1.0 Introduction

Gaussian Graphical Models: A Gaussian graphical model is simply a multivariate Gaussian distribution where the precision matrix (the inverse of the covariance matrix) is sparse. Zeros in the precision matrix correspond to absent edges in the graphical model. Absent edges in the graphical model imply conditional independence relations.

Gaussian Distribution

GGM Graph

Problem: This work addresses the problem of accelerating the search for non-decomposable Gaussian Graphical Model structures.

Motivation: Estimating Gaussian Graphical Model structure can be motivated from two different perspectives:

(1) Regularization. Sparse GGM structures are sought as a means of controlling model complexity, and improving density estimation.

(2) Knowledge Discovery. The true graphical structure is sought for the purpose of interpreting the relationships between variables.

2.0 Graph Classes & Priors

Gaussian Distribution: We parametrize the Gaussian distribution directly in terms of the precision matrix Ω as shown below. Without loss of generality we assume the data has zero mean. S denotes the sample covariance matrix $X^T X$. Note that $<\Omega,S>=$ trace (Ω,S) .

$$p(\mathcal{D}|\Omega) = \prod_{i=1}^{n} \mathcal{N}(x_i|0, \Omega^{-1}) \propto |\Omega|^{n/2} \exp(-\frac{1}{2} \langle \Omega, S \rangle)$$
[1]

Decomposable Graphs: Most prior work on learning the structure of GGMs has focused on the special case of decomposable graphs. Decomposable GGMs have the special property that the marginal likelihood under the conjugate Hyper-Inverse-Wishart (HIW) prior is fast to compute following local changes to the graph. However, only a small fraction of the total number of graphs on D nodes is decomposable.

Non-Decomposable Graphs: Non-Decomposable GGMs are more general than Decomposable GGMs. However, the marginal likelihood under the conjugate G-Wishart prior (given below) is intractable, making the search for general GGM structures computationally expensive.

$$W(\Omega|G, \delta_0, S_0) = \frac{I[\Omega \in \mathcal{S}_G^{++}]}{Z(G, \delta_0, S_0)} |\Omega|^{(\delta_0 - 2)/2} \exp(-\frac{1}{2} \langle \Omega, S_0 \rangle)$$
[2]

$$p(\mathcal{D}|G) = \int_{\mathcal{S}_G^{++}} p(\mathcal{D}|\Omega) \ W(\Omega|G, \delta_0, S_0) \ d\Omega \ \propto \frac{Z(G, \delta_n, S_n)}{Z(G, \delta_0, S_0)}$$
[3]

3.0 Graph Scoring

Overview: Approximating the marginal likelihood for non-decomposable GGMs is one of the main contributions of this work. We compare several approximations including a Monte Carlo method, two forms of Laplace approximation, and the Bayesian Information Criterion (BIC).

Monte Carlo Approximation: Approximates the numerator and denominator of Equation 3 using sampling (Atay-Kayis and Massam, 2005). The sampling distribution is exact and consists of products of normals and chi-squareds (code available from Mike West's group).

Laplace Approximation: Approximates the numerator and denominator of Equation 3 using a ratio of Laplace approximations. Requires computing the mode and the determinant of the Hessian matrix (evaluated at the mode) for both the prior and posterior G-Wishart distributions (Lenkoski and Dobra, 2008).

Diagonal Laplace Approximation: Our proposed method. Identical to the full Laplace approximation except that we approximate the determinant of the full Hessian matrix by the product of the diagonal entries.

BIC Approximation: Approximates Equation 3 using the log likelihood evaluated at the mode of the posterior plus an edge penalty term.

Computing G-Wishart Modes: We use a convex optimization method to compute G-Wishart prior and posterior modes. The method is similar to the G-Lasso approach of Duchi et al. (2008).

4.0 Graph Search

Overview: A stochastic local search algorithm tries to identify the most likely graph structure G in a given class of graphs by iterating between three steps (Scott and Carvalho, 2008): a stochastic local update to the graph based on marginal edge probabilities, scoring the graph, and updating the marginal edge probabilities. We show SLS trace plots below for decomposable graphs started from the optimal tree (DLS-T), general graphs started from the optimal tree (GLS-T), and general graphs started from Neighborhood Fusion (GLS-NF, see Section 5.0).

Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models UBC Baback Moghaddam¹, Benjamin M. Marlin², Mohammad Emtiyaz Khan² and Kevin P. Murphy² 2. Department of Computer Science, University of British Columbia

5.0 Neighborhood Fusion

Overview: Neighborhood fusion solves the problem of quickly producing large sets of high quality GGM structures. It exploits sparse linear regression techniques to compute a set of candidate neighborhood structures for each variable X_d, and specifies a mechanism for sampling and combining these neighborhoods to form undirected graphs. It is related to both the work of Meinshausen and Buhlmann (2006), and the G-Lasso (Friedman et al., 2007). We describe the algorithm below.

Step 1: Compute the Regularization Path & Store Neighborhoods We compute the regularization path for each linear regression problem $X_d = WX_d$ under a sparse prior (L0 or L1). We extract the distinct neighborhoods of X_d by examining the non-zero linear regression coefficients at each setting of the regularization parameter. We store the nth distinct neighborhood of X_d in \mathcal{N}_{dn} .

Step 2: Score Neighborhoods & Compute Proposal Distribution. Next, we compute a score Sdn for each neighborhood \mathcal{N}_{dn} of Xd expressing how well that neighborhood explains X_d. We use the linear regression Bayesian Information Criterion score. We compute a multinomial distribution Qd over the local neighborhoods extracted for each variable Xd by exponentiating and normalizing the scores: $Q_{dn} \propto exp(S_{dn})$.

Step 3: Sample Neighborhoods and Combine. Finally, we sample one local neighborhood for each variable X_d and intersect them to form a single symmetric graph. The graph sampling step can be repeated any number of times to quickly produce a large set of varied graphs.

Combining NF and SLS: We can use a sample of NF graphs to accelerate SLS in two different ways. (1) We can initialize the SLS marginal edge probabilities from the NF sample. (2) We can start the SLS search from the best graph found by NF.

6.0 Experiments

Overview: We perform experiments aimed at assessing the density estimation and structural recovery performance of GGM structure learning methods including decomposable and general SLS started from the most likely tree structure (DLS-T and GLS-T), Neighborhood Fusion using L₀ and L₁ priors (NF-L0 and NF-L1), and hybrid L₀ Neighborhood Fusion/general SLS (GLS-NF).

Data Sets: We use the D=59/N=60 mutual funds data set (previously considered by Scott and Carvalho) to assess density estimation performance and visualize MAP structures. We use D=100/N=500 and D=100/N=50 synthetic data sets to assess structural recovery.

Mutual Funds Density Estimation and Visualization: We see that the hybrid GLS-NF method is significantly better than the other methods in terms of diagonal Laplace Score, test set log-likelihood, and imputation log-likelihood. The visualizations show that the GLS-T and GLS-NF methods include more edges than the DLS and NF methods.

Synthetic Data Structural Recovery: On these higher dimensional data sets, we see that DLS-T and GLS-T perform quite poorly. NF-L0 and GLS-NF again have significantly better performance.

Selected References

A. Dempster. Covariance selec- P. Giudici and P. Green. Decomtion. Biometrics, 28(1), 1972.

D. Dobra, C. Hans, B. Jones, J. Nevins. G. Yao. and M.West. Sparse graphical models for ex- A. Lenkoski and A. Dobra. Baye- Applications Workshop, 2008. ploring gene expression data. J. Multivariate analysis, 90, 2004.

J. Duchi, S. Gould, and D. Koller. Department of Statistics, Univer-Projected subgradients for learn- sity of Washington, 2008. ing sparse Gaussians. In UAI,

posable graphical Gaussian B. Moghaddam, A. Gruber, Y. T. Speed and H. Kiiveri. Gaussian model determination. Biometrika.

sian structural learning and estimation in Gaussian graphical A. Roverato. Hyper inverse Wish- tion and estimation in the GGM. nodels. Technical Report 545, art distribution for non-decom- Biometrika, 94(1), 2007.

Weiss, and S. Avidan, Sparse reproblem. In Information Theory &

posable graphs and its applica-Gaussian graphical models. Scand. J. Statistics, 29, 2002.

cal Statistics, 17(4), 2008.

Markov distributions over Finite gression as a sparse eigenvalue graphs. Annals of Statistics.

M. Yuan and Yi Lin. Model selec

tion to Bayesian inference for T. Zhang. Adaptive forward-backward greedy algorithm for sparse learning. In NIPS, 2008.