
Variational Bounds for Mixed-Data Factor Analysis
Mohammad Emtiyaz Khan1, Benjamin M. Marlin1, Guillaume Bouchard2, and Kevin P. Murphy1

1. Department of Computer Science, University of British Columbia 2. Xerox Research Center Europe

Introduction
Motivation: Gaussian latent factor models, such as factor analysis (FA) and
probabilistic principal components analysis (PPCA), are very commonly used
density models for continuous-valued data. They have many applications includ-
ing latent factor discovery, dimensionality reduction, and missing data imputation.
In this work, we consider generalized FA models for mixed continuous and dis-
crete data. These models are extremely useful since they allow for non-trivial
dependencies between data variables with mixed types.

Problem: Unlike standard FA and PPCA, Gaussian latent factor models for dis-
crete data have an intractable integral in the marginal likelihood that makes learn-
ing difficult.

Solution: We propose to solve the intractable integral through the application
of a simple variational quadratic bound to the log-sum-exp function. The bound
applies to both categorical and binary data. The resulting learning algorithm has
advantages over other approaches to learning such models.

Factor Analysis Models
Gaussian Likelihood: Standard factor analysis models assume a Gaussian
prior on the latent factor vector and a Gaussian likelihood on the observed data.
The mean of the Gaussian on the observed data is modeled as a linear projection
of the continuous latent factor.
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Such models are easy to fit since marginal likelihood is available in closed form,

p(yn|θ) =

∫
zn

N (yn|Wzn,Σ)N (zn|0, I) = N (yn|WWT + Σ)

Discrete Likelihood: Standard factor analysis can be generalized to any expo-
nential family likelihood by modeling the natural parameters as a linear projection
of a Gaussian-distributed continuous latent factor vector. In the case of discrete
data, the mean parameters of the multinomial (Bernoulli) distribution are obtained
through a softmax (logistic) transformation applied to the linear projection of the
latent factor vector.

p(zn|θ) = N (zn|0, IL)
ηn = Wzn + µ

p(yD
n |zn,θ) =M(yD

n |S(ηn))

Sm(η) = exp[ηm − lse(η)]

lse(η) = log[
M+1∑
m=1

exp(ηm)]
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Variational Bounds
Tractable Lower bound to the Marginal Likelihood: Computation of the
marginal likelihood is intractable as the multinomial likelihood is not conjugate
to the Gaussian prior. We use variational bounds to compute a tractable lower
bound.

p(yD
n |θ) =

∫
zn

p(yD
n |ηn)p(zn)dzn

=

∫
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exp
[
ηT

n yD
n−lse(ηn)︸ ︷︷ ︸]N (zn|0, I)dzn
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ψ

∫
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exp
[
ηT
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2η
T
n Aψηn + bT

ψηn − cψ︸ ︷︷ ︸]N (zn|0, I)dzn

for all ψ ∈ RM.

The Bohning Bound: We use a quadratic bound due to Bohning. This bound
can be derived using a Taylor series expansion around ψ ∈ RM,

lse(η) = lse(ψ) + (η −ψ)Tg(ψ) + 1
2(η −ψ)TH(χ)(η −ψ)

where g(·) and H(·) are the gradient and Hessian of lse(·), and χ ∈ RM is
chosen such that the equality holds. An upper bound to lse(η) is found by
replacing the Hessian matrix H(χ) with a fixed matrix A such that A − H(χ) is
positive definite for all χ. Bohning gives one such matrix A, which we define
below:.

lse(η) ≤ 1
2η

TAη − bT
ψη + cψ

A = 1
2[IM − 1M1T

M/(M + 1)]

bψ = Aψ − S(ψ)

cψ = 1
2ψ

TAψ − S(ψ)Tψ + lse(ψ)

where ψ ∈ RM is the variational parameter vector, IM is the identity matrix of
size M ×M and 1M is a vector of ones of length M.

Bohning Bound:
I Less accurate.
I Faster.
I Fixed curvature.

Jaakkola Bound:
I More accurate.
I Slower.
I Variable curvature.

Aψ = 1/4
bψ = Aψ − (1 + e−ψ)−1

cψ = 1
2Aψ2 − (1 + e−ψ)−1ψ

+ log(1 + eψ)

Aψ = 2λψ
bψ = −1

2
cψ = −λψψ2 − 1

2ψ + log(1 + eψ)
λψ = [(1 + e−ψ)−1 − 1

2]/(2ψ)

Illustration of bounds: Variational bounds to log(1 + eη). The Bohning bound
has a fixed curvature and is tight at one point, while the Jaakkola bound has a
variable curvature and is tight at two points.
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Posterior Inference and Parameter Estimation
Posterior Inference and Lower Bound to the Marginal Likelihood:

p(yD
n |θ) ≥ max

ψ
|Vn|

1
2 exp

[
1
2mT

n V−1
n mn − cψ + µTAψµ + bT

ψµ + µTyD
n

]
Vn =

(
WTAψW + IL

)−1

mn = VnWT (yD
n + bψ − Aµ)

where q(z) = N (mn,Vn) is the approximate posterior distribution. The maxi-
mum with respect to ψ satisfies the following equation: ψ = Wmn + µ.

Parameter Estimation with EM algorithm: To get closed-form updates in the
M step, we further lower bound the marginal likelihood using Jensen’s inequal-
ity with the Gaussian variational posterior q(zn)

p(yD
n |θ) ≥ max

ψ
Eq

[
ηT

n yD
n − 1

2η
T
n Aψηn + bT

ψηn − cψ
]

+ EqN (zn|0, I) + H(q)

Fixed Curvature Variable Curvature

Complexity: O(L2DNI) per iteration Complexity: O(L3DNI) per iteration

Initialize W and µ.
repeat

V =
(

WTAW + IL
)−1

for n = 1, . . . ,N do
Initialize ψ.
for i = 1, . . . , I do
mn = VWT (yD

n + bψ − Aµ)
Update ψ,bψ and cψ.

end for
ỹn = A−1(yD

n + bψ)− µ
end for
µ =

∑
ỹn/N.

W =
(∑

ỹnmT
n
) [∑

V + mnmT
n
]−1

until convergence

Initialize W and µ.
repeat
for n = 1, . . . ,N do
Initialize ψ.
for i = 1, . . . , I do

Vn =
(

WTAψW + IL
)−1

mn = VnWT (yD
n + bψ − Aψµ)

Update ψ,Aψ,bψ and cψ.
end for
ỹn = A−1

ψ (yD
n + bψ)− µ

end for
µ =

∑
ỹn/N.

W =
(∑

ỹnmT
n
) [∑

Vn + mnmT
n
]−1

until convergence

Inference Example: Top row shows the likelihood for a binary observation
y = 1 along with lower bounds and the prior distribution. Bottom row show the
true and approximate posterior distributions.
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Error in Estimating the Marginal Likelihood: The Bohning bound (blue) and
the Jaakkola bound (red).

Results
Models and Methods:
FA-VM FA model with the Bohning bound.
FA-VJM FA model with the Jaakkola bound for binary data.
Mix-FA Mixture of FA model with the Bohning bound.
FA-MM FA model with the Maximize-maximize approach (Collins et. al. 2002).
FA-SS FA model with the Sample-sample approach (Mohamed et. al. 2008).
Mix-Full/Diag Mixture model with a full or diagonal covariance matrix.

Synthetic Data Experiment: MSE vs time on synthetic Binary data with N =
600,D = 16,L = 10 and 10% missing data.
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Real Data Experiment: We compute imputation MSE and entropy on three
datasets. We choose number of latent factors and number of mixture compo-
nents using cross-validation.
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Auto dataset has 392 observations of 3 continuous and 5 discrete variables with
total of 21 categories. Adult dataset has 45,222 observations of 4 continuous
and 5 discrete variables with total of 27 categories. ASES dataset has 16,815
observations of 42 discrete variables with total of 156 categories.

Continuous FA vs Mixed-Data FA: Latent factors for Auto data. Top row shows
factors using only continuous variables. Bottom row shows factors obtained by
including discrete variables.
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