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A restricted Boltzmann machine is a Markov random field with two 
layers of nodes called the "visible layer" and the "hidden layer". The 
visible layer consists of D binary data variables X, while the hidden 
layer consists of K binary latent variables H. The graph is bipartite with 
connections between the visible and hidden layers only. The binary 
hidden variables can be analytically integrated away yielding a marginal 
distribution on the visible variables only. 

• Energy:

• Joint: 

• Conditional: 

• Free Energy:

• Marginal:

Maximum Likelihood: Maximize the likelihood of the data given the 
parameters. Equivalently, minimize the KL divergence from the data 
distribution to the model distribution. Exact ML is intractable so stochas-
tic approximations are often used instead.

• Objective: 

• Gradient: 

Contrastive Divergence: Minimize the difference in KL divergence 
from the data to the model distribution and the T-step Gibbs distribution 
to the model distribution.

• Objective: 

• Gradient: 

Pseudo-Likelihood, Ratio Matching, & Generalized Score Matching: 
All three inductive principles can be cast in terms of one-dimensional 
conditional probabilities or ratios of probabilities of one-neighbours. The 
gradients differ only by a weighting function. 

• Objective: 

• Gradient: 
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• The prevalence of maximum likelihood as an inductive 
principle is based on two key properties: asymptotic 
consistency and asymptotic efficiency.

• For a large class of models including conditional 
random fields, Markov random fields, and restricted 
Boltzmann machines, simply computing exact likeli-
hoods can be computationally intractable.

• There are two basic approaches to dealing with intrac-
table likelihoods: (1) Approximately maximize the likeli-
hood. (2) Select an alternative inductive principle. 

• In this work, we present a study of several alternative 
inductive principles for learning restricted Boltzmann 
machines including contrastive divergence (CD), pseu-
do-likelihood (PL), ratio matching (RM), and generalized 
score matching (GSM). We compare to stochastic maxi-
mum likelihood estimation (SML).

• The gradients of all the methods we consider di�er only in the distribution 
of  “fantasy” data and the choice of weighting function.

• These di�erences are meaningful as the methods exhibit very di�erent 
theoretical and empirical characteristics.

• Careful implementations of ratio matching and pseudo likelihood are still 
an order of magnitude slower than SML and CD due to considering all pos-
sible one-neighbours for each training case.

• Taking computation time into account, SML is the most attractive method.

* *
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