associated with a finite topology, which can be exploited to facilitate hierarchical decomposition,
as well as build homotopically invariant representations. We described a specific UDM category of causal variational
inequalities, and showed how it can be used to solve causal inference problems in real-world complex network games.
We identified several universal properties, including information integration, decision solvability, and hierarchical
abstraction. Information integration is the process of consolidating data from heterogeneous sources, and its categorial
foundation is built on forming products or limits in a category. Abstraction enables simulating complex decision
process by simpler processes through bisimulation morphisms, and its categorial foundation rests on forming quotients,
co-products and co-limits. Finally, solvability refers to the requirement that a decision problem must have a unique
solution defined by a fixed point equation, and it requires an order-preserving morphism across objects. Much remains
to be done in this research paradigm on universal decision making. We summarize a few topics for further research that
extend the current paper.

9.1 Presheaf Representations

We briefly described the Yoneda lemma, which specified how to construct universal representations for any object
c ∈ C in a category based on covariant or contravariant functors. We can apply this approach to construct particular
pre-sheaf C(−, c) representations of objects in the UDM category of MDPs, POMDPs, PSRS, and more generally
intrinsic models. A detailed study of presheaf UDM representations is an important topic for future research.

9.2 Giri Monads

In category theory, the usual way to model probability distributions is through monads, a topic we did not get into as it
would take us far afield into category theory. Briefly, a Giri monad is the canonical monad structure for the category
of all measurable spaces. A monoidal category C is a category that has a bifunctor ⊗ : C × C → C, along with an
identity mapping, and several natural isomorphisms that define the associativity of the tensor product. More formally, a
monoid (M,µ, η) in a monoidal category C is an object M in C together with two morphisms (obeying the standard
associativity and identity properties) that make use of the category’s monoidal structure: the associative binary operator
µ : M ⊗M →M , and the identity η : I →M . A monad is often termed a “monoid in the category of endofunctors",
namely functors that map a category into itself. That is, consider the category of endofunctors whose objects are
endofunctors and whose morphisms are natural transformations between them. This can be shown to define a monoidal
category.

To link monads to probability distributions, recall that a measurable space (X,F) is a set X equipped with a σ-algebra
F . Recall also that a measure ν : X → R is a particular kind of set function from the σ-algebra to nonnegative real
numbers. A measurable space completed with a measure (X,F , ν) is called a measure space, and a measurable space
completed with a probability measure is called a probability space. We have already previously defined measurable
functions. We can now define the category Meas of measurable spaces, where the morphisms are simply the measurable
mappings between them. For any specific measurable space M , we can define the space of all possible probability
measures that could be placed on it as Ξ(M). Note that Ξ(M) is itself a space of measures - that is, a space in which
the points themselves are probability measures. As a probability measure, any element of Ξ(M) is a function from
measurable subsets of M to the interval [0, 1] in R. A key area for future work is to study UDMs defined over Giri
monads.

9.3 Kan Extensions of Intrinsic Models

It is well known in category theory that ultimately every concept, from products and co-products, limits and co-limits,
and ultimately even the Yoneda embeddings, can be derived as special cases of the Kan extension (Riehl, 2016). Another
topic for future work is to apply this powerful technique in the analysis of intrinsic models. We briefly define the
concept of Kan extensions below. Kan extensions intuitively are a way to approximate a functor F so that its domain
can be extended from C to D. In other words, Kan extensions are a way of taking two functors and constructing a
third functor to make a diagram commute. Because it may be impossible to make commutativity work in general, Kan
extensions rely on natural transformations to make the extension be the best possible approximation to F along K.

Definition 63. A left Kan extension of a functor H : C → E along F , another functor F : C → D, is a
functor LanFH : D → E with a natural transformation η : H → LanFH ◦ F such that for any other such pair
(G : D → E , γ : H → GK), γ factors uniquely through η. In other words, there is a unique natural transformation
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α : LanF =⇒ G.

C E

D

K

F

LanKF

G

∃!
η

C E

D

F

H

LanF H
η

A key challenge for future work is to explore approximation of functors from the UDM category to other categories
using Kan extensions.

9.4 Applications

We introduced the Universal Decision Model (UDM), a broad overarching framework for decision making that integrates
a number of well-studied modalities, including causal inference, decentralized stochastic control and reinforcement
learning, and multiplayer games in network economics. The UDM model uses category theory to contruct a universe of
decision making objects, which are related by bisimulation morphisms. The information field representation defines
the knowledge available to each decision maker, and induces a finite topology on the space of agents. The topology
of subsystems allows hierarchical decomposition of complex networks of agents, and we showed how homotopically
equivalent systems can be formulated using algebraic topology. The next step is to articulate how specific applications
can be solved in this paradigm, and design effective algorithms for this purpose. Applications naturally would require
making concrete choices on the particular types of problem classes involved (e.g., team, classical, sequential etc.), and
particular types of temporal ordering (e.g., linear, partial), and subsystem design using specific information fields.
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