Variational Bounds for Mixed-Data Factor Analysis
Mohammad Emtiyaz Khan¹, Benjamin M. Marlin¹, Guillaume Bouchard², and Kevin P. Murphy ${ }^{1}$
$\begin{array}{lll}\text { 1. Department of Computer Science, University of British Columbia } & \text { 2. Xerox Research Center Europe }\end{array}$

Introduction

Motivation: Gaussian latent factor models, such as factor analysis (FA) and Motivation: Gaussian latent factor modess, such as factor analysis (F) and
probabilistic principal components analysis (PPCA), are very commonly used
density models for continuous-valued data. They have many applications includdensity models for continuous-valued data. They have many applications including latent factor discovery, dimensionality reduction, and missing data imputation.
In this work, we consider generalized FA models for mixed continuous and disIn this work, we consider generaiized FA models for mixed continu fous notsisial
crete data. These models are extremely useful since they allow for non-trival dependencies between data variables with mixed types.
Problem: Unlike standard FA and PPCA, Gaussian latent factor models for disProblem: Unlike standard FA and PPCA, Gaussian Iatent factor models for dising difificult.
Solution: We propose to solve the intractable integral through the application of a simple variational quadratic bound to the log-sum-exp function. The bound
applies to both categorical and binary data. The resulting learning algorithm has advantages over other approaches to learning such models.

Factor Analysis Models

Gaussian Likelihood: Standard factor analysis models assume a Gaussian prior on the latent factor vector and a Gaussian likelihood on the observed data.
The mean of the Gaussian on the observed data is modeled as a linear projection of the continuous latent factor

Such models are easy to fit since marginal likelihood is available in closed form, $p\left(\mathbf{y}_{n} \mid \boldsymbol{\theta}\right)=\int_{\mathbf{z}_{n}} \mathcal{N}\left(\mathbf{y}_{n} \mid \mathbf{W}_{\mathbf{z}_{n}}, \boldsymbol{\Sigma}\right) \mathcal{N}\left(\mathbf{z}_{n} \mid 0, \mathbf{I}\right)=\mathcal{N}\left(\mathbf{y}_{n} \mathbf{W} \mathbf{w}^{\top}+\boldsymbol{\Sigma}\right)$ Discrete Likelihood: Standard factor analysis can be generalized to any expoof a Gaussian-distributed continuous latent factor vector. In the case of discrete data, the mean parameters of the multinomial (Bernoulli) distribution are obtained latent factor vector.

$$
\begin{array}{rlrl}
p\left(\mathbf{Z}_{n} \mid \theta\right) & =\mathcal{N}\left(\mathbf{z}_{n} \mid 0, \mathbf{I}_{L}\right) & \mathcal{S}_{m}(\eta) & =\exp \left[\eta_{m}-\operatorname{lse}(\eta)\right] \\
\eta_{n}=\mathbf{W} \mathbf{Z}_{n}+\mu & & \operatorname{lse}(\eta)=\log \left[\sum_{m=1}^{M+1} \exp \left(\eta_{m}\right)\right]
\end{array}
$$

Variational Bounds

Tractable Lower bound to the Marginal Likelihood: Computation of the
marginal likelihood is intractable as the multinomial likelihood is not conjugate to the G
bound.

$$
\begin{aligned}
p\left(\mathbf{y}_{n}^{D} \mid \theta\right) & =\int_{\mathbf{z}_{n}} p\left(\mathbf{y}_{n}^{D} \mid \eta_{n}\right) p\left(\mathbf{z}_{n}\right) d \mathbf{z}_{n} \\
& =\int_{\mathbf{z}_{n}}^{\exp }\left[\eta_{n}^{T} \mathbf{y}_{n}^{D}-\mid \operatorname{se}\left(\eta_{n}\right)\right] \mathcal{N}\left(\mathbf{z}_{n} \mid 0,1\right) d \mathbf{z}_{n} \\
& \geq \max _{\psi} \int_{\mathbf{z}_{n}}^{\exp }[\eta_{\eta}^{T} y_{n}^{D} \underbrace{}_{-\frac{1}{2} \eta_{n}^{\top} \mathbf{A}_{\psi} \eta_{n}+\mathbf{b}_{\psi}^{\top} \eta_{n}-c_{\psi}}] \mathcal{N (\mathbf { z } _ { n } | 0 , I) d \mathbf { z } _ { n }}
\end{aligned}
$$

$$
\begin{aligned}
& \psi \boldsymbol{Z}_{n}, \mathbb{R}^{M} \text {. } \\
& \text { for all } \psi \in)^{2}
\end{aligned}
$$

The Bohning Bound: We use a quadratic bound due to Bohning. This bound can be derived using a Taylor series expansion around $\psi \in \mathbb{R}^{M}$,
$\operatorname{se}(\eta)=\operatorname{se}(\psi)+(\eta-\psi)^{\top} \mathbf{g}(\psi)+\frac{1}{2}(\eta-\psi)^{\top} \mathbf{H}(\chi)(\eta-\psi)$
where $\mathbf{g}(\cdot)$ and $\mathbf{H}(\cdot)$ are the gradient and Hessian of Ise(.), and $\chi \in \mathbb{R}^{M}$ is
chosen such that the equality holds. An upper bound to Ise (η) is found by replacing the Hessian matrix $\mathbf{H}(\chi)$ with a fixed matrix \mathbf{A} such that $\mathbf{A}-\mathbf{H}(\chi)$ is positive de
below:.

$$
\begin{aligned}
\operatorname{se}(\eta) & \leq \frac{1}{2} \eta^{\top} \mathbf{A} \eta-\mathbf{b}_{\psi}^{\top} \eta+c_{\psi} \\
\mathbf{A} & \left.=\frac{1}{2}{ }^{1} \boldsymbol{M}-\mathbf{1}_{M} \mathbf{N}^{\top} /(M+1)\right] \\
\mathbf{b}_{\psi} & =\mathbf{A} \psi-\mathcal{S}(\mu) \\
c_{\psi} & =\frac{1}{2} \psi^{\top} \mathbf{A} \psi-\mathcal{S} \psi(\psi)^{\top} \psi+\operatorname{se}(\psi)
\end{aligned}
$$

Jaakkola Bound:

- More accurate
- Slower.

Variable curvature.
$A_{\phi}=2 \lambda_{\phi}$
$b_{b}=-\frac{1}{t}$
$b_{\psi}=-\frac{1}{2}$
$c_{\psi}=-\psi_{\psi} \psi^{2}-\frac{1}{2} \psi+\log \left(1+e^{\psi}\right)$
$\lambda_{\psi}=\left[\left(1+e^{-2} \psi^{2}-2\right.\right.$
$\lambda_{\psi}=\left[\left(1+e^{-\psi}\right)^{-1}-\frac{1}{2}\right](2 \psi)$
Illustration of bounds: Variational bounds to $\log \left(1+e^{\prime}\right)$. The Bohning bound has a fixed curvature and is tight at one point, while the Jaakkola bound has a variable curvature and is tight at two points

where $\psi \in \mathbb{R}^{M}$ is the variational parameter vector, M_{M} is the identity matrix of size $M \times M$ and 1_{M} is a vector of ones of length M.

Posterior Inference and Parameter Estimation

Posterior Inference and Lower Bound to the Marginal Likelihood:
$p\left(\mathbf{y}_{n}^{D} \mid \theta\right) \geq \max _{\psi} \left\lvert\, \mathbf{V}_{n} \frac{1}{2} \exp \left[\frac{1}{2} \mathbf{m}_{n}^{\top} \mathbf{V}_{n}^{-1} \mathbf{m}_{n}-\boldsymbol{c}_{\psi}+\boldsymbol{\mu}^{\top} \mathbf{A}_{\psi} \mu+\mathbf{b}_{\psi}^{\top} \mu+\mu^{\top} \mathbf{y}_{n}^{D}\right]\right.$
$\mathbf{V}_{\mathrm{n}}=\left(\mathbf{W}^{\top} \mathbf{A}_{\mu} \mathbf{W}+\mathbf{I}_{L}\right)$
$\mathbf{m}_{n}=\mathbf{V}_{n} \mathbf{W}^{\top}\left(\mathbf{y}_{n}^{D}+\mathbf{b}_{\psi}-\mathbf{A} \mu\right)$
where $q(\mathbf{z})=\mathcal{N}\left(\mathbf{m}_{n}, \mathbf{V}_{n}\right)$ is the approximate posterior distribution. The maxi
mum with respect to ψ satisfies the following equation: $\psi=W \mathrm{~m}_{\text {l }}$
.
Parameter Estimation with EM algorithm: To get closed-form updates in the
M step, we further lower bound the marginal likelihood using Jensen's inequal M sep, we further Iower bound the marginal like
ity with the Gaussian variational posterior $q\left(z_{n}\right)$
$p\left(\mathbf{y}_{n}^{D} \mid \theta\right) \geq \max _{\psi}\left[\mathbb{E}_{q}\left[\eta_{n}^{\top} \mathbf{y}_{n}^{D}-\frac{1}{2} \eta_{n}^{\top} \mathbf{A}_{\varphi} \eta_{n}+\mathbf{b}_{\psi}^{\top} \eta_{n}-\boldsymbol{c}_{\psi}\right]+\mathbb{E}_{q} \mathcal{N}\left(\mathbf{z}_{\|} \mid 0, \mathbf{I}\right)+\mathbb{H}(q)\right.$

Inference Example: Top row shows the likelihood for a binary observation
$y=1$ along with lower bounds and the prior
true and approximate posterior distributions.
$\mathrm{W}=1, \mu=1$

Error in Estimating the Marginal Likelihood: The Bohning bound (blue) and the Jaakkola bound (red).

Results

Models and Methods:

FA-VM FA model with the Bohning bound. Mix-FA Mixture of wA mod taakkola bound for binary data Mix-FA Mixture of FA model with the Bohning bound. FA-MM FA model with the Maximize-maximize approach (Collins et. al. 2002). FA-SS FA model with the Sample-sample approach (Mohamed et. al. 2008) Synthetic Data Experiment: MSE vs time on synthetic Binary data with N $600, D=16, L=10$ and 10% missing data.

Real Data Experiment: We compute imputation MSE and entropy on three datasets. We choose number nents using cross-valid

Auto dataset has 392 observations of 3 continuous and 5 discrete variables with total of 21 categories. Adult dataset has 45,222 observations of 4 continuous
and 5 discrete variables with total of 27 categories. $A S E S$ dataset has 16,815 observations of 42 discrete variables with total of 156 categories.
Continuous FA vs Mixed-Data FA: Latent factors for Auto data. Top row shows factors using only continuous variables. Bottom row shows factors obtained by including discrete variables.

$$
\begin{gathered}
\text { Factor } 1 \\
\text { Mixed-Data FA: Number of Cylinders }
\end{gathered}
$$

